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Abstract. From the viewpoint of adaptability, we classify software 
systems as being nonreflexive, introspective and adaptive. Introducing a 
simple example of LL(1) languages for expressions, we present its 
nonreflexive and adaptive implementation using Haskell functional 
language. Multiple metalevel concepts are an essential demand for a 
systematic language approach, to build up adaptable software systems 
dynamically, i.e. to evolve them. A feedback reflection loop from data to 
code through metalevel data is the basic implementation requirement 
and the proposition for semi-automatic evolution of software systems. In 
this sense, practical experiment introduced in this paper is related to the 
base level of language, but it illustrates the ability for extensions 
primarily in horizontal but also in vertical direction of an adaptive system. 

1. Introduction 

There is an increasing demand for systems that can be easily configured 
for a specific environment or they even adjust themselves dynamically to a 
changing environment at runtime. Adaptive behaviour is the proposition for 
the runtime adjustment, or evolution, provided that it is performed 
automatically.  

Adaptability [8] is mostly related to the area of software engineering – 
object oriented programming, aspect-oriented programming, intentional 
programming, template programming, etc., where it is exploited for changing 
the semantics of programs.  

On the other hand, the properties of systems are expressed using various  
languages, such as programming languages, specification languages, or 
modelling languages, in that solutions of problems are constructively 
formulated, no matter of a language abstraction level. At the bottom level of a 
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system, the machine code written in a machine language is executed. At the 
top level, human thoughts arise and are formulated using a natural language.  

Our current research concentrates on how a language (not a program) can 
vary its semantics, reflecting not just compile time but also runtime events. 
According to our opinion, static and dynamic adaptation of the language to 
new software aspects and runtime events should exclude current expensive 
methods of compiler construction. The language should be minimal, strongly 
associated with the properties of a software system and should be adaptive.  

This is a step on a way to self-adaptive software – software that 
incorporates monitoring and evaluation functions, and can rapidly (at runtime) 
respond to some sorts of need for change [9]. 

In a simplified manner, the ascending goal of our research is described 
below.  

Suppose mExec is a hardwired (non-adaptable) computer architecture, 
which executes the target code trgCode obtained from the source code 
srcCode using the language processor langProc. 

If the semantics of trgCode is not equivalent to the semantics of trgCode’, 
for two different target codes ( [|   trgCode |]  ≡  [|   trgCode’ |] ), then these target 
codes yield different behaviour when executed, accordingly (1). 

 

[|     mExec trgCode |]  ≡  [|     mExec trgCode’ |] (1) 

 
 
Clearly, langProc implements a language L. The basic principle of 

language processing is such that semantics of a source code is the same as 
the semantics of the target code produced by langProc from this source code. 
This is expressed by equivalence (2). 

 

[|    srcCode |]  ≡ [|    trgCode |] (2) 

 
The semantic equivalence (2) follows directly from the equation (3), which 

defines the target code in terms of the application of a language processor to 
the source code. 

 

trgCode = langProc srcCode (3) 

 
Then, instead of a manual development of a software system, represented 

by the step (4), changing the source program, 
 

 mExec ( langProc srcCode ) ⇒ mExec ( langProc srcCode’ )  (4) 
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we would like to change the language processor, preserving the original 
source program, replacing the manual development step (4) by a semi-
automatic evolution step (5) 

 

mExec ( langProc srcCode ) ⇒ mExec ( langProc’ srcCode ) (5) 

 
such that the target behaviour is the same, i.e. the equivalence (1) holds. 

 

[|    mExec ( langProc srcCode’ ) |]  ≡ [|    mExec ( langProc’ srcCode ) |] (6) 

The benefit is clear. Then we would be able to develop the systems without 
changing the source code. The trouble is that we must still add some 
additional program or specification to change the language (implemented by 
language processor), so the evolution is not fully automatic, but rather semi-
automatic. On the other hand, our hypothesis, which we would like to prove 
and subsequently exploit, is that manual code increment which adapts the 
language is far smaller, and the style of adaptation is far more systematic, as 
when source programs are manually modified. It may be also noticed, that (6) 
expresses the equivalence of runtime behavior, so we are interested not just 
in some slow process of adaptation, but even in a very fast adaptation of 
languages in runtime. 

Thinking about the task above, we have recognized the concepts of 
metaprogramming and reflection are fundamental. Metaprogramming is about 
writing programs that represent and manipulate other programs or 
themselves, i.e. metaprograms are programs about programs [2]. Reflection 
is an entity’s integral ability to represent, operate on, and otherwise deal with 
itself in the same way that it represents, operates on, and deal with its primary 
subject matter [4]. The main idea of applying reflection as a general principle 
for flexible systems in software engineering is to split a system into two parts: 
metalevel and a base level. A metalevel provides information about selected 
system and makes the software self-aware. A base level includes the 
application logic. 

In this paper, we present the principle of an adaptive context-free language 
focusing on the most complex phase – the syntax-directed translation from 
lexical symbols to postfix code. For the purpose of simplicity and clarity, we 
decided to use Haskell without monads.  

In Section 2 we introduce our classification of software systems from the 
viewpoint of the degree of reflexive behaviour, and we analyze three selected 
cases. In Section 3 we present LL(1) language for expressions and its 
nonreflexive implementation. The main ideas for adaptive implementation of 
the system are presented in Section 4. The conception of the multilevel 
adaptive language system is discussed briefly in Section 5. 
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2. Systems Behaviour Classification 

In this section we classify software systems from the viewpoint of their degree 
of adaptability. 

2.1. Nonreflexive Execution 

Machine code – the constant set 0C of instructions at base level 0 does not 
vary during execution, and then the execution changes data 0Dk (a set of data 
records on the stack or in the heap) to a new data set 0D(k+1). An execution 
step is the transformation of configuration (7). 

 

0C ⎯→⎯×  0Dk  ⇒  0C ⎯→⎯×  0D(k+1) (7) 

 
In (7), the relation ( ⎯→⎯× ) denotes that multiple instructions from 0C can 

access multiple data records 0D. 
The execution is nonreflexive, if there is no feedback loop from data to 

code, and no possibility is given to code to observe or even to change itself. 

2.2. Introspective Execution 

In an introspective execution, code 0C constructs and changes data 0Dk, as in 
a nonreflexive execution. In addition to this, each subset of the set 0Dk refers 
to (which we designate by ⎯→⎯− ) exactly one element of static data 1S, and 
this data refers ( ⎯→⎯+ ) to a subset of code 0C accordingly (8). Static data 
set 1S at level 1 is metalevel static data to the level 0. 

 

                               1C ⎯→⎯×  1S                                    1C ⎯→⎯×  1S 

                           +             -        ⇒               +             - 

                                               0C ⎯→⎯×  0Dk                    0C ⎯→⎯×  0D(k+1) 

(8) 

 
Since metalevel data (set of records) 1S is static, metacode 1C may produce 

it just once, and then the execution of 1C is finished. Clearly, such metacode 
cannot be runtime process, and execution of 0C is nonadaptive. However, it is 
introspective, because of the existence of a feedback loop from the code 0C to 
code 0C via the data set 0D and some metadata element from 1S. For 
example, introspective (but not adaptive) behaviour can be obtained using 
Java’s metaclasses that exploit static metadata 1S. 
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Introspection enables monitoring but not the behavioural change, so this 
property is of less significance for us. Moreover, each adaptive system, which 
execution is described below is automatically introspective. 

2.3. Adaptive Execution 

Adaptive execution step is defined in (9). In this case, metalevel data 1Dm can 
change in runtime to data 1D(m+1), by execution of metalevel code 1C. This 
code itself is nonreflexive, since there is no feedback loop via metadata at 
metametalevel 2. On the other hand, a new 1D(m+1) may yield a new 0C(k+1), 
continuing its execution at level 0. 

 

                               1C ⎯→⎯×  1D(m)                                    1C ⎯→⎯×  1D(m+1) 

                           +             -        ⇒               +             - 

                                             0C(k) ⎯→⎯×  0D(k)              0C(k+1) ⎯→⎯×  0D(k+1) 

(9) 

 
In this way, code at level 0 may be not just introspective, but also adaptive, 

and this fact is essential for an adaptive execution. For example, adaptive 
behaviour can be obtained using Smalltalk’s metaobjects that exploit dynamic 
metadata 1D(m). 

3. Nonreflexive Language Implementation 

In this section, we introduce the implementation of simple LL(1) language for 
expressions in a nonreflexive manner. 

Grammar of the language is written in extended BNF (EBNF), see (10). 
 

E → A { ("+" | "-") A } 
A → B [ ("*" | "/") A ] 
B → const | "(" E ")" 

(10) 

 
where [ϕ] = (ϕ | ε), ε is empty symbol, ϕ is a syntactic expression, and {ϕ} =  

ε | ϕ | ϕ ϕ | ... is the transitive closure. 
Lexical analyzer and translator to postfix code are common passes to both 

compiler and interpreter of the language. 
Lexical analyzer translates lexical units from string to symbol form, for 

example ”+” to AddL, ”-” to SubL, integer constants const to ValL v, etc. The 
correspondence of string and symbol form for all lexical units is visible by 
comparison of (10) and (11). 

The translator translate translates symbol form of lexical units to postfix 
code using syntax directed translation, following the rules (11). 
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  E[|     A { AddL Ak } |]     =    A[|     A |]      { A[|     Ak |]   Add } 
  E[|     A { SubL Ak } |]       =    A[|     A |]      { A[|     Ak |]   Sub } 
  A[|     B [ MulL A ] |]       =    B[|     B |]      [ A[|     A |]   Mul ] 
  A[|     B [ DivL A ] |]             =    B[|     B |]      [ A[|     A |]   Div ] 
  B[|     ValL v |]                     =    Push v 
  B[|     LparL E RparL |]      =    E[|     E |]  

(11) 

 
The translation starts with E[|     E |]  , since E is starting symbol. 
Compiler consists of lexical analyser, translator, machine code generator 

and loader. The execution is performed by emulated target machine. 
Code generation and loading are composed into single pass. The 

transformation of postfix code to machine code by C is defined in (12). 
 
  C[|     Add |]     =    1  C[|     Sub |]                        =    2                C[|     Mul |]     =    3 
  C[|     Div |]          =    4  C[|     Push x |]     =     5   x (12) 

 
where x is integer value, pushed on the stack by instruction Push (code 5). 

Machine code is generated and loaded to memory by function genload. In 
this way, genload performs code generation as well as loading actions that 
are invoked by the application (13) 

 

genload  pcode (13) 

 
where pcode is postfix code produced by translator translate. The value 

of the application (13) is machine code. 
Exit instruction is added (i.e. woven) to machine code in load time to 

enable to stop the execution. In this way, the semantics of original LL(1) 
language is statically (although not significantly) changed. 

Machine architecture comprises program counter pc, the number of 
stacked values sp (used instead of stack pointer), the accumulator a, the 
memory mem, and the stack stack. An execution step is defined by the 
transformation of machine configuration (14). 

 

(pc, sp, a, mem, stack) ⇒ (pc’, sp’, a’, mem’, stack’)  (14) 

 
Machine code is executed (emulated) by exec (0,0,0,mcode,[]), 

where mcode is target code loaded in memory mem. 
 
 
 
translate :: [LexUnit] -> [Instruction]   
translate ls = (snd . pE) (ls,[])  
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pE :: (LexUnits,Code) -> (LexUnits,Code) 
pE ([],cs) = ([],cs)  
pE (ls,cs) = cls (pA (ls,cs)) [] 
   where cls ([], cs) no = ([], cs++no) 
         cls ((l:ls), cs) no  
             | l == AddL = cls (pA (ls,cs++no) ) [Add] 
             | l == SubL = cls (pA (ls,cs++no) ) [Sub] 
             | otherwise = ((l:ls),cs++no) 
 
pA :: (LexUnits,Code) -> (LexUnits,Code) 
pA ([],cs) = ([],cs)  
pA (ls,cs) = alt (pB (ls,cs)) [] 
    where alt ([], cs) os = ([], cs++os) 
          alt ((l:ls), cs) os  
             | l == MulL = alt (pA (ls,cs)) (os++[Mul]) 
             | l == DivL = alt (pA (ls,cs)) (os++[Div]) 
             | otherwise = ((l:ls),cs++os) 
 
pB :: (LexUnits,Code) -> (LexUnits,Code) 
  pB ([],cs)                  = ([],cs)  
pB (((ValL x):ls),cs)       = (ls,cs++[Push x]) 
pB ((l:ls),cs) | l == LparL = skipR (pE (ls,cs)) 
    where skipR ((l:ls'),cs') = (ls',cs') 
 

Fig. 1. Nonreflexive translator to postfix code 

 
Interpreter consists of lexical analyser, translator, and function eval, which 

evaluates postfix code pcode directly, according to (15). 
 

eval  pcode =  v (15) 

 
in which pcode is postfix code produced by the translator and v is the result 

of interpretation. 
Although compiler and machine emulator have great potential for adaptive 

implementation, we will focus on adaptive language using interpreter, for the 
limited scope of this paper. A nonreflexive version of interpreter 
interpreter is defined by composition, as follows: 

 
interpreter = eval . translate . lexical (16) 

 



Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč 

ComSIS Vol. 4, No. 2, December 2007 
 

124 

Table 1. The task of adaptation 

Variant On condition Requirement 
0     none none 
1 res < 10 {+, -} → R 
2 res ∈ 〈10, 20) {*, /} → L 
3 res ≥ 20 {+, -} ↔ {*, /} 

 
 
Since in the next section we will concentrate to the adaptation of function 

translate, which will be generalized, we introduce its nonreflexive version in 
Fig. 1. In this version, functions pE, pA, and pB implement the translation 
schemes E, A, and B, see (11). 

4. Adaptive Language Implementation 

First, let us introduce the task of adaptation informally. 
 

Depending on the result of interpretation, the language defined 
by (10) and (11) should be changed, and the next interpretation 
follows different semantics, i.e. potentially different result of the 
same source expression. 

 
We have selected this task taking into account that it affects the most 

complex phase – the translation of context-free language to postfix language. 
More specifically, let res be a result of interpretation. If res < 10, then we 

require operations (+) and (-) be right-associative. If res ∈ 〈10, 20) then we 
require (*) and (/) be left-associative. And finally, if res ≥ 20, then mutual 
interchange of priority of {+, -} and {*, /} is required. 

All mentioned requirements are summarized in Table 1, which contains 
also zero variant, corresponding to original priority and associativity of 
operations defined by (10), as follows: operations (+) and (-) are left-
associative, and they are of lower priority than operations (*) and (/), that are 
right-associative. 

According to our specification, if a non-zero variant is selected, the 
language will never be adapted to its zero variant. 

First, we generalize the translator, using the following methodology: 
Comparing the translation schemes of rules for E and A, we define more 
general implementation for two rules in the form of function gS, introduced in 
Fig. 2. 

The adaptability is reached by parameter (s1,t,lo1,o1,lo2,o2,s2) of 
gS, by function rules, and by function ap. 
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Looking at (10) and (11), the meaning of parameter 
(s1,t,lo1,o1,lo2,o2,s2) items is as follows: 
s1 is the first nonterminal, which represents the first occurrence of A in E 

rule and B in A rule, 
t . . . closure { } or alternative [ ] switch, 
lo1 . . . input coding for the first operator, which represents AddL and 

MulL, 
o1 . . . output coding for the first operator, which represents Add and Mul, 
lo2 . . . input coding for the second operator, which represents SubL and 

DivL, 
o2 . . . output coding for the second operator, which represents Sub and 

Div, 
s1 . . . the second nonterminal, the second occurrence of A in E rule, and B 

in A rule. 
 
Function rules represents translation rules in a graph form, i.e. as a data 

and it is sensitive to the variant. The translation rules are then applied 
indirectly – using function ap. Variants that affect the translation rules, 
performing translator adaptation, are shown in Fig. 3. 

Finally, we define a simple metacode, including also adaptive interpreter 
interpreter, see Fig. 4. Using auxiliary function allVariants, we can 
verify correctness of adaptive interpretation for all variants, for example: 

 
> allVariants "10-3-1" 
= [6,8,6,6] 
> allVariants "20-3-1" 
= [16,18,16,16] 
> allVariants "30-3-1" 
= [26,28,26,26]  
 
Function adaptInt performs the change of the language semantics 

according to the selected variant k, dependent on previous result of 
evaluation. 

Function adaptInt takes a source expression and produces the triple: the 
first item is the value of the source expression, the second item is selected 
variant number depending on this value. The third item – new value is 
obtained by interpretation of the same source expression translated to 
potentially different postfix code by adapted translator and subsequently 
evaluated. 

For example, for input expression (10 - 3 - 1) (of value 6), variant 1 is 
selected and expression will be re-evaluated as being in the form (10 - (3 - 
1)), producing value 8. 

This is so, because variant 1 selects pair (v3,v2) from variants, see Fig. 
3, and adapts scheme ε in (11) to the scheme 

 
E[|     A [ AddL E ] |]      =    A[|     A |]      [ E[|     E |]   Add ] 
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E[|     A [ SubL E ] |]        =    A[|     A |]      [ E[|     E |]   Sub ] 
 
For input expression (14 - 3 - 1) (of value 10), variant 2 is selected and the 

expression will be re-evaluated as ((14 - 3) - 1), producing the same value 10. 
Although variant 2 adapts scheme A to the scheme 

 
A[|     B { MulL Bk} |]      =    B[|     B |]      { B[|     Bk |]   Mul } 

  A[|     B { DivL Bk} |]           =    B[|     B |]      { B[|     Bk |]   Div } 
 
 
 
this semantical change does not affect the expression, in which just 

subtraction is applied. 
The evaluation in both cases described above is as follows: 
 
> adaptInt "10-3-1" 
= (6,1,8) 
> adaptInt "14-3-1" 
= (10,2,10) 
 
But notice, adaptInt "64/8/2" would evaluate first time to 16, but for 

the second time to 4. 
Our metacode can be extended for solving more powerful tasks, and 

different metadata variants may result to semantically different adaptation 
effects. It can be also noticed, that adaptive language implementation is 
stronger than an introspective one. For example, an introspective task is such 
as counting the number of addition operations used in an expression. 

5. Discussion and Related Works 

The work presented in this paper comes out from our past research in the 
application of our process functional paradigm [6,7] to the aspect-oriented 
languages [5,10,12], until we have recognized that statically defined 
semantics of the language of pointcut designators weakly supports the 
adaptability, which we follow. The detailed analysis of this fact is over the 
scope of this paper, but having performed this we have decided to return back 
to Lieberherr’s [8] concept of adaptive systems, and even to their essential 
principles, such as metaprogramming and reflection. Some ideas about 
application of aspect-oriented programming to software evolutionary changes 
can be found in [1]. 

In this paper, we have used a purely functional approach using Haskell 
[11], but without monads [13], to simplify the notation as much as possible. 
Close relation of our adaptive language implementation and adaptive 
execution (9) is still visible: we abstract multiple translators by single translate 
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k function, but this is equivalent to the association of a new version of 
translator via a new metadata. 

A two-dimensional separation of concerns for compiler construction [14] 
tends us to think about multi-dimensional domain specific language evolved in 
multiple metalevels. 

 
translate :: Int -> [LexUnit] -> [Instruction]  

  translate k ls = (snd . pE) (ls,[])    
 where 
  rules = [("E", gS v1), ("A", gS v2), ("B", pB) ] 
          where (v1,v2) = variants !! k 
 
  ap nt = snd (head [(n,f) | (n,f) <- rules , n==nt]) 
 
  pE = ap "E"   
 
  gS :: (String,Char, LexUnit,Instruction,LexUnit, 

Instruction,String) -> (LexUnits,Code) -> (LexUnits,Code) 
  gS (s1,t,lo1,o1,lo2,o2,s2) ([],cs)  = ([],cs)  
  gS (s1,t,lo1,o1,lo2,o2,s2) (ls,cs)   
    | t == 'c' = cls ((ap s1 ) (ls,cs)) []  
    | t == 'a' = alt ((ap s1 ) (ls,cs)) []  
     where  
       cls ([], cs) no = ([], cs++no) 
       cls ((l:ls), cs) no  
          | l == lo1 = cls ((ap s2 ) (ls,cs++no) ) [o1] 
          | l == lo2 = cls ((ap s2 ) (ls,cs++no) ) [o2] 
          | otherwise = ((l:ls),cs++no) 
       alt ([], cs) os  = ([], cs++os) 
       alt ((l:ls), cs) os 
          | l == lo1 = alt ((ap s2) (ls,cs)) (os++[o1]) 
          | l == lo2 = alt ((ap s2) (ls,cs)) (os++[o2]) 
          | otherwise = ((l:ls),cs++os) 
 
  pB :: (LexUnits,Code) -> (LexUnits,Code) 
  pB ([],cs)                  = ([],cs)  
  pB (((ValL x):ls),cs)       = (ls,cs++[Push x]) 
  pB ((l:ls),cs)  
    | l == LparL = skipR ((ap "E" ) (ls,cs)) 
     where  
       skipR ((l:ls'),cs') = (ls',cs')           
 

Fig. 2. Adaptive translator to postfix code 

 
variants = [(v1,v2), (v3,v2), (v1,v4), (v5,v6)] 
  where v1 = ("A",’c’,AddL,Add,SubL,Sub,"A") 
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        v2 = ("B",’a’,MulL,Mul,DivL,Div,"A") 
        v3 = ("A",’a’,AddL,Add,SubL,Sub,"E") 
        v4 = ("B",’c’,MulL,Mul,DivL,Div,"B") 
        v5 = ("A",’a’,MulL,Mul,DivL,Div,"E") 
        v6 = ("B",’c’,AddL,Add,SubL,Sub,"B") 

Fig. 3. Definition of variants 

 
 

selVariant v | v <  10           = 1 
             | v >= 10 && v < 20 = 2 
             | v >= 20           = 3 
 
interpreter k = eval . translate k . lexical   
 
adaptInt s = (res, variant, interpreter variant s) 
             where 
               res      = interpreter 0 s 
               variant  = (selVariant res) 
 
allVariants s = [interpreter 0 s, 
                 interpreter 1 s,  
                 interpreter 2 s,  
                 interpreter 3 s] 
 

Fig. 4. Metalevel code 

 
This approach has sense, if each higher metalevel generalizes lower 

metalevel very concisely, and the computational time does not increase 
significantly. 

In contrast to language evolution by inferring a language from samples of 
programs [3], our approach is based on inferring a metalanguage from 
samples of metaprograms. 

6. Conclusion 

We have presented the classification of software systems considering the 
degree of adaptibility. We recognize non-reflexive, introspective and adaptive 
systems. The most powerful case of behaviour – adaptive behaviour is 
analyzed and implemented using a simple LL(1) language. Non-reflexive 
interperter of this language, written in Haskell functional language, is 
transformed, and its adaptive version is obtained. In this way we provide a 
language able to react to the run-time event. 
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Presented adaptive LL(1) language can be extended in many directions, 
exploiting feedback loops from any phase to any phase of compiler, via 
metadata. Using an object-oriented language, adaptive behaviour (9) would 
be directly implemented, instead of current abstraction of an expression e to 
(λk.e), where k is a parameter designating a version. Presented 
generalization of two translation rules is just ad-hoc solution, and it is 
necessary to extend it to all constructs of EBNF or BNF. Instead of 
nonreflexive interpreter 

 
interpreter = eval . translate . lexical 
 
using abstraction and generalization, we have developed adaptive 

interpreter, as follows. 
 
interpreter k = eval . translate k . lexical 
 
The main contribution of this work, from the viewpoint of our future 

research, is as follows. 
Provided that a level or metalevel is adaptive, it contains feedback loops 

from data to code via metalevel or metametalevel, respectively. Even if any 
level or metalevel is adaptive, it still must be manually initiated (programmed, 
specified, modelled). By the way, this is an essential principle of control 
systems. The task of adaptability is to reduce this manual work, or to shift it to 
the higher metalevels. There is no need for a universal language, just for a 
multi-metalevel domain specific language, which is able to express current 
and future properties of a system accurately. 

We may conclude, that the most significant, except the generalization of 
our ad-hoc use of extended BNF form and denotational semantics, is the 
extension to any metalevel l for lC, lD and combining of lCP, lDP at the same 
level, considering different programming, specification, and modeling 
paradigms P. 

This however is impossible to do exploiting purely functional approach, 
which we have used in this paper to illustrate how a simple language can be 
adaptive. Instead of that, at least two other approaches come into account, 
using monadic functional or metaobjects languages. 
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