
Computer Science and Information Systems 20(2):765–792 https://doi.org/10.2298/CSIS220719021Z

Using Artificial Intelligence Assistant Technology to

Develop Animation Games on IoT

Rong Zhang

School of Artificial Intelligence, Dongguan Polytechnic,

Dongguan, 523808, China
443798430@qq.com

Abstract. This research proposes an XNA animation game system with AI

technology for action animation games in mobile devices, based on an object-

oriented modular concept. The animation game function with AI technology is

encapsulated into independent objects, through the combination of objects to

build repetition. It adds AI technology to the finite state machine, fuzzy state

machine and neural network and attempts to combine the traditional rule-base

system and learning adaptation system to increase the learning ability of

traditional AI roles. The main contributions are compared with traditional

methods and the AI animation game system is shown to have more reusability,

design flexibility and expansibility of its AI system through the object

composition approach. It adds AI technology to combine the traditional rule-base

system and learning adaptation system to increase the learning ability of

traditional AI roles. Therefore, AI animation game producers can accelerate their

processes of developing animation games and reducing costs.

Keywords: Artificial intelligence assistant, Animation games, Neural network,

Object-oriented modular, Fuzzy state machine.

1. Introduction

Due to the rapid development of the global digital content industry, various countries

have invested in the promotion of the digital content industry, and the animation game

industry has become one of the most promising industries. The research pointed out that

in terms of annual expenditure, the growth rate of television (TV) animation games is

9.6% higher than that of TV and is second only to the Internet. In terms of the average

hours spent per year, TV animation games are growing and the fastest-growing media

has a compound annual growth rate of 7%. Animation game producers develop games

with AI technology, increasing the perception of players that they are intelligent beings,

so that players can have a deeper and more interesting experience when interacting with

these AI characters in animation games. From this point of view, AI animation games

are not only an indispensable technology for most animation games but are also one of

the sources of interactivity and fun in animation games [1, 2].

In today's digital electronic technology, the technical power of the digital animation

gaming industry is growing rapidly, through the mutual promotion of software and

hardware. The speed of the improvement of animation game graphics is obvious in all

766 Rong Zhang

game fields. In the early 2D surface to the mid-term 3D stereo, and to the next

generation of high-resolution images, animation games are constantly progressing in

terms of screen effects that continue to shock players. AI research experts claim that

when animation game screens improve, animation games are not promoted in the same

way [3, 4]. However, due to the advancement of graphics technology, animation game

characters have smoother movements, more realistic textures and more complex

expressions. If they do not have an effective AI animation game to control their

behaviour, the animation game characters will be deemed as not having a real

appearance, and instead will be characterized as having asymmetric and strange

behaviour [3, 4]. Therefore, as regards superior animation games, AI is a very important

technology for today's animation games. In the past, animation game development used

DirectX for programming, however, DirectX did not provide much of a design function

to animation games, therefore, the designer was responsible for a large number of

implemented parts. The XNA animation game is an integrated cross-platform

development environment for PC/XBOX mobile animation games and includes an

animation game development library, packaged software tools and various other

development tools, so as to provide the most convenient and efficient development

environment for AI animation game developers. It brings together 3D drawings, physics

engines and animation game production process management, as well as resource

management and other applications to help AI animation game producers accelerate the

development of animation games and reduce costs. Fig. 1 is a diagram showing the

relationship between XNA and animation games. In Fig. 1, XNA is an animation game

function library, which provides the basic functions of animation games and an empty

animation game architecture. The designer only needs to expand the functions according

to its architecture [5, 6]. The second layer is the animation game engine, designed by the

designer to expand and establish the basic category library and functions, according to

the functions library required by the animation game. The third layer is the animation

game code, using the first and second layer category libraries, and the function is used to

write the code for the actual operation of the animation game. In the case of a small

animation game, the designer can even skip the second layer, as long as the function

provided by XNA is used directly to write the animation game program in an empty

animation game; this can make the animation game work. Based on the aforementioned

advantages, XNA provides a very good development environment for amateur animation

game designers and students [7, 8].

The related AI animation game technology research can be roughly divided into:

chess AI animation game implementation, AI animation game implementation, based on

the open architecture of existing animation games and self-made AI animation game

system implementation [9, 10]. Most AI animation game technology researchers will

choose animation games with simpler rules to realize the idea of AI technology.

Nowadays, many commercial animation games openly authorize players to modify part

of the animation game program. Players can implement their own ideas in the animation

game, according to the open modification framework of the game. This has also led to

research such as the AI implementation of animation games, based on the open

architecture of existing animation games [11.12]. This research uses open-licensed

commercial animation games to modify programs, so as to realize researchers’ AI

technical ideas, although researchers can quickly use such animation games to

implement AI animation games. However, these will also be subject to the original

 Using Artificial Intelligence Assistant Technology... 767

architecture of animation games, therefore, the AI technology that can be implemented

will be limited. Although the AI system implementation of self-made animation games

needs to build an animation game system independently, it gives researchers

considerable freedom and flexibility. The first objective of this research is twofold.

Firstly, the aim is to implement action animation games with XNA in the AI system.

Through the concept of object-oriented modular objects, an AI system is built with

reusability, design flexibility and expandability. In addition, finite state machines, fuzzy

state machines and neural network AI technology applications are added, combined with

traditional rule-based systems and learning adaptation systems, so that traditional AI

roles can increase their learning capabilities [13, 14]. The second purpose is to show that

XNA can simplify the characteristics of animation game design through the process of

implementing the AI system; it can explain and record the implementation process to

provide a reference for related researchers and producers. This research sets the

implementation goal as the AI system implementation of action animation games. By

focusing on the AI system implementation of a single animation game type, the results

of the research purpose can be achieved within the expected timeframe [15, 16].

Fig. 1 The relationship between XNA and animation games

Although the AI animation game is implemented using an academic concept, issues,

such as animation game execution efficiency must also be considered. Therefore, an AI

animation game usually simplifies the complex algorithmic process or only uses its

concept to implement an AI system, as its main purpose is to perform the desired AI

effect under the allowable performance consumption. This research will focus on the AI

system used in animation games, with the aim of demonstrating that the research results

can be more in line with the current animation game production flow process, so as to

improve the performance value of the research results. Animation game production can

be roughly divided into three areas: planning, art and programming. Each area

constitutes a different professional field, however, this research will only discuss the

programming element of AI animation game production [17, 18].

The first section discusses the research background and motivation, as well as the

research purpose and scope of the research. Section two discusses related background

768 Rong Zhang

knowledge and the AI performance that is emphasized in the basic types of animation

games. Section three focuses on the system planning and analysis of AI animation games

and explains the system architecture. Section four considers the implementation of AI

animation game systems and explains in detail the function and structure of each object.

Section five discusses the implementation, which through combination and connection

becomes a working example implementation; this section also highlights the reusability,

design flexibility and scalability of the AI system. Section six comprises the conclusion

and explains the research results and the future work.

2. Related Work

2.1. Animation Game Types and AI Performance

The type of animation game greatly affects the function and direction planning of the AI

system. Different types of animation games focus on different AI performances.

Therefore, AI systems are rarely universal and are usually built for specific animation

games. There are many types of animation games today. Table 1 lists the common basic

animation game types. In addition to the basic types in the table, there are also many

mixed types, such as the Action Role Playing Game, ARPG) and the Action Adventure

Game (AAVG), [19, 20].

The basic animation game types listed are based on these animation game types. The

following key AI performances are summarized [21-25]:

1. Fixed behaviour: the behaviour of a fixed mode does not change according to the

time of the animation game. The designer defines a number of behaviour patterns and

conditions that trigger behaviours and the AI animation game characters make

corresponding behaviour patterns, based on the defined conditions. They do not change

in line with the time of the animation game or any other factors.

2. Variable behaviour: the behaviour of the non-fixed mode will change in

accordance with the time of the animation game or other factors. The designer also

defines several behaviour patterns, but the conditions that trigger the behaviour will

change, according to the time of the animation game and other factors.

3. Simulation behaviour: AI characters record and simulate the player's good

performance in animation games.

4. Group action: this is the behaviour pattern of AI characters in group actions of

multiple units. For example, in a real-time, strategy animation game, when a large

number of AI animation game units are moving, the group action will form a melee unit

in front and a long-distance unit behind or teamwork behaviour in basketball or football

animation games.

5. Strategic thinking: this constitutes AI management performance that belongs to

high-level decision makers and supervises and collects various information in animation

games at a higher position. It integrates the information to make decisions and informs

single or multiple AI animation game units of the decision.Nowadays, the number of

animation games is quite considerable and each animation game may contain multiple

 Using Artificial Intelligence Assistant Technology... 769

AI performances. Therefore, Table 2 mainly focuses on the most common AI

performances of this type. It shows that the AI performance of action animation games

has only one fixed behaviour, although role-playing animation games and adventure

animation games are also in the same situation. The difference is that the objectives of

the other three types of animation games are not only focused on defeating enemies. For

example, role-playing animation games also focus on character training and adventure

animation games focus on solving puzzles, dodge mechanisms and the process of

jumping on to a platform [26-30]. The goal of the action animation game is to defeat the

enemy. Therefore, this research aims to enhance the player experience of action

animation games, by enriching the reactions and actions of AI characters. In order to

achieve this goal, the research will focus on AI characters to add changing behaviour.

The AI animation game is the broadest definition, including everything from simple

chasing and dodging movement modes to neural networks and genetic algorithms. Using

AI to allow non-player characters to show different personality traits or to present

human-specific emotions and tempers, is one of the options that can be considered in the

design of animation games [31-35]. No matter what it entails, as long as it can give

people a certain level of wisdom, make animation games more addictive, more

challenging and importantly fun, it can be regarded as an AI animation game.

Table 1. Common types of animation games available currently

Type of

animation

game

Feature description Famous animation

Role Playing

Game

Focuses on plot description and character development.

Usually has a broad, complete world view and gives

attention to the player's sense of investment in the world of

animation and game.

Final Fantasy[12]

Adventure

Game

Comprises a puzzle element and players must solve through

the puzzle to pass through the levels.
Tomb Raider [6]

Real-Time

Strategy

Players need to control a large number of animation and

game units at the same time to fight, and the animation and

game unit action is immediate.

Age of Empires[11]

First-Person

Shooter

A first-person perspective of the animation game; the players

shoot as the main means of attack.
Call of Duty

Platform

Game

There are a lot of units and organs on the map. Players must

jump to avoid the organs, so as to play the animation game.
Super Mario [15]

Sports Game
Simulation of various sports, such as ball games, swimming,

skiing, etc.
NBA Live

Racing Game
This game has a sense of speed, such as racing cars or racing

boats.
Need for Speed

Action Game
A single character completes a level by knocking down the

enemy. The action is instantaneous.
Ninja Gaiden

Fighting

Game
Fights a single enemy at a time, using a variety of knockouts. Street Fighter

Table Game,

TAB

Realistic desktop animation game simulation, such as chess,

monopoly, Mahjong, etc.
Monopoly

770 Rong Zhang

2.2. AI Animation Game

AI animation games are divided into three categories, namely rule-based systems, goal-

based systems and learning and adaptation systems. The following relates to the rule-

based system and the learning and adaptation system, which are more commonly used in

the development of animation games.

1. Rule-based system: this type of system has a long history in animation games and

also uses the most common AI technology in animation game development. Its operating

principle involves the designer defining the conditional rules corresponding to the

behaviour of AI characters in advance, then using the programming language The

conditional judgement (if, then, else, switch, case) is used to control the behaviour of AI

characters. The advantage of this type of system is that it is simple and easy to

understand as well as to debug and implement, however, its disadvantage is that it lacks

learning ability and is easily predicted by players. There are three common architectures

for such systems, namely the finite state machine (FSM), fuzzy state machine (FuSM)

and production systems.

2. Learning and adaptation system: as the name suggests, this type of system has the

ability to learn and adapt. It can make AI characters more changeable and challenging in

animation games since players cannot easily predict the behaviour of AI characters. Due

to the continuous improvement of AI characters, the entertainment life of animation

games has also been extended. According to the AI learning technology used, this can

roughly be divided into two categories, namely indirect learning and direct learning.

1. Indirect learning: indirect learning is a mathematical statistical method combined

with a rule-based system. It counts the player’s control patterns and habits, and analyses

them, then uses the analysed data to modify the AI character’s behavioural rules, so that

the AI character has the ability to learn and adapt to the player [36, 40].

2. Direct learning: direct learning is based on AI technology with learning concept

algorithms as the system architecture, allowing AI characters to have autonomous

learning capabilities through learning algorithms. In this type of method, the designer

usually establishes a learning system first, then creates a system with learning

capabilities through different training methods. AI characters in animation games use the

trained system to conduct behavioural, decision-making analysis. An AI character, built

entirely using this type of system has strong learning and adaptability capabilities, but

this will also cause problems for animation game developers, such as difficulty in

debugging or the AI may deviate from the expected effect. Moreover, such systems,

which usually contain complex algorithms are difficult to understand and implement.

There are two common applications of learning and adaptation systems in animation

games, namely the artificial neural network and the genetic algorithm [41-45].

Table 2 below compares the advantages and disadvantages of the two AI systems and

shows that the advantages and disadvantages of the two AI systems have complementary

effects. If only one single type of AI system is used in an animation game, when the

animation game is scaled, the larger the size, the greater the number of shortcomings.

Therefore, in current animation game development, different functions are usually

established for different needs. Either a subsystem of power is established or the AI

work is divided into several small systems, then multiple subsystems are combined to

form a complete AI animation game system, so as to maximize the advantages and

minimize the shortcomings. Consequently, the AI system modularization of the key

 Using Artificial Intelligence Assistant Technology... 771

technology of the AI technology is very important. The modularized AI technology will

be reusable in the system and can effectively combine the subsystems. The meaning of

modularization is reusability, which can improve flexibility [45].

Table 2. Comparison of the advantages and disadvantages of the rule-based system and the

learning and adapting system

2.3. FSM

FSM: also known as finite state automata or state machine for short, this is a

mathematical model that represents a finite number of states and behaviours, such as

transitions and actions between these states. A state machine usually contains three

elements: the transition functions between all states, inputs and connection states in the

state machine [21-25]. The FSM is used in the AI program of animation games. The AI

chasing the player's enemy in the animation game is the application of the FSM and this

is used in the AI of animation games. The reason for this is that it easy to understand,

implement and debug characteristics, and its characteristics also make finite states. In

the process of developing animation games, the machine often has outstanding

performance. In the following section, the enemy AI in the classic animation game, Pac

Man, is used as an example to explain the use of FSMs in animation games [46-50].

The FuSM is actually an extended variant of the FSM. These statements are closer to

everyday problems and semantic statements, and examples are used to illustrate the

concept of fuzzy logic. In an animation game, there is a castle and according to the

concept of classic logic, when the character enters the castle, it is 1 and not in the castle.

The inner time is 0, which makes the character's behaviour in the animation game more

flexible and realistic. The difference between the FuSM and the basic state machine is

that the FuSM allows multiple states to run at the same time, while the basic state

machine can only run one state at a time (Kwon and Shin, 2005). The parameter can be

used as the stimulus value of the FuSM state. Firstly, the stimulus value standard for

triggering each state, when the enemy is close to the point, may result in the FuSM

operating in the three states of moving, shooting and dodging at the same time.

The production system can also be called an expert system and combines the

functions of a knowledge database, rule management and decision-making. It is usually

used to solve expert problems in a specific field. In the production system used by AI

characters in animation games, the users of the system are the AI characters and the

process of operating the system used by the AI characters is automatically run by the

 Advantage Disadvantage

Rule-based system

 Easy to understand.

 Easy to implement.

 Debugging is easy.

 The larger the animation game

scale, the more the program

volume will lead to confusion.

 Predictable.

Learning and

adaptation system

 It is learned.

 It is hard to predict.

 It simplifies complex

programming.

 Implementation is not easy.

 Debugging is difficulty.

772 Rong Zhang

computer, so there is no need to provide a user interface to the AI characters. Animation

game programmers usually write scripting languages corresponding to the AI system and

provide these to animation game planners to design AI animation games [26-29]. The

production system is famously used in animation games and the main AI system is

established by the production system. The computer AI in animation games can learn the

building order and the resource requirements of the building through the knowledge

base, then use the reasoning mechanism to determine the search for resources and

collection acts [51-54].

3. Research Design

3.1. AI System Construction Process

The scope of the AI animation game is quite large; complex human thinking simulation

to path search are all within the scope of the AI animation game. Therefore, before

building an AI system, one must first determine the main use of the AI system, such as

purpose, expected effects or information relating to animation games, then the function

and architecture of the AI system can be planned, based on the established information

content. Finally, the system can be implemented based on the planned content. The AI

system construction process can be divided into three periods, the system direction and

basic content setting period, the AI system planning period and the AI system

implementation period:

1. System direction and basic content setting period: the key function of the AI

system builders is to confirm the animation game type, animation game content and the

expected performance goals of the plan, as well as to carry out the preliminary planning

of the system, based on the information obtained and to analyse and select the required

software.

2. AI system planning period: the main work content is to carry out detailed planning

of the AI system, including the AI system architecture, the application scope of AI

technology, the information required by the AI system, the operation method of the AI

system and the animation games to connect to the main structure.

3. AI system implementation period: this relates to the AI system construction work,

according to the content planned in the AI system planning period, and the results are

realized by program software. In addition to the implementation of the system, this issue

also includes system testing and problem modification.

3.2. Software and Hardware Requirements

(1). Software: Visual C# was developed to realize the most efficient programming

language in the .NET Framework. Visual C#, like Java, is an intermediate code

language. The base language used by XNA is C#, so the main language used in

animation game programming is Visual C#.

 Using Artificial Intelligence Assistant Technology... 773

(2). Hardware: the software used in this study is XNA Game Studio. Therefore, based

on the hardware requirements of XNA, it is recommended to have at least 4GB of

physical memory and a CPU clock of 2.0GHz or more.

3.3. AI Animation Game System Design

The AI animation game system is a subsystem built on animation game architecture. The

AI system cannot operate independently because the AI system itself does not include

graphics, model management, cameras and other animation game functions. It must be

combined with other units of the animation game architecture. Therefore, for the AI

system to function normally, it must have a foundation architecture in the main body of

the animation game. It uses XNA as the animation game development platform,

therefore, XNA will be used as the bottom layer of the animation game’s main structure

for planning purposes. When creating XNA’s new animation game project, XNA will

provide designers with an empty animation game architecture and designers must follow

this architecture to expand and extend animation games. Fig. 2 shows that this

architecture contains five main functions, which are Initialize, LoadContent, Update,

Draw, UnloadContent, when the animation game starts; Initialize and LoadContent will

be executed in sequence. After running Update and Draw, these two functions will be

executed repeatedly during the animation game process until the animation game ends

and UnloadContent will only be executed before the end of the animation game. The

five functions will be introduced as follows:

1. Initialize: The first part executed when the animation game starts, the function is to

initialize various animation game data.

2. LoadContent: this function is used to load the external data required by various

animation games, such as animation game models, text files, pictures, videos, etc.

3. Update: the main loop of the animation game will be continuously executed during

the animation game process to update the content and information of various animation

games.

4. Draw: similar to Update, Draw will be executed continuously during the animation

game process and its function is to update the animation game screen.

5. UnloadContent: this is used to release the memory space used before the animation

game ends.

XNA provides a sample program function, which allows designers to quickly create

an object that includes the infrastructure; the operation process of this object is also the

same as the main structure of the animation game. Fig. 3 is an animation game

architecture diagram, established in accordance with the animation game functions

required by the AI animation game system. The function descriptions of each object

form part of the animation game architecture.

3.4. The Concept Architecture of the AI Animation Game System

AI is a computer technology that simulates human thinking reactions, judgement logic,

and learning ability, since the purpose of AI animation games is to provide animation

774 Rong Zhang

game characters with a vivid performance, allowing players to believe that the characters

are alive, enhancing the animation game play and challenge of animation games and

making it easier for players to become absorbed in the animation game content. At the

same time, animation game development must also consider its performance. A poor

performance of animation games will affect players’ acceptance of animation games.

The AI animation game system architecture divides the characteristics of AI into the

following four key points, so as to simulate human thinking behaviours: sensation,

memory, thinking and judgement, action. These four key points will be explained as

follows:

1. Sensation: this is referred to as information reception and represents the feelings of

animation game characters in relation to the animation game world, for example, sight or

hearing.

2. Memory: this is known as information access and represents the information that

an animation game character must record in the animation game world, such as player

information, including player level and equipment or the attack habits of the player.

3. Thinking and judgement: this is central to the AI animation game system. It

represents all the action benchmarks of the animation game characters and guides the

animation game characters in terms of the judgements they should make when they

encounter a certain situation. Strong AI animation games can become more humane and

unpredictable, based on the information obtained.

4. Action: after passing the feeling and thinking judgement, the system will analyse a

relative response to the current situation and instruct the animation game character to

take action. Usually in animation games, one or more actions are set for animation game

characters in advance, such as attack, escape, rest, patrol, gathering, etc., and animation

game characters are analysed and judged by the AI animation game system, according to

the situation.

Fig. 2 Diagram of XNA animation game process architecture

 Using Artificial Intelligence Assistant Technology... 775

Fig. 3 Diagram of animation game architecture

In order to respond to various needs in animation games, there may be more than one

AI system at the same time. These systems can operate separately or independently, or

they can be related to one other.

3.5. AI Animation Game Information

The AI animation game system collects the information that is available or required in

the animation game. Collecting information forms the basis and the start of the AI

system. Without sufficient information, the AI system cannot create more effective and

changeable thinking and judgements. Too much junk information will increase the

calculation of the AI system and affect the performance of animation games, therefore,

the setting and control of animation game information is very important. This

information should be provided to the AI system and the type of information must be

planned when the system is constructed. The animation game information used in the AI

animation game system is divided into four categories.

1. World information: this type of information represents the character's information

in the animation game world, such as the character's position, direction and height in the

animation game world.

2. Character information: this type of information represents basic information

relating to the character, such as strength and blood volume. The basic information of

the character is used as a calculation basis for other information. For example, power

will affect the attack damage value of the character; the higher the character, the higher

the damage value it can cause.

3. Action information: this type of information not only refers to the attacking moves

of the character, but also refers to the various actions of the character in the animation

game, such as dodging, moving and attacking. This type of information transfers the

player's current action information to the AI character, so that the AI character can

determine the corresponding action. For example, when the AI character learns that a

player is making an attack, the AI character may use a dodge action, when the player is

on the move or on standby.

4. Situation information: this kind of information is usually used to indicate a certain

situation relating to the AI character or to the player. When a player is attacked, there

will be a period of time when the player cannot be attacked again, therefore, this

776 Rong Zhang

function must provide the collision detection system with information as to whether a

character has collided with something.

4. AI System Implementation

4.1. 4.1 Main Program of Animation Game

The AI system is the main source, therefore, the main program of the animation game is

built to provide the AI system with operation and testing functions. As shown in Fig. 4,

the main program of animation game is divided into five parts according to its functions,

and each part contains one or more categories.

Fig. 4 Five major parts of the main program of the animation game

Object-oriented Programming (OOP) is an important concept of modular

programming. An object is a combination of data and functions and the advantage of the

modular object is that it can be repeated. OOP comprises three concepts, encapsulation,

inheritance and polymorphism, which are explained as follows:

1. Encapsulation: to combine data, data processing procedures and functions into

objects. The definition of an object in C# language is a class, which belongs to an

abstract data type. To define an object is to define a new data type for the programming

language.

2. Inheritance: this is the reuse of objects. When a new category is defined, it can

inherit the data and methods of other categories; the new category can also add or

replace the data and methods of inherited objects.

3. Polymorphic: if a category needs to process a variety of different data types, there

is no need to create exclusive categories for different data types. This can directly inherit

 Using Artificial Intelligence Assistant Technology... 777

the basic category to create a method of the same name, so as to process different data

types.

(1) Game: this is the skeleton part of the animation game; its main function is to

control the animation game process and set the animation game environment. Game

contains two categories, Program and Game1, which are automatically generated by the

system when a new XNA animation game project is created. The Program and Game1

categories will be described separately below:

1. Program: the function of the Program is quite simple, as it only contains a main

function. This function is the first to be executed when the animation game starts to run.

The main function declares an object of the Game1 category and executes the Run

function of this object.

2. Game1: Game1 was originally the main loop function of the animation game; the

main function is the initial setting and process control of the animation game. However,

since the function of the template program has been used to allow other animation game

components to operate independently, only the initial animation is left in Game1. The

game environment has the function of building other animation game elements.

(2) Camera: the main function of the camera is to set and manage animation game

cameras. It only contains a camera category, which is an animation game component, so

it will update its status with the animation game time. Drawing in a 3D animation game

world is like using a camera to record a video. The drawing of objects on the screen

needs to be imaged through the parameters provided by the camera. The key camera

parameters that affect imaging are the two matrix parameters, namely the view matrix

and the projection matrix. The view matrix determines the position, facing direction and

orientation of the camera in the animation game world. The projection matrix is used to

determine the angle of view and the distance of the camera's visibility. Generally, the

projection matrix does not need to be changed to its default value, unless the purpose is

to change the visibility of the camera. The view matrix that needs to be constantly

changed in animation games is determined by the three parameters of the camera

position, the camera's gaze target point and the camera's upward vector. By substituting

the three parameters into XNA, the CreateLook method in the function library can

obtain the view matrix of the camera. If the direction of the camera is unknown in

relation to the target, the player should add the camera position and the camera's facing

direction to ensure that the camera is facing the target point.

(3) ModelManager-animation game model manager: 3D model objects are the

foundation of 3D animation games. For example, animation game scenes and animation

game characters, etc. are all created by 3D model objects. The function of the animation

game ModelManager is to centrally manage all animation game model objects. This

contains three main categories of objects, BasicModel (PlayerBasic and EnemyBasic are

inherited from BasicModel), ModelManager and CollisionManager. The three

categories are introduced below. BasicModel represents the basic model object category

in animation games and other model objects will inherit from it. The purpose of

establishing BasicModel is to unify the parts shared by all model objects in the

animation games. This approach can avoid the issue of redefining the model objects

each time, as shown in Fig. 5. When creating a new model object, allow it to inherit the

BasicModel, then, the new model object can have the basic data and functions of the

BasicModel and expand them as required. For example, PlayerBasic is the extension of

778 Rong Zhang

the model object representing the player and EnemyBasic is the extension of the model

object representing the enemy.

Fig. 5 A new model object inherited from BasicModel

4.2. AI system Program Description

The AI system of this study uses three AI technologies: FSM, FuSM and neural

network-like technology. Since the FSM and the FuSM are quite similar in terms of

basic architecture, these are two technologies which are built in the same module at the

time.

(1) State machine module: this kind of FSM has two advantages. The first is high

scalability. Nowadays, the scale of animation games is getting larger and the subsystems

included in animation games are increasing. The main body of the AI systems of the

animation game may be developed by two groups of people at the same time. In this

case, the use of information becomes the communication method between the

subsystems, making the subsystems independent, therefore, there is no need to worry

about the information connection between the subsystems. The second point is to

improve the efficiency of the system, as most AI characters are reactive. Usually, there

is a change in the animation game that affects the behaviour of the AI character. Even if

the AI character's behaviour does not change, the program will continue to run all the

judgement programs, which will reduce efficiency. If the message appears, it is

necessary to send the relevant message to the AI system when the animation game

changes. The message-driven FSM uses messages as the driving force for transitions

between states. In the AI system architecture, the AI manager is responsible for the

decision-making element, while the state machine manager actually controls the state

transition actions and state operations.

(2) Neural network module: this type of neural network can be divided into the

feedforward network and the recurrent network. The characteristic of this type of

network is that each layer can only pass forward and the difference between the

recursive network and the feedforward network is that the recursive network allows the

 Using Artificial Intelligence Assistant Technology... 779

network layer to pass back. In the AI design of animation games, most people choose to

use the feedforward network. The reason is that the feedforward network is easier to

understand and test than the recursive network, and in terms of system performance, due

to the feedforward network, the path does not resemble a recursive network that requires

multiple circumventions in the network, therefore, the system performance of the

feedforward network is also improved. Based on these reasons, this study chose to use a

three-layer feedforward network, which is divided into three network layers as the name

suggests, namely the input layer, the hidden layer and the output layer.

After choosing the type of neural network, the input data, activation function, output

data and training method must be planned:

1. Input data: for the neural network of the AI animation game system, the amount of

input data can be controlled to a minimum, as the relatively small volume of input data

also means that the neural network has a higher execution rate; too much data are

surplus to requirements. The input data may cause a gap between the output of the

neural network and the prediction.

2. Activation function: the activation function converts the total input value of the

neuron into the output value of the neuron. The activation function used in this study is

the most commonly used logistic function.

3. Output data: the output value of the similar neural network is usually the decision

value that represents the expected network prediction. Since the activation function used

is a logistic function, the output value will be between 0 and 1, but the actual usable

range is between 0.1 and 0.9, so a value around 0.1 can be regarded as inactive and a

value around 0.9 is active. In this way, provided that the output value is judged as active,

it is possible to determine the decision of the neural network.

4. Training method: the purpose of training the network is to identify the weights of

the interconnections between neurons, so that the input can achieve the expected output.

There are two types of training methods commonly used in animation games, which are

supervised learning and unsupervised learning. Unsupervised learning is independent

training and does not require design. The author manually edits the training set, but the

required technology is more sophisticated and more extensive, considering the difficulty

and time factors, so this research chooses the easier-to-implement back-propagation

method in supervised learning. Training is an optimization process, and the optimization

method used by the inverse transfer method is to use the error method to minimize the

error. This process can be divided into the following five steps.

Step 1: establish a training set containing input data and expected output values.

Step 2: set the initial value of the weight of the neural network to a random small

value.

Step 3: pass the input data of the training set into the network and allow the network

to calculate the output value.

Step 4: compare the output value calculated by the network with the expected output

value and calculate the error between the two.

Step 5: adjust the weight value to reduce the error and repeat the process until the

error is within an acceptable range.

In the optimization process, after calculating the cumulative error of all the input data

in the training set and the expected output value, a judgement is made as to whether this

has reached the acceptable range, and if not, the process is repeated. The formula for

calculating the error is represented by formula 2 and 3, which are used by the output

780 Rong Zhang

neuron and the hidden layer neuron respectively; the input layer has no so-called error

because the value of the neuron is given by:

δi
 o
 = (ndi

o
-nci

o
) nci

o
(1-nci

o
) (2)

δi
 h
 = (Σδj

 o
 wij) n

 h
(1 – n

 h
) (3)

where δ
o
 is the error of i-th output neuron in the output layer. ndi

o
 is the expected

output value of the i-th neuron in the output layer. nci
o
 is the calculated output value of

the i-th neuron in the output layer. δ h is the error of the i-th output neuron in the hidden

layer. δ o is the error of the j-th output layer neuron, connected by the i-th hidden layer

neuron. wij is the connection weight between the i-th hidden layer neuron and the j-th

output layer neuron. n
 h

 is the calculated output value of the i-th neuron in the hidden

layer.

5. Implementation

The examples of AI system implementation are used to demonstrate the effectiveness of

modular AI systems.

5.1. Example 1

Example 1 will use modular animation game objects to build a working AI character

example. The following implementation process from scratch is explained in a series of

steps and the implementation process is divided into three parts: pre-work, setting the

main body of the animation game and establishing the AI system. The pre-work involves

the process of creating a new animation game project and placing modular objects. The

main body of the animation game is established to connect various functional objects of

the main body of the animation game and to establish the animation game flow. Finally,

the establishment of the AI system builds the corresponding AI function objects

according to the set AI character reactions and actions, and connects them with the main

body of the animation game.

(1). Pre-work: i) the first step is to create a new XNA animation game project. The

newly created animation game project only contains Game1 and Program categories,

and currently, the Game1 category only has a basic animation game empty structure

without any content.

ii) the second step is to place the module object: after creating the animation game

project, the main body of the animation game and the AI system module objects that

have been made previously, are placed into the project.

(2). Setting the main body of the animation game: at present, the objects are still in

separate conditions, therefore, it is necessary to start writing programs to connect the

main parts of the animation game and to create players and AI characters. At this time,

the AI characters are not connected to the AI system. The following describes the key

programs in each object.

i) Game1: the most important function of Game1 in an animation game relates to the

initial components. The animation game components that need to be created are Camera,

ModelManager and PlayerControl. Therefore, these three objects should be created at

 Using Artificial Intelligence Assistant Technology... 781

the initialize function stage and added to components, so as to connect them. The main

loop of the animation game begins to operate. After the animation game components are

established, the associations between the components must be connected. In the

SceneInitialize function, the player character should be the target of the Camera, then

the player character and the AI character in the ModelManager should be linked to the

PlayerControl.

ii) ModelManager: creates model objects of players and AI characters in

ModelManager, even though there is only one model object for both the player and the

AI character. The module objects of the player and the AI character are created, then the

state and drawing are updated with the ModelManager.

iii) PlayerControl: there are three kinds of player behaviours set in animation games,

moving, attacking and dodging. The update function of PlayerControl will respond to

the player's input every time it is updated. If this is true, the action will be executed;

actions are restricted in order.

(3). Establishment of AI system: before establishing an AI system, the kind of AI

roles to be established must be determined. The example below shows the creation of a

close-range attacking AI character that includes fixed behaviours and variable

behaviours. The AI roles linked to these behaviours are shown in Table 4.

Table 4. Example 1 Action behaviour of AI characters

AI character Behaviour description

Patrol
Without encountering a player, the AI character performs a movement

behaviour centred on the spawn point.

Chasing the

player

When the player is within visual range, the AI character pursues the action of

approaching the player.

Combat

Movement

An AI character moves around a player-centred point while within combat

distance.

Attack
When within combat distance with the player, the AI character carries on the

attack action to the player.

Dodge
A fast lateral move performed by an AI character when he or she is under

attack or needs to move quickly.

AI characters have five behaviour modes, which can be roughly divided into two

parts: combat and non-combat. The combat element includes combat movement,

attacking and dodging; the non-combat element patrols and chases the player. According

to the aforementioned classification, the battle element is planned as a variable

behaviour and the non-combat element as a fixed behaviour; the fixed behaviour uses an

FSM and the variable behaviour uses a neural network. The plan is shown in Fig. 6.

EnemyAIManager: the AI manager connects the AI role and the AI system. Firstly,

a category EnemyOneAIManager is created that inherits the EnemyAIClass, connects

the EnemyOneAIManager in the EnemyOne category and updates the AIManager in

EnemyOne’s update function. As a result, EnemyOneAIManager is connected to the

FSM. EnemyOneAIManager wishes to manage the condition information required by

the state transition of the FSM and the input information required by the neural network.

FSM: the connection between the AIMachine of the FSM and each state has been

completed in EnemyOneAIManager. The following describes the two states of

782 Rong Zhang

EnemyChaseState and EnemyPatrolState; EnemyFightState uses neural networks

internally.

EnemyPatrolState: this state controls the AI character's patrol action centred on the

spawn point. After entering this state, the character will first calculate the distance

between the current position and the centre of the circle, and will store it in the length

parameter.

EnemyChaseState: this state controls the behaviour of the AI character chasing the

player. The operation of this state is quite simple. Provided that the AI character is in

this state, it will continue to move with the player as the target, until it leaves the state.

Fig. 6. Example 1 AI system planning

(4) The establishment of the AI system-neural network: the neural network in

Example 1 is used to decide the combat behaviour of AI characters, so the neural

network is placed in the EnemyFightState state of the AI character for use. There are

three combat behaviours in the EnemyFightState state: move, dodge and attack. These

three behaviours represent the output of a neural network, using input AI character

emotions, current player actions and AI characters relative to the player. The three

pieces of information relating to location use neural networks to determine the combat

behaviour that should be executed, as shown in Fig. 7.

Before using the neural network, it is necessary to train in the neural network. The

training method used here provides a supervised learning of the training set. The method

needs to create a training set containing input and expected output data, as shown in

Table 5.

The training process involves passing the input of the training set to the neural

network to run, then comparing the obtained output with the expected output value in

the training set to calculate the error. Then the inverse transfer method is used to update

the weight of the input and the hidden layer; this process is repeated until all the data in

the training set are calculated once, then, a judgement is made as to whether the

accumulated error meets the expected value. If this is not the case, the training process is

repeated until the error reaches the expected target. It takes time to train a neural

network. If a large number of such training processes are repeated in an animation game,

 Using Artificial Intelligence Assistant Technology... 783

this may cause delays in the animation game. Therefore, the neural network is built in

the EnemyOne category to make the animation game in the first place. When it starts to

read AI characters, the neural network must be trained first and the data stored

externally, then the trained neural network data are read from the outside when the

animation game is executed.

Fig. 7. The neural network in the implementation example 1

Table 5. Examples of training sets of neural networks

Input Output

AI character

emotion

Player's current

movement

Relative

position

Combat

movement
Dodge Attack

0.0 0.1 0.1 0.1 0.9 0.1

0.1 0.2 0.1 0.9 0.1 0.1

0.3 0.1 0.4 0.1 0.9 0.1

0.5 0.1 0.2 0.1 0.1 0.9

Once the neural network has been built, the three combat behaviour functions,

namely, move, attack and dodge are explained below.

1. Combat movement: the behaviour of move control is to allow the AI character to

circle around the player. When the player approaches, the AI character moves back to

keep a distance from the player.

2. Attack: the behaviour controlled by attack is an attack action. When the distance

between the AI character and the player is greater than the attackable distance of the AI

character, the AI character will move closer to the player and the attack action program

will be executed when the distance is less than that.

3. Dodge: the behaviour controlled by dodge is the act of dodging. When the

dodgeAnim parameter is false, the current position of the AI character should first be

784 Rong Zhang

saved to the prePosition parameter and dodgeAnim set to true, to avoid changing to

prePosition. When the canDodge parameter of the AI character is true, this means that

the AI character is currently able to perform a dodge action. The distance between the

AI character’s current position and the location to which it intends to move is judged,

then the dodge action and the displacement will be performed; if the distance is

considerable, the AI character may have already dodged when the distance was

exceeded, therefore, the dodge action and movement are stopped at this time. The

construction of Example 1 has been completed.

5.2. Example 2

Since many well conFig. parts can be used from Example 1, Example 2 will be simpler

and faster to implement, and reuse is one of the benefits of modularity. The description

of the settings that are will be omitted.

5.3. Set the Main Body of the Animation Game

The main function of the animation game is roughly the same as in Example 1. The

difference is that in Example 2, a new spear class, inherited from BasicModel, is added.

Spear is used to represent the spear thrown by the AI character, and the spear needs to

be independently updated after being thrown. Therefore, a basic model series, relating to

the spear, is set up in the ModelManager, and the spear is also added to the Update and

Draw functions: operation and establishment of AI system-AI manager and FuSM. In the

AI system during the implementation of Example 2, the aim was to highlight the

modular reusability and design flexibility, therefore, during the design process, part of

the architecture of Example 1 was combined with the new architecture of Example 2.

The aim in the second example was to implement an AI role that was significantly

different from the first example. Therefore, the second example selected the

implementation of a long-range, attacking AI role. Table 7 below shows the behaviour

list of the second AI role.

The AI character in Example 2 has four behaviour modes: patrol, chasing the player,

combat movement and long-range attack. The two behaviours of patrol and chasing the

player are the examples shown in Example 1, on the one hand, to demonstrate the

reusability and on the other hand, because the two behaviours of patrolling and chasing

players are almost necessary behaviours for AI characters in action animation games.

Similar to Example 1, the four behaviours are divided into the combat element and the

non-combat element. The non-combat element also uses FSM architecture to establish

the two behaviours of patrol and chasing the player, but the difference is the use of the

combat element. The FuSM is used to establish the two behaviours of combat movement

and long-range attack. Fig. 8 is the AI system planning of Example 2.

1. EnemyAIManager: the EnemyTwoAIManager is created in the EnemyTwo category,

as the AI manager of Example 2. The part of the EnemyTwoAIManager setting that

connects the limited state machine is the same as in Example 1. The two states of

EnemyPatrolState and EnemyChaseState are the objects created directly using Example

 Using Artificial Intelligence Assistant Technology... 785

1. Only the combat state part is an additional EnemyFightTwoState state. The

information processed by EnemyTwoAIManager is different from that in Example 1.

The information here is used to determine whether the fuzzy state is enabled. The two

states in the FuSM are based on the distance between the AI character and the player, so

as to judge whether or not to enable, therefore, this parameter must be managed in

EnemyTwoAIManager, in order to make the FuSM available for use.

Fig. 8. Example 2 AI system planning

The following describes the two states of EnemyFuMoveState and

EnemyFuAttackState, respectively.

1. EnemyFuMoveState: EnemyFuMoveState is the state of controlling the movement

of combat. There are three behaviours. The first is to stand in one place, the second is to

go around the centre of the circle with the player and the third is to move backwards

when the player approaches, in an attempt to keep a distance from the player.

2. EnemyFuAttackState: the function of the FuSM is to allow the two states of

EnemyFuMoveState and EnemyFuAttackState to operate independently, allowing the AI

character to attack the player at a distance while moving. The behaviour of the

EnemyFuAttackState is very simple and involves throwing a spear at the player at a

fixed time.

786 Rong Zhang

Combining Two Implementation Examples

Example 2 shortens the implementation time considerably due to the modularity and

quickly adds a new AI role by expanding Example 1. Then, the two examples are

combined. Example 2 used many objects of Example 1 in its implementation and adds a

small part of the program while maintaining the object structure, so Example 2 is an

extension of Example 1. Therefore, we take Example 2 as the main body, and integrate a

part of Example 1 in Example 2. Firstly, it is necessary to identify the objects that are

different in Example 1 and Example 2, then the objects of both are gathered together.

Following a comparison, the objects in Example 1, that are different from Example 2,

are EnemyOne, EnemyOneAIManager and EnemyFightState. These three objects are

added to the project in Example 2. The next step is to start to connect the program parts

of the two examples. Firstly, the combination of the two examples are examined in the

form of a framework diagram. As shown in Fig. 9, there is no conflict between the two

examples and the only connecting part is EnemyOne. There is a link between

EnemyTwo and ModelManager, therefore the only change required is to add a new AI

role of EnemyOne to the EnemyModels list in ModelManager and the implementation

of Example 2 has been completed.

Performance Evaluation and Discussion

This study used the XNA Game Studio, which simplifies the development of animation

game programs in order to implement the AI system of action animation games,

combined with AI technologies such as FSMs, FuSMs and neural networks, so that AI

technology can be used. The results of this paper, namely, the concept of modular

objects, allows the AI system to exhibit features such as scalability, reusability and

design flexibility. The implementation process records and experience of this research

can provide useful information for related research reference for both the creator and the

producer. The research conclusions and contributions of this paper are as follows:

1. Achievements: an AI animation game system with reusability, design flexibility

and expandability has been built, using the concept of object-oriented modular objects.

As a result of the use of FSMs, FuSMs and neural networks, AI technology applications

are added to combine traditional rule-based systems and learning adaptation systems, so

as to increase the learning ability for traditional AI roles.

2. Two examples of AI roles with different behaviour patterns are implemented: the

AI role behaviour in the first example is based on close-range attacks. The AI system

architecture uses a combination of FSMs and neural networks and uses traditional rule-

based methods. In Example 1, the implementation process from scratch verifies the

feasibility of the AI system. Example 2 is completed practically through the combination

of various built objects and through the combination of FSMs and neural networks. AI

performance also achieved the expected results.

3. The AI character behaviour of the second example is aimed to be a long-range

attack type and the combination of an FSM and an FuSM is used in the architecture of

the AI system. The FSM element is built according to the first example. Fuzzy logic is

used to allow the AI character to change its movement speed and movement method as

the player approaches. The behaviour of AI characters is designed to have more

 Using Artificial Intelligence Assistant Technology... 787

variability, and Example 1 is combined with Example 2 by means of simple steps, so

that the two AI characters can be presented in the animation game at the same time.

During the implementation of Example 2, many objects created in Example 1 were

reused. This verifies the reusability and expandability in this research. These two

features allow animation game designers to continuously reuse previously built objects

and can also expand the functions of the objects to create an animation game design.

4. When an animation game designer tries out different AI technologies, he/she

simply needs to expand or modify the original objects, without the need for a complete

redesign. The difference between the two examples in the AI system architecture aims to

highlight the design flexibility achieved by this research study. Since each AI system can

operate independently, the animation game designers can integrate different AI

technologies according to their needs and all AI systems can operate within animation

games at the same time without affecting one other. Therefore, this research has reached

the expected goals in terms of the implementation results.

5. XNA simplifies the effectiveness of animation game programming: XNA can

simplify animation game design during the process of implementing the AI system and

can explain and record the implementation process, so as to provide a reference for

related researchers and producers.

The previously created animation game module objects are used to gradually build a

prototype animation game, and the FSM and neural network technology is used to create

an AI character that combines fixed and variable behaviours, as demonstrated in

Example 1. The feasibility of the AI system and the combined effect of modular objects

are discussed. During the implementation of Example 2, another AI character was

quickly created by following the system established in Example 1 and completed using a

different combination of AI technologies from Example 1, which demonstrates the

reusability of the AI system, as well as design flexibility. The combination of the two

examples shows the independence of the AI system. Combining the above

characteristics can allow the AI system of this study to quickly create diversified AI

roles, enabling each AI role to have sufficient design flexibility, which is not limited to a

fixed architecture.

788 Rong Zhang

Fig. 9 Architecture diagram after the two examples are combined

6. Conclusion and Future work

This study used XNA Game Studio, which simplifies the development of animation

game programs, so as to implement the AI system of action animation games, combined

with AI technologies such as FSMs, FuSMs and neural networks, making use of AI

technology. The results of this paper demonstrate the concept of modular objects, which

allow the AI system to exhibit features such as scalability, reusability and design

flexibility. Through the implementation process, records and experience of this research

can provide useful information for related research, both for the creator and the

producer. The research conclusions and contributions of this paper are as follows:

1. Achievements: an AI animation game system has been built with reusability,

design flexibility and expandability, using the concept of object-oriented modular

objects. By making use of FSMs, FuSMs and neural networks, AI technology

applications are added to combine traditional rule-based systems and learning adaptation

systems to increase the learning ability of traditional AI roles.

2. Two examples of AI roles with different behaviour patterns are implemented: the

AI role behaviour in the first example is based on close-range attacks and the AI system

architecture uses a combination of FSMs and neural networks, as well as traditional rule-

based methods. In Example 1, the implementation process from scratch verifies the

feasibility of the AI system and Example 2 is a practical example, created from a

 Using Artificial Intelligence Assistant Technology... 789

combination of various built objects and the combination of FSMs and neural networks.

AI performance has also achieved the expected results.

3. The AI character behaviour of the Example 2 is planned to be a long-range attack

type, and the combination of an FSM and an FuSM is used in the architecture of the AI

system. The FSM element is built according to the first example. Fuzzy logic is used to

allow the AI character to change its movement speed and movement method as the

player approaches. The behaviour of AI characters is given more variability and

Example 1 and Example 2 are combined through simple steps, so that the two AI

characters can be presented in the animation game at the same time. During the

implementation of Example 2, many objects created in Example 1 were reused, which

verifies the reusability and expandability in this research. These two features allow

animation game designers to continuously reuse previously built objects and also to

expand the functions of the objects to create an animation game design.

4. When an animation game designer aims to try out different AI technologies, he/she

only needs to expand or modify the original objects without the need for a complete

redesign. The difference between the two examples in the AI system architecture is to

verify the design flexibility that this research expects to show. Since each AI system can

operate independently, animation game designers can integrate different AI technologies

according to their needs, and all AI systems can operate within animation games at the

same time, without affecting one other. Therefore, this research has reached the

expected research goals in the implementation results.

5. XNA simplifies the effectiveness of animation game programming: XNA can

simplify animation game design by implementing the AI system and explaining and

recording the implementation process to provide a reference for related researchers and

producers.

The following are limitations of the AI system in this research study. 1. The lack of

information hiding: the purpose of information hiding is to prevent the important

information inside the object from being arbitrarily changed, since changing the

information may damage the internal operating structure of the object. 2. The lack of a

scripted design: at present, the parameter settings of the AI system must be directly

modified in the program. When the animation game is large in scale, this will be costly

in terms of compiling the project time. Future work: future research work will focus on

the visual design of the system, as the programmers only provide technical support. The

actual AI animation game is usually designed by the planners. If the planners in general

have no knowledge of programming, it is relatively important to build an AI system that

they can use. Therefore, creating a visual editor for the AI system will be one of the

focuses of future research.

References

1. Habibie, I., Holden, D., Schwarz, J., Yearsley, J., Komura, T.: A recurrent variational

autoencoder for human motion synthesis, Proc. 28th Brit. Vis. Conf. (BMVC), (2017).

2. Harvey, F., Pal, C.: Semi-supervised learning with encoder-decoder recurrent neural

networks: Experiments with motion capture sequences, Comput. Sci., 3, 553-562 (2015).

3. Holden, D., Habibie, I., Kusajima, I., Komura, T.: Fast neural style transfer for motion data,

IEEE Comput. Graph. Appl., 37(4), 42-49 (2017).

790 Rong Zhang

4. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion

synthesis and editing, ACM Trans. Graph., 35(4), 138. (2016).

5. Kwon, T., Shin, S.: Motion modeling for on-line locomotion synthesis, Proc. ACM

SIGGRAPH/Eurograph. Symp. Comput. Animation, 29-38 (2005).

6. Makuch, E.: Tomb Raider 1-5 hit Steam". GameSpot. Archived from the original in 2019.

Retrieved 14 (2020).

7. Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., Asfour, T.: Unifying representations

and large-scale whole-body motion databases for studying human motion, IEEE Trans.

Robot., 32(4), 796-809 (2016).

8. Martinez, J.: Black, M., Romero, J.: On human motion prediction using recurrent neural

networks, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2891-2900 (2017).

9. Mehta D, et al.: Monocular 3D human pose estimation in the wild using improved CNN

supervision, Proc. Int. Conf. 3D Vis., pp. 506-516. (2017)

10. Merel J, et al.: Learning human behaviors from motion capture by adversarial imitation,

Available: https://arxiv.org/abs/1707.02201. (2017)

11. Roberts, S.: Age of Empires 4 is 'making good progress', and Microsoft will talk about it

later this year". PC Gamer. Archived from the original in June, 2019. Retrieved 12 June,

(2019).

12. Sato: Final Fantasy XIV Reaches 14 Million Adventurers Worldwide. Siliconera. Retrieved

(2018).

13. Ke X, Zou J, Niu Y. End-to-End Automatic Image Annotation Based on Deep CNN and

Multi-Label Data Augmentation. IEEE Transactions on Multimedia, 21(8): 2093-2106.

(2019)

14. Shin S, Kim C: Human-like motion generation and control for humanoid’s dual arm object

manipulation, IEEE Trans. Ind. Electron., vol. 62, no. 4, 2265-2276. (2015)

15. Skrebels J.: Super Mario 3D World + Bowser's Fury Announced for Nintendo Switch. IGN.

Archived from the original in September, Retrieved 3 September. (2020)

16. Tan Q, Gao L, Lai Y, Yang J, Xia, S.: Mesh-based autoencoders for localized deformation

component analysis, Proc. 30th AAAI Conf. Artif. Intell., 1-8. (2018)

17. Tom, M.: XNA Game Studio 4.0 Programming: Developing for Windows Phone 7 and

Xbox 360. Pearson Education. ISBN 9780132620130. (2010)

18. Cheng, H., Wu, L., Li, R., et al.: Data recovery in wireless sensor networks based on

attribute correlation and extremely randomized trees. Journal of Ambient Intelligence and

Humanized Computing, 12(1): 245-259. (2021)

19. Cheng, Y., Jiang, H., Wang, F., et al.: Using High-Bandwidth Networks Efficiently for Fast

Graph Computation. IEEE Transactions on Parallel and Distributed Systems, 30(5): 1170-

1183. (2019)

20. Dai, Y., Wang, S., Chen, X., et al.: Generative adversarial networks based on Wasserstein

distance for knowledge graph embeddings. Knowledge-Based Systems, 190: 105165.

(2020)

21. Feng Y, et al.: Mining spatial-temporal patterns and structural sparsity for human motion

data denoising, IEEE Trans. Cybern., vol. 45, no. 12, 2693-2706. (2015)

22. Fu, Y. G., Huang, H. Y., Guan. Y., et al.: EBRB cascade classifier for imbalanced data via

rule weight updating. Knowledge-Based Systems, 223: 107010. (2021b)

23. Fu, Y. G., Ye, J. F., Yin, Z. F., et al.: Construction of EBRB classifier for imbalanced data

based on Fuzzy C-Means clustering. Knowledge-Based Systems, 234: 107590. (2021a)

24. Fu, Y. G., Zhuang, J. H,, Chen. Y, P., et al.: A framework for optimizing extended belief

rule base systems with improved Ball trees. Knowledge-Based Systems, 210: 106484.

(2020)

25. Li Z, Zhou Y, Xiao S, He C, Huang Z, Li, H.: Auto-conditioned recurrent networks for

extended complex human motion synthesis, Available: https://arxiv.org/abs/1707.05363.

(2017)

 Using Artificial Intelligence Assistant Technology... 791

26. Li, X. Y., Lin, W., Liu, X., et al.: Completely Independent Spanning Trees on BCCC Data

Center Networks with an Application to Fault-Tolerant Routing. IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, 33(8): 1939-1952. (2022)

27. Liu, G., Chen, X., Zhou, R., et al.: Social learning discrete Particle Swarm Optimization

based two-stage X-routing for IC design under Intelligent Edge Computing architecture.

Applied Soft Computing. 10, 107215. (2021)

28. Liu, G., Chen, Z., Zhuan,g Z., et al. A unified algorithm based on HTS and self-adapting

PSO for the construction of octagonal and rectilinear SMT. Soft Computing, 24(6): 3943-

3961. (2020a)

29. Liu, G., Zhang, X., Guo, W., et al.: Timing-Aware Layer Assignment for Advanced Process

Technologies Considering Via Pillars. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 41(6): 1957-1970. (2022a)

30. Liu, G., Zhu, Y., Xu, S., et al.: PSO-Based Power-Driven X-Routing Algorithm in

Semiconductor Design for Predictive Intelligence of IoT Applications. Applied Soft

Computing, 114: 108114. (2022b)

31. Liu, N., Pan, J. Sun, C., et al.: An efficient surrogate-assisted quasi-affine transformation

evolutionary algorithm for expensive optimization problems. Knowledge-Based Systems,

209: 106418. (2020c)

32. Lu, Z., Liu, G., and Wang, S.: Sparse neighbor constrained co-clustering via category

consistency learning. Knowledge-Based Systems, 201, 105987. (2020)

33. Wang, S., Wang, Z., Lim, K. L., et al.: Seeded random walk for multi-view semi-supervised

classification. Knowledge-Based Systems, 222: 107016. (2021)

34. Xia, S., Wang, C., Chai, J., Hodgins, J.: Realtime style transfer for unlabeled heterogeneous

human motion, ACM Trans. Graph., vol. 34, 119.. (2015)

35. Yu, Z, Zheng, X, Huang, F, et al.: A framework based on sparse representation model for

time series prediction in smart city[J]. Frontiers of Computer Science, 15(1): 1-13. (2021)

36. Yumer, M., Mitra, N.: Spectral style transfer for human motion between independent

actions, ACM Trans. Graph., vol. 35, no. 4, 137. (2016)

37. Zhang, H., Li, J. L,, Liu, X. M., et al.: Multi-dimensional feature fusion and stacking

ensemble mechanism for network intrusion detection[J]. Future Generation Computer

Systems, 122: 130-143. (2021a)

38. Zhang, Y., Lu, Z., and Wang, S.: Unsupervised feature selection via transformed auto-

encoder[J]. Knowledge-Based Systems, 215: 106748. (2021b)

39. Zheng, X., Rong, C, et al.: Foreword to the special issue of green cloud computing:

Methodology and practice[J]. Concurrency and Computation: Practice and Experience.

31(23): e5425. (2019)

40. Zhou, X., Zhu, M., Pavlakos, G., Leonardos, S., Derpanis, K., Daniilidis, K.: MonoCap:

Monocular human motion capture using a CNN coupled with a geometric prior, IEEE

Trans. Pattern Anal. Mach. Intell., vol. 41, no. 4, 901-914. (2019)

41. Zou, W., Guo, L., Huang, P., et al.: Linear time algorithm for computing min‐max

movement of sink‐based mobile sensors for line barrier coverage. Concurrency and

Computation: Practice and Experience, 34(2): e6175. (2022)

42. Zhong, S, Jia C, Chen K, et al.: A novel steganalysis method with deep learning for

different texture complexity images. Multimedia Tools and Applications, 78(7): 8017-8039.

(2019)

43. Pu L, Zhu D, Jiang H.: A 1.375-approximation algorithm for unsigned translocation sorting.

Journal of Computer and System Sciences, 113: 163-178. (2020)

44. Shen, S., Yang, Y., Liu, X.: Toward data privacy preservation with ciphertext update and

key rotation for IoT. Concurrency and Computation: Practice and Experience, e6729.

(2021)

45. Pan, W., Zhao, Z., Huang, W., Zhang, Z., Fu, L., Pan, Z., Yu, J., Wu, F.: Video moment

792 Rong Zhang

retrieval with noisy labels. IEEE Transactions on Neural Networks and Learning Systems,

doi: 10.1109/TNNLS.2022.3212900. (2022)

46. Ma, L., Zheng, Y., Zhang, Z., Yao, Y., Fan, X. Ye, Q.: Motion Stimulation for

Compositional Action Recognition, IEEE Transactions on Circuits Systems and Video

Technology, 2022, Early Access. (2022)

47. Fu, L., Zhang, D. and Ye, Q.: Recurrent Thrifty Attention Network for Remote Sensing

Scene Recognition, IEEE Transactions on Geoscience and Remote Sensing, vol.59, no.10,

8257-8268. (2021)

48. Ye, Q., Huang, P., Zhang, Z., et al.,: Multi-view Learning with Robust Double-sided Twin

SVM with Applications to Image Recognition, IEEE Transactions on Cybernetics, vol.52,

no.12, 12745 - 12758. (2022)

49. Fu, L., Li, Z., Ye, Q., et al.: Learning Robust Discriminant Subspace Based on Joint L2,p-

and L2,s-Norm Distance Metrics, IEEE Transactions on Neural Networks and Learning

Systems, vol.33, no.1,130 -144. (2022)

50. Chen, X., Li, M., Zhong, H., Ma, Y. and Hsu, C.: DNNOff: Offloading DNN-based

Intelligent IoT Applications in Mobile Edge Computing. IEEE Transactions on Industrial

Informatics, 18(4): 2820-2829. (2022a)

51. Chen, X., Zhang, J., Lin, B., Chen, Z.: Katinka Wolter, Geyong Min. Energy-Efficient

Offloading for DNN-based Smart IoT Systems in Cloud-Edge Environments. IEEE

Transactions on Parallel and Distributed Systems, 33(3): 683-697. (2022b)

52. Chen, X., Hu, J., Chen, Z. Lin, B., Xiong, N., Min, G..: A Reinforcement Learning

Empowered Feedback Control System for Industrial Internet of Things. IEEE Transactions

on Industrial Informatics, 18(4): 2724-2733. (2022c)

53. Chen, X., Yang, L., Chen, Z., Min, G., Zheng, X. Rong, C.: Resource Allocation with

Workload-Time Windows for Cloud-based Software Services: A Deep Reinforcement

Learning Approach. IEEE Transactions on Cloud Computing, Publish Online, DOI:

10.1109/TCC.2022.3169157. (2022d)

54. Huang, G., Luo, C., Wu, K., Ma, Y., Zhang, Y, and Liu, X.: Software-Defined

Infrastructure for Decentralized Data Lifecycle Governance: Principled Design and Open

Challenges. IEEE International Conference on Distributed Computing Systems. (2019)

Rong Zhang received a bachelor's degree from Wuhan Institute of Technology, China,

in 2006, and MS degree from Hubei University of Technology, Wuhan, China, in 2011.

She is currently a lecturer with the School of Artificial Intelligence, Dongguan

Polytechnic. Her major research interests include Artificial Intelligence, Internet of

Things and animation game.

Received: July 19, 2022; Accepted: November 11, 2022.

