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Abstract. Sparse unmixing of hyperspectral images aims to separate the 

endmembers and estimate the abundances of mixed pixels. This approach is the 

essential step for many applications involving hyperspectral images. The multi-

scale spatial sparse hyperspectral unmixing algorithm (MUA) could achieve 

higher accuracy than many state-of-the-art algorithms. The regularization 

parameters, whose combinations markedly influence the unmixing accuracy, are 

determined by manually searching in the broad parameter space, leading to time 

consuming. To settle this issue, the adaptive multi-scale spatial sparse 

hyperspectral unmixing algorithm (AMUA) is proposed. Firstly, the MUA model 

is converted into a new version by using of a maximum a posteriori (MAP) 

system. Secondly, the theories indicating that andnorms are equivalent to 

Laplacian and multivariate Gaussian functions, respectively, are applied to 

explore the strong connections among the regularization parameters, estimated 

abundances and estimated noise variances. Finally, the connections are applied to 

update the regularization parameters adaptively in the optimization process of 

unmixing. Experimental results on both simulated data and real hyperspectral 

images show that the AMUA can substantially improve the unmixing efficiency at 

the cost of negligible accuracy. And a series of sensitive experiments were 

undertook to verify the robustness of the AMUA algorithm. 

Keywords: adaptive multiscale sparse hyperspectral unmixing algorithm, loss 

functions, regularization parameters, maximum a posteriori. 
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1. Introduction 

Hyperspectral remote sensing image (HRSI) is the data obtained by hyperspectral 

resolution sensors, which has led to extensive exploration in geology, medicine, aerial 

surveillance and other fields[1-7]. Numerous mixed pixels exist due to the low spatial 

resolution of the HRSI, which hinders the application of hyperspectral data. One of the 

key issues of HRSI systems lies in the separation of endmembers and the corresponding 

abundances from the mixed pixel[8-9]. This process is recognized as hyperspectral 

unmixing, which relies on a basic assumption of Linear Mixed Model (LMM); that is, 

the spectrum of a specific pixel is a linear mixture of the endmembers[8,10,11]. Sparse 

unmixing has attracted extensive recognition in the past few years with the increasing 

availability of spectral libraries. Sparse unmixing aims to estimate an abundance when 

the HRSI and spectral library are given in [12-19]. Thus, sparse unmixing usually is 

usually regarded as an ill-posed inverse problem, which indicates the absence of any 

unique solution. To alleviate such problems, a popular technique is widely used by 

adding regularizations to the loss function. Iordache et al.[20] considered that a pixel 

contains only a few numbers of components and introduce sparsity through the 

abundance map. In [20], the  regularization was added to the abundance matrix to 

develop the sparse unmixing algorithm via variable splitting and augmented Lagrangian 

(SUnSAL). The SUnSAL has improved unmixing performance whilst ignoring the rich 

spatial correlation information among neighbouring pixels. For exploring spatial prior 

information, several sparse unmixing algorithms with the spatial prior information, such 

as SUnSAL with total variation (SUnSAL-TV) [21], have been introduced. The 

SUnSAL-TV utilized total variation regularization to estimate an abundance map, 

which has piecewise transitions at the cost of smoothing sharp discontinuities between 

neighbouring pixels. A new spectral–spatial weighted sparse unmixing (S2WSU) was 

developed to capture considerably sharp discontinuities[22]. S2WSU employed the 

spectral and spatial regularizations simultaneously to derive a sparse solution and obtain 

better abundance results[22]. However, this approach requires a considerable amount of 

time and is sensitive to noise. To overcome the limitations, Borsoi et al.[23] made use 

of multi-scale spatial information to develop a novel multi-scale sparse unmixing 

algorithm (MUA). In MUA, the original HRSI(in the original image domain) was 

transformed to a coarse-scale (CS) representation via means of segmentation 

techniques[24-28]. At this scale, the SUnSAL was used to estimate an initial abundance 

value. The initial abundance was then converted back to the original image domain to 

yield a low-level image, which is regarded as a novel information of the spatial context. 

A SUnSAL loss function was constructed in the original image domain. The new 

regularization term for the low-level image was added to this SUnSAL model to 

construct a novel unmixing mathematical model for the original HRSI. Therefore, MUA 

is the linear regression problem involving three regularization parameters. In the process 

of deducing the solutions, several existing works have reported that the estimated 

accuracy relies heavily on a proper configuration of these regularization parameters [29-

34]. Given the desirable values, the MUA has achieved remarkable success in obtaining 

piecewise homogeneous abundances and sharp discontinuities among neighbouring 

pixels [23]. Unfortunately, the optimal regularization parameters in MUA are obtained 

by exhaustive search, which is unsuitable for real applications. 

A new format based on the MAP estimation technique is proposed for the solution of 

the regularization parameter selection problem for MUA. The MAP mainly aims to 
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identify the unknown fractional abundances including the regularization parameters by 

using the Bayes rule. As an effective adaptive parameter estimation method, the MAP 

system is used widely used for adaptively selecting regularization parameters in deep 

learning networks and image super-resolution [35-40]. To build the adaptive version of 

MUA, the MAP is applied to redesign the unmixing problem into a unified model to 

obtain the relations between the optimal regularization parameters and the fractional 

abundances. 

Inspired by the idea in [35-37], an adaptive regularization parameters strategy for 

MUA is introduced, which is shown in Fig. 1.  

 

Fig.1. Framework of our proposed adaptive mutliscale spatial sparse unmixing scheme. 

There are total 10 steps. At step 0, the HSI image is transformed to the coarse scale 

by W; At step 1, the HSI is inputted into the coarse scale and spectral libraries; At step 

2, the model for unmixing the HSI in the coarse scale is constructed; At step 3, the 

model with adaptive regularization parameters scheme is solved; At step 4, the solution 

in coarse scale is obtained; At step 5, the solution by step 4 is mapped into the original 

domain; At step 6, the solution by step 4 is inputted to HSI and spectral libraries; At 

step 7, the model for unmixing with spatial prior is constructed; At step 8, the model by 
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step 7 with adaptive regularization parameters scheme is solved; At step 9, the final 

estimated abundance by automatic version of the multiscale spatial sparse unmixing 

algorithm is obtained. The major contributions are as follows. 

1. The adaptive multi-scale spatial sparse unmixing strategy for MUA (AMUA) 

can adaptively choose the regularization parameters at each iteration in 

unmixing process. 

2. The adaptive multi-scale spatial sparse unmixing strategy for MUA (AMUA) 

can adaptively choose the regularization parameters at each iteration in 

unmixing process. 

3. The adaptive multi-scale spatial sparse unmixing strategy for MUA (AMUA) 

can adaptively choose the regularization parameters at each iteration in 

unmixing process. 

The whole work is arranged as follows. The part 2 reviews the MUA method. The 

part 3 introduces the development process of the AMUA method in detail. The part 4 

introduces numerous experiments and detailed comparisons. The part 5 discusses the 

sensitivity of the proposed method. Finally, the part 6 is the conclusion of the work. 

2. Review of Multi-scale Spatial Hyperspectral Unmixing 

The section describes the framework of the multiscale sparse unmixing algorithm 

(MUA), which is closely related to the proposed method. 

Let        have L bands and N pixels, which is HRSI. The mixing process is 

modelled by the linear mixing model (LMM) [8], which is given as follows: 

                        
     

  ,                                        (1) 

where                     represents an endmember spectral library with P 

endmembers; X is an abundance matrix and                    .     and 

  
     

  is the abundance constraints (ANCs)[8]. Notation [·]
T
 represents 

vector/matrix transpose, and        denotes an additive noise. 

Only a few endmembers from library A are present in a pixel. Thus matrix X exhibits 

sparse property, and sparse unmixing can be specified as a function 

          
 

 
         

                  ,                             (2) 

where          is the sparse regularization term and       represents non-negativity. 

Therefore, the optimization problem of the MUA model can be written as follows 

[23]: 
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where        represents a transformation;         denotes conjugate 

transform;        represents the transformation of the original image Y to coarse 

approximations.        means transforming the abundance matrix X to the 

corresponding coarse scale.   
  is the abundance estimated by equation (3) in coarse 
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scale and   
    

    stands for mapping the   
  back to the original image domain to 

yield the coarse abundance   
 . Lastly,    is the final solution to MUA [23]. λ, β and λc 

are the regularisation parameters. 

3. Adaptive Multi-scale Spatial Sparse Hyperspectral Unmixing 

This section describes the use of MAP to investigate the relationships among the 

estimated abundance, regularization parameters and the noise variance of the HRSI. 

These relationships are applied to the alternating direction multiplier (ADMM) 

algorithm [41] to settle the problem of adaptive multiscale spatial sparse unmixing. 

The multi-scale spatial sparse unmixing comprises two mathematical models in (3) 

and (4). Firstly, the model in (4) is investigated: given Y and A, X is estimated together 

with the parameters λ and β. Under the Bayesian framework and MAP, the unmixing 

model in (4) can be reconsidered as estimating the λ, β and X at the same level and the 

problem can be rewritten as: 

   , ,  =       
   

(p( , ,   )) .                                            (5) 

Using Bayes’ rule, (5) can be expressed as: 

   , ,   =       
       

(
                        

    
) .                                   (6) 

The λ, β and X are independent of p(Y); thus (6) is equivalent to (7): 

   , ,   =       
       

(                         ,                              (7) 

where (          is the likelihood distribution of the X equal to       . Suppose Y 

is polluted by zero-mean white Gaussian noise, the probability distribution of        is 

as follows: 

       
 

     
     

         
 

   
   ,                                      (8) 

where    is the standard deviation of the Gaussian noise. 

For the abundance matrix X with sparse property and spatial prior information, 

Borsoi et al. indicated that          corresponds to a Laplacian probability with zero-

mean [22]. Wang et al. reported that     
      

  can be regarded as an independent and 

identically distributed multivariate Gaussian prior with a zero-mean value [12,42]. 

Therefore, the prior density       could be written as 

      
 

 
      

          
  

         
    
      

 

   
   

              
 

 
      

          

  
 

          
 

   
   ,                                                     (9) 

where C is the normalization factor related to the sum of the succeeding exponential 

function and    stands for the standard deviation of the map acquired by the   
   .    

is the standard deviation of the abundance X. 
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The prior for        is a uniform distribution [37]. Substituting (8) and (9) in (7) yields  

   , ,  =       
       

(                                   ) 

=      
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 ) ,                                    (10) 

where logC1 is the irrelevant term from          and           . C2 is the standardized 

constant related to the stable prior value of       .  
From (4) and (10), the relationships between the regularization parameters λ, β and 

the unknown abundance X can be determined by the following: 

  
    

 

  
    

  
 

  
  .                                                   (11) 

Similarly, the above processing is performed on (3) to obtain the following:  

        
     

 .                                                        (12) 

where     
and    are the standard deviations of the abundance    and image   , 

respectively.  

Table 1. Algorithm 1: AMUA 

Algorithm 1: AMUA 

1. Input: 
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Lastly, (13) lists the summary of regularization parameters. 

                              

λ  
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                                                                (13) 

Observing (13), strong relationships are found between the regularization parameters 

and the standard deviations (  ,    ,    ,     ,     
). These standard deviations are 

unknown in the real HRS and are usually estimated as follows:    is estimated by the 

method in [43],     and    
result from the abundance estimated at the corresponding 

iteration. The details will be described in the Algorithm 1.  

The main iterative process of AMUA is listed in Algorithm 1 using the (ADMM) 

strategy [41], which can degrade the complex problem into a series of simple ones and 

efficiently solve AMUA. Notably, the transformation W, which was mentioned after 

Equation (4), appears in Algorithm 1. The W denotes the operation of transforming the 

original image to a coarser scale [23], such as a segmentation with binary partition tree 

(BPT) [44] and over-segmentation with the simple linear iterative clustering 

(SLIC)[45]. Additional details will be presented in section 4. 

4. Experiments 

In this part, numerous experiments were performed on two simulated datasets (DC1 and 

DC2), and one real HRSI to illustrate the accuracy and effectiveness of the proposed 

algorithms. The proposed method AMUA has two alternatives: AMUA using BPT 

segmentation (denoted as AMUA (BPT)) and that using SLIC segmentation (denoted as 

AMUA (SLIC)). The proposed methods are compared with MUA using BPT (denoted 

as MUA(BPT)) [23], MUA using SLIC (MUA(SLIC)) [23], SUnSAL [20], SUnSAL-

TV [21] and S2WSU [22]. 

The optimal regularization parameters(    ,   ) are manually selected by performing 

a grid search for different datasets in SUnSAL, SUnSAL-TV, S2WSU and MUA 

algorithms. For the different datasets, Table 2 lists the optimal parameters given in [20], 

[21], [22], [23]. Notably, the regularization parameters(    ,   ) in AMUA algorithms 

are automatically estimated by an alternating iterative process. Hence, the parameters in 

AMUA algorithm are not constant and denoted by NA in Table 2. 
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Table 2. Parameters 

4.1. Simulated and real datasets for efficiency comparison 

To illustrate the efficiency, Table 3 lists the running times of SUnSAL, SUnSAL-TV, 

S2WSU, MUA and AMUA for DC1, DC2 and Cuprite data. All the algorithms were 

carried out on PC, using MATLAB R2019b, an Intel Core i5-8250u CPU (1.6 GHz) and 

8.00 GB RAM. For SUnSAL, SUnSAL-TV, S2WSU and MUA, the regularization 

parameters (    ,   ) are computed by a loop running many times with different 

combinations of some parameters until the best unmixing result is obtained. In most 

cases, the total number combinations of the parameters (TNCP) amounts to 100 at least. 

And for one combination, the executing time (ET) is different for different algorithms. 

Hence, the running time is computed by multiplying TNCP with ET. Since the 

parameters are estimated automatically in AMUA, there are not many parameter 

combinations, so the TNCP is equal to one. Compared with all other algorithms in 

Table 3, the AMUA efficiency is greatly improved and the total running time is greatly 

reduced. For DC2 instance, the total running times for SUnSAL, SUnSAL-TV, 

S2WSU, MUA(BPT), MUA(SLIC), AMUA(BPT) and AMUA(SLIC) are 1046.3s, 

17108s, 9130.5s, 1121.7s, 650.6s, 160.496s and 74.021s. The greatly improved 

efficiency mainly result from that the AMUA avoids extensive search for optimal 

parameters. 

Table 3. Running times (Simulated database for accuracy comparison) 

Data 

Algorithms 

SUnSAL SUnSAL-TV S2WSU MUA 

(BPT) 

MUA 

(SLIC) 

AMUA 

(BPT) 

AMUA 

(SLIC) 

DC1 5.187s 100 164.839s 100 50.063s 100 14.947s 100 7.164s 100 23.028s 1 19.869s 1 

DC2 10.463s 100 171.08s 100 91.305s 100 11.217s 100 6.506s 100 160.496s 1 74.021s 1 

Real mage 368.7s 100 2290.4s 100 961.8s 100 157.9s 100 202.5s 100 1107.8ss 1 997.34s 1 

 

     Algorithms 

 
   Data 

DC1 data cube 

20dB               30dB 

DC2 data cube 
20dB                   30dB 

Curprit 

SUnSAL λ = 0.7 λ = 0.1 λ = 0.1 λ = 0.01 λ = 0.01 

SUnSAL- TV λ = 0.05 λ = 0.007 λ = 0.01 λ = 0.005 λ = 0.001 

λT V = 0.05 λT V = 0.01 λT V = 0.03 λT V = 0.007 λT V = 0.001 

S2WSU λ = 0.1 λ = 0.005 λ = 0.01 λ = 0.01 λ = 7E(-5) 

MUA(BPT)  λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.05 λ = 0.001 

λC = 0.005 λC = 0.005 λC = 0.005 λC = 0.001 λC = 0.001 

β = 30 β = 30 β = 5 β = 1 β = 3 

AMUA( BPT)  NA NA NA NA NA 
MUA( SLIC)  λ = 0.1 λ = 0.05 λ = 0.1 λ = 0.03 λ = 0.001 

λC  = 0.03 λC  = 0.007 λC  = 0.007 λC  = 0.003 λC  = 0.001 

β = 30 β = 10 β = 10 β = 3 β = 30 
AMUA( SLIC)  NA NA NA NA NA 
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4.2. Simulated database for accuarcy comparison 

Data cube DC1, which comprises 5 endmembers, has 75×75 pixels[20]. Meanwhile, 

data cube DC2 containing piecewise smooth abundance maps (with steep transitions) 

has 9 endmembers and 100×100 pixels[23]. In DC1 and DC2, the observed HRSIs 

were contaminated by white Gaussian noise, with signal-to-noise ratios (SNR) of 20 and 

30dB[23]. To assess the accuracy of unmixing, the signal-to-reconstruction error 

(SRE)[21] is defined as shown below:   

                   
              

   ,      (13) 

where   and    are the true and estimated abundance, respectively; a high SRE value 

for the estimated abundance leads to high estimated accuracy. 

Table 4 lists the SRE values of different algorithms for the data DC1 and DC2. And 

Fig.2 shows these values directly in a histogram. Compared with MUA, the SRE value 

of AMUA is slightly lower, near to that of MUA. For DC1 with a 20 dB instance, the 

SRE value of AMUA (BPT) achieves 12.715, the SRE of MUA(BPT) is 13.393, and the 

difference is only approximately 0.68. Meanwhile, the results of the AMUA algorithm 

were significantly better than those of SUnSAL(4.541), SUnSAL-TV(9.424) and 

S2WSU(7.697).  

Table 4. SRE values of different algorithms on DCI and DC2. 

            Algorithms 

Data 

DC1 data cube DC2 data cube 

20dB 30dB 20dB 30dB 

SUnSAL 4.541 8.911 4.281 10.428 

SUnSAL-TV 9.424 14.441 11.554 17.988 

S2WSU 7.697 15.487 9.332 21.668 

MUA(BPT) 13.393 18.257 13.928 16.963 

 

Fig. 2. SRE values of different algorithms on DC1 and DC2 by histogram 

Compared with S2WSU, the SRE values of AMUA are more stable. The SRE values 

of S2WSU for DC2 with 30 dB instance achieve the best performance (21.668) among 
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listed algorithms. However, the SRE value of S2WSU degrades rapidly to 9.332 when 

the SNR is decreased to 20 dB. The SRE values of AMUA(BPT) for DC2 30 and 20 dB 

are 16.963 and 13.928, respectively. The SRE values of AMUA(SLIC) for DC2 30 and 

20 dB are 17.60 and 14.488, respectively, demonstrating a stable performance.  

Figs. 3 and 4 show abundance map samples from different algorithms for the second 

endmember of DC1 and DC2, respectively, with the upper row 20 DB SNR and the 

lower row 30 DB SNR.  

Fig. 3 shows that the global differences between MUA and AMUA are too small to 

be observed, especially those between MUA(BPT) and AMUA(BPT), as shown in the 

red rectangles. Fig. 4 shows that compared with MUA, AMUA can improve the 

sharpness of edge regions between adjacent regions, such as green ellipse regions, and 

obtain more smooth homogeneous areas, such as the region in the yellow circle.  

 

Fig. 3. Abundance maps obtained by different unmixing algorithms for the second endmember in 

DC1 

 

Fig. 4. Abundance maps obtained by different unmixing algorithms for the second endmember in 

DC2 

4.3. Real hyperspectral image for accuracy comparison 

To evaluate the robustness of the proposed AMUA algorithm, qualitative comparisons 

were constructed using Cuprite, a well-known and widely used real data set provided in 

[43]. The abundance images estimated by different algorithms for the minerals alunite, 

buddingtonite and chalcedony are shown in Fig. 5, arranged from top to bottom. The 

AMUA algorithms can obtain similar abundance to that of MUA algorithms. However, 

some parts from AMUA (BPT) are smoother than that of MUA (BPT), such as the parts 

highlighted by the ellipses in Fig. 5. The edge parts by AMUA (BPT) are also sharper 

than by MUA (BPT), such as the areas highlighted by the rectangle in Fig. 5. 
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Fig. 5. Abundance maps of different algorithms methods for the data Cuprite. 

5. Sensitivity discussion 

This section will analyse the sensitivity of the AMUA algorithm to the regularization 

parameters (    ,   ), the estimated noise and the estimated abundance. 

5.1. Sensitivity to regularization parameters 

In the MUA, three regularization parameters( ,  ,   ) are manually selected to trade off 

the original image sparsity (  ), coarse scale sparsity      and multiscale spatial 

information ( ). The determination of the regularization parameters ( , ,  ) greatly 

affects the unmixing performance. The regularization parameters(    ,   ) are 

automatically determined in AMUA.The impact of  ,  , and    on the accuracy of 

unmixing results with DC1 20 and 30 dB by using MUA and AMUA algorithms are 

shown in Figs. 6 and 7, respectively. The 4-D colour-maps illustrate the SRE values 

(corresponding to the bubble colour) at different combinations of  ,   and   . For 

example, in the Fig.7 (a), the bubble A exhibits shallow blue, which denotes the SRE as 

12.321 at a combination of  =0, =1000 and   =0. The values of the regularization 

parameters are searched within {0,1e-15,1e-13,1e-11,1e-9,1e-7,1e-5, 1e-3 ,1e-1, 1e0, 

1e1 ,1e2 ,1e3}. The sub-figures (a) and (c) in Figs. 6 and 7 illustrate the searching 

details in the MUA (BPT) and MUA (SLIC) algorithms, respectively. The combinations 

of  ,   and    are automatically determined in AMUA algorithms. And the sub-figures 
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(b) and (d) display the performance of the AMUA (BPT) and AMUA (SLIC) 

algorithms, respectively.  

The following conclusions are presented on the basis of Figs. 6 and 7. 

(1) For the MUA, satisfactory accuracy can be achieved by carefully selecting 

appropriate combinations of the regularization parameters. For example, in Fig.6 (a), the 

highest SRE value (approximately 12.627 dB) occurs at   = 1e-3,   = 1 and    1e-1; 

however, poor accuracy, such as the SRE value(-6.50 dB), occurs at improper 

combinations of regularization parameters. The AMUA not only obtains the acceptable 

accuracy, but also avoids searching the regularization parameters manually. 

(2) The optimal regularization parameters vary for different datasets; such a 

variation would be a burden for manually searching the regularization parameters in 

practice. For MUA (SLIC) under DC1 20 dB instance, the highest accuracy can be 

achieved at   = 1e-3,   = 1e2 and   =0.001. However, the highest accuracy under DC2 

30 dB can be obtained in a different combination of   = 1e-4,   = 1e-3 and    = 1000. 

(3) The AMUA algorithm could achieve relatively satisfactory results on test data 

sets by effectively determining regularization parameters adaptively. Figs. 6 and 7 

demonstrate that the bubbles obtained by the AMUA share the same colour as the high 

accuracy bubbles obtained by MUA. 

 

 

Fig. 6. SRE in relation with regularization parameters  ,   and    for DC1 20dB 

(a)                                                                             (b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                                                                              (d)  
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5.2. Sensitivity to the noise variance estimated from the HRSI 

The noise variance   
  estimated following the method proposed in reference [43] is a 

crucial parameter in the ADMM and affects the conduct of the unmixing algorithms. 

However, the estimated results are usually unstable. Experiments are performed on the 

data cube DC2 (20 dB), DC2 (30 dB), DC2(40 dB) and the Cuprite to understand the 

effects effectively. The fluctuation of noise (FR) is defined as follows: 

   
       

   
 ,                                                           (14) 

where     represents the true noise variance of the HRSI. VNV denotes the 

estimated noise variance for the HRSI. FR represents the fluctuation degree, which 

ranges within [-1, -0.01, -0.05, -0.1, -0.5, 0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 1000 

and 10000]. Different VNV values could be obtained for sensitive experiments by using 

(15), providing the TNV and different FR values. Notably, FR = 0 means that the VNV 

is estimated accurately, which is equal to the truth value. Meanwhile, FR = -1 means the 

VNV = 0. 

               .                                             (15) 

Fig. 7. SRE in relation with regularization parameters  ,   and    for DC2 30dB 

(a)                                                                          (b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                                                                            (d)  
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In the AMUA, the different values of the VNV are utilized to obtain different values 

for    
   

 to derive various unmixing results. The relationship curves between SRE and 

the FR are shown in Fig. 8. The horizontal and vertical axis denote FR and SRE , 

respectively. The turquoise and yellow marker denote the SRE obtained with the true 

noise variance. The red and blue markers denote the SRE obtained with fluctuating 

estimated noise variance. From the Fig. 8, the following conclusions can be drawn. 

1. In the absence of noise wi h  R = −1, which is impractical, the unmixing 

accuracy is low (i.e. the SRE falls to 1.667 in Fig. 8(b)).   

2. The small fluctuation of the estimated noise variance cannot affect the 

unmixing performance significantly, such as in Fig. 8(b). In this figure, the 

SRE(SLIC) at location (FR = 0.01) is 17.595, whilst that obtained with the 

true noise is 17.6, demonstrating a difference of 0.005. 

3. The unmixing accuracy decreases with the increase in the fluctuation of the 

VNV. For instance, in Fig. 8(a), the SRE(SLIC) at the location FR = 0 is 

14.488, whilst that at FR = 1000 decreases to 14.327. 

The ground truth for the Cuprite data is not provided. Thus, the true noise variance in 

HRSI is estimated by the method in [43], and the value(TNV) is 7.2659e-06, which is 

regarded as the truth noise variance. Different VNV values are employed in the AMUA 

to generate different abundance maps, as shown in Figs. 9,10 and 11. The abundance 

maps in each subfigure (f) are regarded as the ground truth maps. These maps reveal 

that the accuracy of AMAU is relatively insensitive to the fluctuation of the VNV. For 

example, in Fig. 9, most sub-figures are similar to the ground truth map, except for the 

maps in Figs. 9(a) and 9(h), which are far away with extreme FR values. The FR in Fig. 

9 (a) is -1, which means that the noise variance VNV is 0, namely the HRSI is in the 

absence of noise. For FR in Fig. 9 (h) is 10000, which means that the fluctuation of the 

noise variance is extremely large. 

 

Fig. 8. SRE in relation to noise variance fluctuation for DC2. 

The results generally illustrate the robustness of the AMUA to the small fluctuation 

of the VNV. 
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Fig. 9. The Alunite abundance images considering the noise variance fluctuation. 

 

Fig. 10. The Buddingtonite abundance images considering the noise variance fluctuation 
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Fig. 11. The Chalcedony abundance images considering the noise variance fluctuation. 

5.3. Sensitivity to the variance of the abundance updated at each iteration. 

The detailed process of updating the regularization parameters in AMUA is presented as 

follows: 

          
   
     

   
(where    

   
             , 
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      ,                          (16) 
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The regularization parameters are updated according to      , which is the estimated 

abundance obtained at iteration t.  

For comparison, in the process of solving AMUA,       is replaced with the true 

abundance   denoted as AMUA-GT. That is, the parameters are set as follows:  
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The abundance images estimated by AMUA, AMUA-GT and other different 

algorithms are shown in Fig. 12 and Fig. 13 ,with subfigure (a) under 20 dB, subfigure 

(b) under 30 dB and subfigure (c) under 40 dB. The corresponding SRE values are also 

listed in Table 5.  

From Fig. 12 and Fig. 13, It can be revealed that the difference between the 

abundances estimated by AMUA-GT and AMUA is insignificant. And the same 

conclusion can be drawn in Table 5. For DC1 with 30 dB instance, the SRE values of 

AMUA-GT (BPT) and AMUA( BPT) are 18.281 and 18.217, respectively. The 

difference is only 0.052. For DC1 with 40 dB instance, the SRE values of AMUA-GT 
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(BPT) and AMUA( BPT) are 21.959 and 21.806, respectively. The tiny difference is 

0.153. For DC2 with 20 dB instance, the SRE values of AMUA-GT (SLIC) and AMUA 

(SLIC) are 14.77 and 14.488, respectively. The difference 0.286 is also very small. So 

the AMUA is insensitive to the variation of the abundance updated at each iteration. 

 

Fig. 12. The first comparison of abundance images estimated by different algorithms 

 

Fig. 13. The second comparison of abundance images estimated by different algorithms 
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Table 5. The comparison of SRE values by different algorithms. 

Algorithms 
 

Data 

DC1 data cube DC2 data cube 

      

 
20 dB 30 dB 40 dB 20 dB 30 dB 40 dB 

MUA(BPT) 13.393 18.257 21.8 13.928 16.963 18.54 

AMUA-GT(BPT) 13.435 18.281 21.959 13.788 16.134 18.68 
AMUA(BPT) 12.715 18.217 21.806 13.554 14.9704 16.32 

MUA(SLIC) 11.346 15.731 22.126 14.757 18.328 20.52 

AMUA-GT(SLIC) 11.380 15.770 22.302 14.774 18.184 22.07 

AMUA(SLIC) 10.530 13.832 20.17 14.488 17.60 20.38 

6. Conclusion 

The efficient AMUA algorithm is proposed in this paper for unmixing hyperspectral 

images, which can be applied to national land resources detection. The AMUA model is 

constructed by applying the MAP to the MUA model. The relationships among 

regularisation parameters, estimated abundances and estimated noise variances are 

explored and applied to ADDM to update the regularisation parameters automatically 

during the optimization process.   

Two simulated hyperspectral datasets and one real HRSI were employed to verify the 

effectiveness and accuracy of the proposed algorithm. All the observations prove that 

the calculation efficiency is markedly improved without manual parameter selection at 

the cost of negligible accuracy. A series of sensitivity experiments were also undertaken 

to demonstrate the robustness of the AMUA algorithm.  

The limitation lies in the fact that the noise in the observed HRSI is assumed as 

independent and identically Gaussian distribution, which is not suitable for many 

practical situations. Therefore, the sparse unmixing for HRSI contaminated with non-

Gaussian noise will be studied in the future.  
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