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Abstract. The p-center problem is a well-known and highly studied problem 

pertaining to the identification of p of the potential n center locations in such a 

way as to minimize the maximum distance between the users and the closest 

center. As opposed to the p-center, the p-second center problem minimizes the 

maximum sum of the distances from the users to the closest and the second closest 

centers. In this paper, we propose a new Variable Neighborhood Search based 

algorithm for solving the p-second center problem. Its performance is assessed on 

the benchmark instances from the literature. Moreover, to further evaluate the 

algorithm’s performance, we generated larger instances with 1000, 1500, 2000, 

and 2500 nodes and instances defined over graphs up to 1000 nodes with different 

densities. The obtained results clearly demonstrate the effectiveness and 

efficiency of the proposed algorithm. 

Keywords: variable neighborhood method, heuristic algorithms, p-second center 

problem, combinatorial optimization. 

1. Introduction 

The p-center problem (pCP) was introduced in 1965 [7] as a discrete optimization 

problem of identifying p from potential n centers in such a way as to minimize the 

maximum distance between the users and their closest center. The p-center in the real 
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world may appear as a problem of determining locations for the construction of 

hospitals, so that the distance of the farthest settlement to the hospital closest to it is the 

smallest possible. The same problem can be applied to the installation of gas stations, 

fire stations, etc. 

The p-center problem is formally defined over an undirected weighted graph G = (V, 

E), where V is the set of all nodes, i.e. the locations of the centers and the users, while E 

is the set of all graph edges connecting those locations. The weights of the edges 

correspond to the distance between their ends. Let d(i, j) be the shortest distance 

between the i and j nodes in the G graph. If nodes i and j are not connected, d(i, j) is 

equal to infinity. The solution to the p-center problem is a set of nodes    , of 

cardinality p, so that the maximum distance from the users to the assigned center is 

minimized:  

            
    
     

   
   

     
    

       

        

 

(1) 

The p-center is an NP-hard problem [11], but it has been known and studied for a 

long time, so there are many articles and algorithms that deal with the problem. In the 

literature there are many exact mathematical models and heuristic algorithms that 

successfully find solutions to the p-center problem. Exact methods, such as [3], [4], [6], 

[10] and [13], deal with smaller problems, while solutions of larger instances are found 

by heuristic algorithms. The best-known heuristic algorithms are presented in [5], [9], 

[15] and [16]. 

The p-center does not offer a solution to the problem when the assigned center is not 

able to serve the user. The problem arises when, in the conditions of humanitarian 

catastrophes, the center becomes overloaded or there is a failure at the center caused by 

any reason. A simple solution is to assign a backup center to each user in the event of a 

primary failure. Guided by this idea, Albaredo-Sambola et al. [1] defined the p-next 

center problem (pNCP) in 2015. The problem of the p-next center is a generalization of 

the pCP. In the pNCP, it is required to select p from potential n centers in such a way as 

to minimize not only the maximum distance between the users and the centers closest to 

them but also the distance between the center and its closest center. Over the same 

graph G = (V, E) as in the case of the pCP, the p-next center problem is formally 

defined as: 

             
    
     

   
   

 
 
 

 
 

   
    

       

          
    

         

           
   

      

       

 
 
 

 
 

  

where                 corresponds to node j which is closest to node i 

 

(2) 

The G graph is a plane graph with no limits in terms of number of edges and 

connectivity. The weights of the edges correspond to the Euclidean distances between 

their nodes and therefore the distances satisfy the triangle inequality. 

The p-next center problem, as a generalization of the pCP, is another NP-hard 

problem. The authors in the paper [1] present a few exact mathematical models as a 

solution to the problem, which are applicable to smaller instances of the problem. In 
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2019, Lopez-Sanchez et al. in their work [12] published the first heuristic algorithms for 

solving the p-next center problem. 

It is expected that it is known in advance whether it is necessary to visit the backup 

center, and therefore, the p-second center problem (pSCP) is defined in response to the 

potential failure of the primary center [12]. The p-second center problem is a 

generalization of the p-center problem, in terms of identifying p out of n centers in order 

to minimize the maximum sum of the distances from the users to the closest and the 

second closest center. Formally, let G = (V, E) again be an undirected weighted graph, 

where the weights of the edges are determined by the distance between their ends, V is 

the set of all nodes, and E is the set of the edges. The centers, as well as other users, 

represent graph nodes, while d(i, j) is the shortest distance between the i and j nodes, 

calculated as a result of an algorithm for determining the shortest paths in the graph G. 

The solution of the p-second center problem is a set of nodes    , of cardinality p, so 

that the maximum distance from the users (i   V) to the closest center (j   P), plus the 

distance to the second closest center (k   P) is minimized: 

             
    
     

   
   

 
 
 

 
 

   
    

       

          
    

        
   

      

 
 
 

 
 

 

 

(3) 

The p-second center problem, as an extension of the pCP, is an NP-hard problem. To 

solve this problem, we propose a heuristic algorithm based on the variable 

neighborhood search method that includes an efficient local search method to accelerate 

the convergence to the local optimum. To this end, in the next section, through the 

description and pseudocode, we present the proposed algorithm. In the third section, we 

present a modification of the algorithm capable to recognize whether the found solution 

is optimal. In the fourth section, we present the obtained results of testing the proposed 

algorithms over a OR-Library [2] set of test instances, as well as two additional test sets 

generated for testing the algorithm on large instances of the problem. We end the paper 

with a short summary and an announcement of future work. We also compare the p-

second center problem with the p-center and p-next center problems. There is an 

example graph that illustrates the pCP, the pNCP and the pSCP in Appendix 1. 

Briefly, the contributions of our study are: 

1. It is interesting to note that the property of finding the next better critical point 

in the interchange neighborhood lies within a circle whose radius is the current 

objective function value, which holds for all 3 variants of p-center problem. We proved 

this property for the p-second center problem. 

2. However, for the p-center [15] and the p-next center [17] problems, we must 

keep track of the first and the second closest centers in the data structure, to assure 

efficient updating in local search. For the p-second center problem, we prove that the 

fast interchange move, first proposed by Whitaker in 1983 for solving p-median 

problem, can be performed by taking track of the third closest center of any user as well. 

This is another contribution of our study. 

3. We included the fast interchange local search into the basic Variable 

neighborhood search and perform extensive numerical analysis on 40 OR-Library 

instances with up to 900 facilities and on new generated larger instances. 
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2. Algorithm 

The proposed algorithm for solving the p-second center problem is based on Variable 

Neighborhood Search metaheuristic (VNS). The VNS was introduced by Mladenovic 

and Hansen (1997) [14] as a generic framework for building search algorithms. Starting 

from a predefined current solution, the VNS method continues searching within the 

randomly selected solution from the appropriate neighborhood of the current solution. 

The first neighborhood of a solution P, denoted by N1(P), contains solutions that differ 

from the solution P in exactly one element. In general, the set of solutions of the k-th 

neighborhood of the solution P is defined as: 

                                                     

                                            

(4) 

After searching through the Nk neighborhood of the current solution P, in case of 

finding a better solution P’, the VNS algorithm rejects the previous solution and sets P’ 

(P = P’) as the new current solution. The search continues within the set of solutions 

N1(P). On the other hand, if the search in the set Nk(P) does not produce any better 

solution, the search continues in the set Nk+1(P), where 1 ≤ k ≤ |P| - 1. The search ends 

after k exceeds the maximum allowed value, i.e. |P| in our case.  

The p-second center problem is the generalization of the p-center problem. 

Mladenovic et al. (2004) [15] introduced an efficient VNS algorithm for the p-center 

problem. To offer a solution to the p-second center problem, we took advantage of the 

original algorithm from [15] with a simple modification so as to minimize not the 

maximum distance from the users to the closest center but the maximum sum of the 

distances to the closest and the second closest centers. 

Basically, the VNS algorithm in each of its iterations tries to improve the current 

solution P. It consists of alternating procedures of random selection of a solution from 

the Nk(P) neighborhood and a local search of the selected solution in order to find the 

local optimum. To explain the proposed implementation, let us consider an example of 

the p-second center problem with n = 15 users and p = 3 centers (Fig. 1). The current 

solution to the problem is a set of centers P = {1, 2, 11}.  

 

Fig. 1. Example of the p-second center problem with n = 15 and p = 3; the current solution is P = 
{1, 2, 11} 
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In Fig. 1, users are connected by darker lines (edges) to their closest, and with lighter 

to the second closest centers. The distances to the centers and the weights of edges 

correspond to the lengths of the edges. The user with the largest sum of distances to the 

appropriate centers is user 12. Let us call it a critical user, uc = 12. The objective 

function value is just determined by the sum of the distances from critical user to its 

closest and the second closest center (centers 2 and 11). In order to improve the current 

function value, it is needed to reduce the distance from the critical user to the closest 

or/and the second closest center. To that end, it is necessary to find a new center that is 

closer to the critical user than the second closest center. 

Property 1. Let uc be a critical user, c1(uc) its closest, and c2(uc) the second closest 

center in the current solution P, (c1(uc) ∊ P, c2(uc) ∊ P). Then, if there is a better solution 

in the neighborhood N1(P) than the current solution P, the new center cin (cin ≠ c1(uc)) 

must be closer to the critical user uc than its previously second closest center c2(uc). 

Proof. Let f(P) be the function value for the current solution P and f(ui) the function 

value for the user ui; d(ui, uj) represents the shortest distance between the ui and uj 

nodes. Then, it applies: 

        
       

                                      (5) 

The objective function value is determined by the function value for the critical 

user. Therefore, in order to reduce the objective function value, it is necessary to include 

a new center cin into the current solution, so that: 

                                                   (6) 

i.e. 

                       (7) 

Corollary. If the critical user is not unique, Property 1 should be applied for each of 

the critical users, i.e.                              , where    is a set of all 

critical users. Otherwise, there is not any solution in the neighborhood N1(P) better than 

the current solution P. 

Now, we can show how the cardinality of the set of potentially new centers decreases 

and thus accelerates convergence toward the local minimum. Previous property allows 

us to reduce the size of the complete p * (n - p) neighborhood of P to p *|N(uc)|, where 

                                    (8) 

Moreover, this size decreases with subsequent iterations and the speed of 

convergence to a local minimum increases on average. However, the acceleration 

reduces only the constant in the heuristic’s complexity, but not its worst-case behavior. 

Based on Property 1, we reduce the search just to the nodes u which meet the 

condition d(uc, u) < d(uc, c2(uc)). In the specific case from Fig. 1, the set of potentially 

new centers consists of nodes within the circle C (nodes closer to the critical user 12 

than the second-closest center). Let us assume that node 3 is chosen as the new center 

cin. The new center certainly reduces the distance from the critical user 12 to the 

assigned centers, but whether the objective function value will also be reduced depends 

on the users who lose one of their centers. If these users keep the sum of distances to the 

newly assigned centers at a level lower than the previous objective function value, the 
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objective function value will be improved. The Move method (Algorithm 1) identifies a 

center from the currently searched solution that should be replaced with a new one in 

order to maximally improve the current solution, and also calculates the new objective 

function value. In fact, instead of checking all p possible center exclusions, in the New 

center step, it is calculated only function values when one of the assigned centers is 

deleted for each of the users. The values are stored in the corresponding elements of the 

array z. Thereafter, the optimal center to be deleted is found based on the z value, as the 

one corresponding to the minimum value of the objective function (the Best 

deletion step). In this way, the time complexity is reduced from O(pn) to O(n) + O(p) ≈ 

O(n). Finally, in the Function calculation step, the new objective function value is 

calculated. In the worst case, the time complexity of the Move method is O(n). 

It is assumed that the current solution P represents the first p elements of the array 

xcur , while the last n - p elements contain the rest of the users. The index of the new 

center is denoted by cin. Additionally, the suggested algorithm uses the following 

structures: 

 dist(u, v) – the shortest distance between the u and v nodes; 

 c1(u) – the closest center of the user u; 

 c2(u) – the second closest center of the user u; 

 c3(u) – the third closest center of the user u; 

 z(v) – the maximum function value among all users to whom center v was 

assigned either as the closest or the second closest center after the center v 

was removed. 

The proposed implementation relies on the algorithms and data structures from the 

paper [15], provided that the solution is extended with the array c3 which contains the 

third closest centers of all users. The additional structure and extensions of the 

algorithms are conditioned by the nature of the p-second center problem, i.e. by the 

requirement that the new second closest center is known in advance if one of the two 

closest centers is removed from the current solution. The extensions do not affect the 

correctness and efficiency of the algorithm, so the theoretical discussion and properties 

from the paper [15] remain fully applicable. Note that authors in [15] were analyzing 

bipartite graph. They did that in order to make clear difference between centers and 

users. In this paper there is no such assumption, but it does not affect the correctness of 

the algorithm. The problem defined over the bipartite graph is equivalent to the plane 

general graph where the weight of edge between the user and center at the same location 

is 0. Therefore, we just generalized the algorithm and discussion from [15] to plane 

general graphs and expanded the solution with the auxiliary structure for the third-

closest centers to be able to serve the users if the closest centers have failed. The 

algorithm [15] assigns only one center to each of the users. Therefore, we implemented 

new algorithm able to find backup center in case that the closest center is broken. 

Below, we give the pseudocode for the remaining methods that implement the 

suggested algorithm. 

The Update method (Algorithm 2) uses the structures c1, c2 and c3 which represent 

the lists of the closest and the second and third closest centers of all users. All of them 

are both input and output values, while cin (the index of the new center) and cout (the 

index of the center to be deleted from the current solution), along with the current 

solution xcur represent only input values. The users in the current solution are iterated 

one by one and if any of their closest centers is deleted (cout) or the new center cin 

becomes one of the closest, corresponding c1, c2 and c3 arrays will be updated. The 
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worst-case complexity of the method Update is O(n log n) when a heap data structure is 

used for updating the third closest centers.   

 
Algorithm 1. 1-interchange move in the context of the p-second center problem 

Move(xcur, cin, c1, c2, c3) 

Initialization: 

Set z(xcur(i)) ← 0 for all i = 1, ..., p 

 

New center: 

in ← xcur(cin) 

For Each user = xcur(1), …, xcur(n) 

If dist(user, in) < dist(user, c2(user))  

**in as a new closest or second-closest center** 
z(c1(user)) ← max(dist(user, in) + dist(user, c2(user)), z(c1(user))) 

Else 

**user keeps the same centers** 

z(c1(user)) ← max(min(dist(user, in), dist(user, c3(user))) + dist(user, c2(user)), 

z(c1(user))) 

z(c2(user)) ← max(min(dist(user, in), dist(user, c3(user))) + dist(user, c1(user)), 

z(c2(user))) 

End If 

End For Each 

 

Best deletion: 

min ← ∞ 

For Each i = {1, ..., p} 

If min > z(xcur(i)) 

min ← z(xcur(i)) 

cout ← i 

End If 

End For Each 

 

Function calculation: 

fcur ← 0 

out ← xcur(cout) 

For Each user = xcur(1), …, xcur(n) 

If c1(user) = out  

c1 ← c2(user) 

c2 ← c3(user) 

Else 

c1 ← c1(user) 

c2 ← c2(user) if c2(user) ≠ out else c3(user) 

End If 

f ← dist(user, c1) + dist(user, in) if dist(user, in) < dist(user, c2)  

    else dist(user, c1) + dist(user, c2) 

fcur ← max(f, fcur) 

End For Each 

 

Return fcur, cout  
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Algorithm 2. Updating the first, the second and the third-closest center 
Update(xcur, cin, cout, c1, c2, c3) 

in ← xcur(cin) 

out ← xcur(cout) 
For Each user = xcur(1), …, xcur(n) 

**for users whose center is deleted, find new one** 

If c1(user) = out 

If dist(user, in) ≤ dist(user, c2(user)) 

c1(user) ← in 
Else 

c1(user) ← c2(user) 

If dist(user, in) ≤ dist(user, c3(user)) 

c2(user) ← in 

Else 

c2(user) ← c3(user) 
**find third closest center for the user** 

c3(user) ← select center  

from {xcur(1), …, xcur(p)} ∪ {in}   {c1(user), c2(user), out} 
where d(user, center) is minimum 

End If 

End If 

Else 

If c2(user) = out 

If dist(user, in) ≤ dist(user, c1(user)) 

c2(user) ← c1(user) 
c1(user) ← in 

Else 

If dist(user, in) ≤ dist(user, c3(user)) 
c2(user) ← in 

Else 

c2(user) ← c3(user) 

**find third closest center for the user** 

c3(user) ← select center  

from {xcur(1), …, xcur(p)} ∪ {in}   {c1(user),c2(user), out} 
where d(user, center) is minimum 

End If 

End If 

Else 

If dist(user, in) ≤ dist(user, c1(user)) 
c3(user) ← c2(user) 

c2(user) ← c1(user) 

c1(user) ← in 

Else 

If dist(user, in) ≤ dist(user, c2(user)) 

c3(user) ← c2(user) 
c2(user) ← in 

Else 

If dist(user, in) ≤ dist(user, c3(user)) 
c3(user) ← in 

Else If c3(user) = out 
**find third closest center for the user** 

c3(user) ← select center  

from {xcur(1), …, xcur(p)} ∪ {in}   {c1(user), c2(user), out} 
 where d(user, center) is minimum 

End If 

End If 

End If 

End If 

End If 

End For Each 
Return c1, c2, c3 
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Algorithm 3. The vertex substitution local search for the p-second center problem 
LocalSearchVertexSubstitution(xcur, c1, c2, c3, uc, fcur) 

Main loop: 

While True 
f’ ← ∞ 

For Each in = p +1, ..., n 

Find the optimal objective function value improvement within N1(xcur) neighborhood: 
If d(uc, xcur(in)) < d(uc, c2(uc)) 

f, out ← Move(xcur, in, c1, c2, c3) 

If f < f’ 
f’ ← f 

cin ← in 

cout ← out 

End If 

End If 

End For Each 

 

If fcur ≤ f’  

There was not found improvement in the neighborhood: 
Break Main loop 

End If 

 
Update(xcur, cin, cout, c1, c2 ,c3) 

fcur ← f’ 

xcur(cin) ↔ xcur(cout) 
uc ← select user from xcur(1), …, xcur(n)  

    where d(user, c1(user)) + d(user, c2(user)) is maximum 

End While 
Return xcur, uc, fcur 

 

The Local Search Vertex Substitution method (Algorithm 3), relying on Property 1, 

accelerates the convergence towards the local optimum. However, it reduces the search 

space and constant complexity factor, but not the time complexity in the worst case. The 

complexity of one iteration of the Main loop in the worst case remains O(n
2
) + O(n log 

n ) + O (n) ≈ O (n
2
). The input values are the current solution, the c1, c2 and c3 arrays, 

the critical user and the current objective function value. The local search method, using 

the Move method, iteratively finds the optimal pair of centers to be exchanged, which 

results in the largest reduction in the objective function value. The method is executed 

as long as it is possible to find such a pair of centers. In the end, the method provides 

a new current solution, a new critical user and a new objective function value. 
After the iteration of the proposed VNS implementation, i.e. of the previously 

described algorithms, over the problem from Fig. 1, we obtain a new current solution P 

= {1, 2, 3} (Fig. 2). Center 3 is included in the solution, and center 11 is deleted. The 

new critical user is uc = 14, the center closest to it is center 1, while the second closest 

center is center 3. The objective function value is reduced, i.e. d(14, 1) + d(14, 3) 

< d(12, 2) + d(12, 11). 
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Fig. 2. Example of the p-second center problem with n = 15 and p = 3; the new solution is 

 P = {1, 2, 3} 

The pseudocode for the VNS algorithm for the p-second center problem is given in 

Algorithm 4. The initial value of the variable k is 1. This means that a new solution is 

searched in the N1 neighborhood of the initially current solution. In the Shaking 

operator step, the new solution is selected from the Nk neighborhood of the current 

solution. Same as in the local search method, based on Property 1, the size of the 

neighborhood Nk set is reduced. It is selected one of the solutions which contain a new 

center that is closer to the critical user uc* than the previous second closest center 

c2(uc*). After that, the chosen solution xcur becomes the current solution for the local 

search method (the Local search step). If the local search finds an equal or a better 

solution than xcur, the new solution is set as the “currently optimal” xopt , and the search 

process restarts, k = 1. Otherwise, the value of k is incremented and the search process 

continues within the set Nk+1. If k has reached the maximum value kmax, k is set to 1 and 

the search process is restarted again. The Main step is repeated until the maximum 

allowed execution time tmax is reached. The algorithm returns the best solution found 

during the search process. 

 
Algorithm 4. Shaking procedure for the p-second center problem 
VariableNeighborhoodSearch(kmax, tmax) 

Initialization: 

Randomly initialize xopt; according to xopt initialize arrays c1, c2 and c3, fopt, uc*;  

copy initial solution into the current one, i.e., copy fopt, xopt, c1, c2, c3 and uc* into fcur, xcur, c1cur, c2cur, 

c3cur and ucur* respectively. 

Repeat the Main step until the stopping condition is met (e.g., time ≤ tmax ) 

Main step: 

k ← 1 

While k ≤ kmax 

Shaking operator: 

**generate a solution at random from kth neighborhood** 

For Each j = 1, ..., k 

1. Take center cin to be inserted at random if d(ucur*, xcur(cin)) < d(ucur*, c2cur(ucur*)); 

2. Find center cout to be deleted at random; 

3. Update xcur, c1cur, c2cur and c3cur,i.e., execute:  

Update(xcur, cin, cout, c1cur, c2cur, c3cur) 

xcur(cin) ↔ xcur(cout) 

4. Update fcur and ucur* according to xcur, c1cur, c2cur and c3cur 
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End For Each 

Local search: 

If any potentially better solution found 

xcur, ucur*, fcur ← LocalSearchVertexSubstitution(xcur, c1, c2, c3, ucur*, fcur) 

Move or not: 

If fcur ≤ fopt  

**Save current solution as the optimal; return to N1** 

xopt ← xcur; fopt ← fcur; uc* ← ucur*; c1 ← c1cur; c2 ← c2cur; c3 ← c3cur 

k ← 1 

Else 

** There was not found better solution; change the neighborhood** 

xcur ← xopt; fcur ← fopt; ucur* ← uc*; c1cur ← c1; c2cur ← c2; c3cur ← c3 

k ← k + 1 

End If 

End If 

End While 

Return xopt, fopt 

3. Quasi-Exact Algorithm 

Property 2. Let uc be a critical user, c1(uc) its closest and c2(uc) the second closest 

center in the current solution P, (c1(uc) ∊ P, c2(uc) ∊ P). Then, if in the set of potentially 

new centers there is no center cin that is closer to the critical user uc than its second 

closest center c2(uc), the current solution P is the optimal solution for the p-second 

center problem. 

Proof. Based on Property 1, it applies                       . If it is not possible 

to find a new center cin that satisfies previous inequality, it means that it is not possible 

to improve the current solution, i.e. the current solution is the optimal solution to the p-

second center problem. 

Corollary. If there is not any center to be opened in order to improve the objective 

function value related to the critical user uc, the critical user has already been selected to 

be a center in the current solution P. 

Property 2 can be considered as a generalization of Property 1, i.e. if there is a better 

solution P’ than the current solution P, the solution P’ has to contain a new center cin (cin 

∉ P) which is closer to the critical user uc than the second closest center c2(uc) (c2(uc) ∊ 

P). 

Based on Property 2, we propose a modification of the VNS algorithm from the 

previous section, which might be able to recognize the exact solution to the p-second 

center problem. The idea is, to check if there is at least one center that potentially 

improves the current solution. If there is not any, the execution is stopped and the 

algorithm returns the current solution as the optimal one (Algorithm 5). 

As future work, it would be interesting to try to accelerate the convergence towards 

an optimal solution by searching the history of the previous solutions. For example, the 

solution P1 = {1, 2, 11} in Fig. 1 is improved by adding center 3 and, after deleting 

center 11, it becomes {1, 2, 3}. The set of all potentially new centers consists of the 

centers within the circle C, i.e. C1in = {3, 6, 8, 9, 10, 12, 15}. So, the solution {1, 2} is 

expanded by one of the centers from the C1in set. In Fig. 2, the current solution is P2 = 

{1, 2, 3}, and the set of potentially new centers C2in = {5, 11, 14, 15}. In case of 
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deleting node 3, the current solution might be expanded by centers from the set C2in ∩ 

C1in = {15}, which reduces the cardinality of the search set from 4 to 1. A new structure 

can be used to store the previous solutions, e.g. a tree that stores in its leaves a set 

of all potential centers that can extend the solution defined by nodes on the path from 

the root to that particular leaf of the tree. 

 
Algorithm 5. Shaking procedure for the p-second center problem 
VariableNeighborhoodSearch(kmax, tmax) 

Initialization: 

… 

Repeat the Main step until the stopping condition is met (e.g., time ≤ tmax ) 

Main step: 

k ← 1 

While k ≤ kmax 

Shaking operator: 

**generate a solution from kth neighborhood** 

count ← 0 

For Each j = 1, ..., k 

cin ← find center at random from xcur(p + 1), …, xcur(n)  
     where d(ucur*, xcur(center)) < d(ucur*, c2cur(ucur*)) 

 

If cin not found 
If count = 0 

**the optimal solution has been found** 
Return xopt, fopt 

End If 

Else 
5. Increment count 

6. Find center to be deleted (cout) at random; 

7. Update xcur, c1cur, c2cur and c3cur,i.e., execute:  

Update(xcur, cin, cout, c1cur, c2cur, c3cur) 

xcur(cin) ↔ xcur(cout) 

8. Update fcur and ucur* according to xcur, c1cur, c2cur and c3cur 

End If 

End For Each 

Local search: 

… 

End While 

4. Results 

The algorithm was implemented in the C++ programming language, and all tests were 

performed on an Intel Core i7-8700K (3.7 GHz) CPU with a 32 GB RAM 

configuration. For testing purposes, we downloaded an OR-Library [2] data set 

containing 40 test instances with 100 to 900 nodes and p between 5 and 200 (not 

more than n/3, where n is the number of nodes). Additionally, we generated two data 

sets with larger test instances. The first contains 44 instances with 1000 to 2500 nodes 

and p between 5 and 200. The second contains 48 instances (500–1000 nodes) defined 

over graphs with different densities (50%–80%) and p between 5 and 200. 
Each of the proposed algorithms was executed 20 times on each testing instance, 

always starting from a different initial solution. Different combinations of the 
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parameters kmax = p/4, kmax = p/2, kmax = p, as well as tmax = n and tmax = 2n were tested. It 

turned out that the results were slightly better with higher values of the 

parameter kmax. On the other hand, the algorithm usually found the best solution much 

before the execution time limit expired. Therefore, we decided to present the results 

only for kmax = p and tmax = n seconds. The summary results are presented in the 

following tables, while the detailed results are available in Appendix 2. 

4.1. Test results over the OR-Library instances 

Table 1 shows the results obtained for original OR-Library test instances. The first 

column of the table contains the name of the instance, the next three columns represent 

the value of p (number of centers), n (number of users) and m (number of graph 

edges). The columns “Best Value”, “AVG Value” and “Worst Value” show, 

respectively, the best, average, and worst solution value that the algorithm 

found during the 20 executions. The “Time” column (or time-to-target) shows the 

average time in seconds that was needed to find the best solution for the first time. 

“Time” does not represent the total execution time. The algorithm is executed until the 

time limit is reached, i.e. n seconds. The last column “#Best” shows the number of 

times the algorithm found the best solution during the 20 executions. Also, in Appendix 

2 we included additional columns containing percentage gaps of the average and the 

worst solution compared to the best known solution presented in the column “Best(-

Known) Value”. Since OR-Library instances have not yet been used to test the p-

second center problem, we take the best solutions found by our algorithm as the best 

known solutions.       

Table 1. Results for multi-executed OR-Library test instances 

 P N M 
Best 

Value 

AVG 

Value 

Worst 

Value 
Time #Best 

pmed1-

pmed5 

5- 

33 100 200 193.80 193.80 193.80 3.30 20.00 

pmed6-
pmed10 

5- 
67 200 800 120.00 120.02 120.20 4.33 19.60 

pmed11-

pmed15 

5- 

100 300 1800 83.80 83.80 83.80 2.23 20.00 

pmed16-

pmed20 

5- 

133 400 3200 65.00 65.00 65.00 34.49 20.00 

pmed21-
pmed25 

5- 
167 500 5000 58.60 58.61 58.80 48.15 19.80 

pmed26-

pmed30 

5- 

200 600 7200 56.00 56.00 56.00 35.03 20.00 

pmed31-

pmed34 

5- 

140 700 9800 53.00 53.00 53.00 19.83 20.00 

pmed35-
pmed37 

5- 
80 800 1280 51.67 51.83 52.00 149.49 16.67 

pmed38-

pmed40 

5- 

90 900 16200 54.67 54.98 55.00 29.12 13.67 

AVG       31.32s 19.20 
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Based on the results, we noticed that most of the smaller instances were solved 

very quickly. In merely 3 out of 15 cases for n ≤ 300, the average time-to-target was 

more than 4 seconds. As the size of the test instance increases, so does the time needed 

to find the best solution. The average time-to-target over a complete test set is 31.32 

seconds. On the other hand, in terms of the algorithm stability and solution quality, the 

best-known solution was not found by each of the 20 executions only for 4 out of 40 

instances. Moreover, in just two examples (pmed37 and pmed40), the best solution was 

found less than eighteen times in 20 executions. In the case of the pmed40 instance, 

only once the best solution was found, but in all other executions a solution was found 

the value of which is higher by only 1 than the best value. The algorithm found the best 

known solution on average in 19.20 out of 20 cases or in 96% of the cases. Regarding 

the deviation of the average and worst solutions, from Table 6 (Appendix 2) it can be 

concluded that there are no significant differences between the worst/average and 

best values, only 0.23% and 0.12% on average, respectively. 

To verify the quality of our sophisticated local search method, we applied a simple 

local search method and tested the VNS algorithm with the same parameters and test 

data. Unlike the proposed solution, the simple local search method does not filter the 

centers that do not satisfy Property 1. The method only searches for centers that 

improve the current solution, as shown in Algorithm 6. 

 
Algorithm 6. The simple local search method 
SimpleLocalSearch(xcur) 

Main loop: 
While True 

P ← [xcur(1), ..., xcur(p)] 

(cin, cout) ← select (user, center) 
   where user in [xcur(p+1), ..., xcur(n)] and  

     center in [xcur(1), ..., xcur(p)] and  

    P∪ {cin} \ { cout } is better than P 
If (cin, cout) found  

Exchange(xcur(cin), xcur(cout)) 

Else 

Break Main loop 

End If 

Return xcur  

 

Algorithm 6 was also executed 20 times and the results are presented in Table 2. For 

the VNS which uses a simple local search algorithm, we show the best solution 

obtained in 20 executions (the “Best Found Value” column) and the average time to find 

the best solution (the “Time” column). The “#Best-Known” column contains the 

number of algorithm executions with a simple local search method that resulted in 

finding the best known solution, i.e. the best solution found by the algorithm with a 

sophisticated local search. Finally, the last column gives the percentage deviation of the 

best solution found by the algorithm with a simple local search method from the best-

known solution. The percentage gap is calculated as 
                       

          
    . 

Table 2 and Table 7 in Appendix 2 show that a VNS with a simple local search 

method is not capable of providing satisfactory results. The algorithm did not find the 

best known solution for 14 out of 40 instances, having found the best known solution 

only in 8.43 out of 20 cases on average. It turns out that the value of the best found 

solution of the VNS algorithm with a sophisticated local search method is better by 
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5.47% on average. Moreover, several instances, such as pmed19, pmed24, pmed33, 

pmed37 and pmed40, resulted in a significantly larger deviation from the best known 

solution. Also, the average time to find the best solution increased almost eight times, 

for up to 246.92 seconds. All these findings point to the advantages of a sophisticated 

local search algorithm, i.e. much better solutions for a significantly less CPU time. 

Table 2. VNS with simple local search 

 P N 
Best-Known 

Value 

(1) 

Best-Found 
Value 

(2) 

Time 
#Best-

Known 

Gap 

 
       

   
      

pmed1-pmed5 

5- 

33 100 193.80 193.80 16.15 16.80 0.00 

pmed6-pmed10 

5- 

67 200 120.00 120.20 64.97 11.60 0.24 

pmed11-
pmed15 

5- 
100 300 83.80 86.00 183.92 5.60 3.80 

pmed16-

pmed20 

5- 

133 400 65.00 68.60 260.17 6.00 7.72 

pmed21-

pmed25 

5- 

167 500 58.60 62.00 337.51 6.60 8.41 

pmed26-
pmed30 

5- 
200 600 56.00 57.40 340.79 5.40 3.63 

pmed31-

pmed34 

5- 

140 700 53.00 55.25 328.85 10.25 6.43 

pmed35-

pmed37 

5- 

80 800 51.67 55.67 487.02 1.67 12.12 

pmed38-
pmed40 

5- 
90 900 54.67 58.33 360.99 10.33 12.64 

AVG     246.92s 8.43 5.47% 

 

Table 3 contains the results of the execution of the quasi-exact algorithm (Algorithm 

5) over all the OR-Library test instances. Compared to the previous ones, the table has 

been expanded with the “Exact Value” column, which shows whether the exact solution 

has been found. The algorithm was also executed 20 times with the same parameter 

values (kmax = p and tmax = n seconds). 

Table 3 shows that the quasi-exact algorithm, despite reducing on average the time 

for finding the best solution, is not as effective as the initial algorithm. It found the best 

solution in 9.63 out of 20 executions on average. There were several instances (pmed18, 

pmed19, pmed23 and pmed40) for which no best-known solution was found. As for the 

best solutions, the initial algorithm is averagely more successful only for 0.24%. On the 

other hand, the algorithm managed to identify optimal solutions for 12 out of 40 

instances from OR-Library test set, which is indicated in the last column of Table 3.  In 

the column “#Best-Known” is reported how many times the algorithm found the best 

solution. It is important to note that mostly the larger instances, i.e. problems with a 

greater number of centers (higher p values), were solved exactly. In case of higher p 

values, it is more likely that there is a center which is a critical user at the same time and 

it is not possible to find a closer backup center to be included into the current solution in 

order to reduce the objective function value (Corollary of Property 2). 
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Table 3. Results of the quasi-exact VNS algorithm for multi-executed OR-Library test instances 

 P N 

Best-Known 

Value 
(1) 

Best-Found 

Value 
(2) 

Time 
#Best-

Known 

Gap 

 
       

   
      

Exact 

Value 

pmed1 5 100 268 268 0.02 3 0  

pmed2 10 100 220 220 0.11 4 0  

pmed3 10 100 208 208 0.09 3 0  

pmed4 20 100 163 163 0.07 1 0  

pmed5 33 100 110 110 0.02 16 0  

pmed6 5 200 180 180 0.23 10 0  

pmed7 10 200 143 143 0.51 3 0  

pmed8 20 200 122 122 0.48 2 0  

pmed9 40 200 85 85 0.20 3 0  

pmed10 67 200 70 70 0.10 20 0  

pmed11 5 300 125 125 0.52 16 0  

pmed12 10 300 112 112 1.20 5 0  

pmed13 30 300 78 78 1.00 3 0  

pmed14 60 300 60 60 0.63 1 0  

pmed15 100 300 44 44 0.36 20 0  

pmed16 5 400 98 98 1.61 16 0  

pmed17 10 400 83 83 4.26 9 0  

pmed18 40 400 62 63 2.70 0 1.61  

pmed19 80 400 42 43 1.51 0 2.38  

pmed20 133 400 40 40 0.81 20 0  

pmed21 5 500 85 85 5.00 14 0  

pmed22 10 500 80 80 20.38 3 0  

pmed23 50 500 49 50 6.17 0 2.04  

pmed24 100 500 35 35 2.37 1 0  

pmed25 167 500 44 44 1.48 20 0  

pmed26 5 600 80 80 20.52 5 0  

pmed27 10 600 67 67 20.04 7 0  

pmed28 60 600 57 57 2.86 20 0  

pmed29 120 600 36 36 3.02 20 0  

pmed30 200 600 40 40 3.06 20 0  

pmed31 5 700 64 64 7.32 20 0  

pmed32 10 700 72 72 4.58 20 0  

pmed33 70 700 35 35 16.87 8 0  

pmed34 140 700 41 41 4.50 20 0  

pmed35 5 800 64 64 66.86 6 0  

pmed36 10 800 58 58 50.63 8 0  

pmed37 80 800 33 33 24.95 2 0  

pmed38 5 900 61 61 32.37 16 0  

pmed39 10 900 74 74 9.82 20 0  

pmed40 90 900 29 30 18.08 0 3.45  

AVG     8.43s 9.63 0.24% Total 12 
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4.2. Test results over larger instances 

Encouraged by the obtained results, in order to further assess the performance of the 

algorithm, we generated test instances with 1000, 1500, 2000, and 2500 nodes, as well 

as new instances defined over the graphs with up to 1000 nodes with various density 

values. New test instances are generated as random k-regular graphs with predefined 

node and edge count. The initial VNS algorithm was again executed 20 times with the 

same parameter values (kmax = p and tmax = n seconds) over the new test examples and 

the results are presented in the following tables and Appendix 2. 

Table 4. Results for large test instances 

 P N M 
Best 

Value 

AVG 

Value 

Worst 

Value 
Time #Best 

rndkreg1- 

rndkreg11 

5- 

200 1000 50000 14.82 14.90 15.00 82.85 18.36 

rndkreg12- 
rndkreg22 

5- 
200 1500 112500 12.45 12.56 12.64 183.81 17.82 

rndkreg23- 

rndkreg33 

5- 

200 2000 200000 11.64 11.64 11.64 235.01 20.00 

rndkreg34- 

rndkreg44 

5- 

200 2500 312500 10.27 10.51 10.64 576.65 15.18 

AVG       269.58s 17.84 

 

Table 4 shows the execution results of the larger test instances and it is noticeable 

that the algorithm was not as successful as in other instances. It found the best solution 

in 17.84 out of 20 executions on average. There have been several instances (rndkreg13, 

rndkreg34 and rndkreg38) for which the best solutions were found only three or fewer 

times, while the absolute deviation of the worst and best solutions was not higher than 

1. The average time-to-target was 269.58 seconds. 

In addition to the previously explained columns, Table 5 contains a new column 

(“Density”), which shows density of the graph over which the test instance is defined. 

Based on the results from Table 5, and taking into account the slightly larger 

instances of the problem, the average time-to-target increased to 43.07 seconds as 

compared to the OR-Library instances. The average number of finding the best solution 

dropped to 18.46 out of 20 executions. On the other hand, the density of the graph did 

not affect the efficiency of the algorithm. This was to be expected, given that the 

algorithm does not take into account the number of graph edges, but generates new 

search solutions from appropriate neighborhoods by a simple replacement of nodes 

(centers). There were only 8 (out of 48)  instances for which the best solution was not 

found in each of the 20 executions, but the absolute deviation of the worst and the best 

solution in all these cases was only 1.  

We also compared the suggested algorithm for the pSCP with the results of the 

algorithms for the p-center [15], the p-next center [17] and the p-median [8] problems. 

The results are reported in Appendix 3.  
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Table 5. Results for test instances defined over graphs with different densities 

 P N Density 
Best 

Value 

AVG 

Value 

Worst 

Value 
Time #Best 

rnddnskreg1- 

rnddnskreg4 

5- 

200 500 50.10 8.00 8.00 8.00 13.07 20.00 

rnddnskreg5- 
rnddnskreg8 

5- 
200 500 60.12 7.00 7.00 7.00 4.35 20.00 

rnddnskreg9- 

rnddnskreg12 

5- 

200 500 80.16 6.00 6.23 6.25 17.13 15.50 

rnddnskreg13- 

rnddnskreg16 

5- 

200 600 50.08 7.25 7.36 7.75 67.27 17.75 

rnddnskreg17- 
rnddnskreg20 

5- 
200 600 60.10 7.00 7.00 7.00 6.45 20.00 

rnddnskreg21- 

rnddnskreg24 

5- 

200 600 80.13 5.75 5.99 6.25 51.02 15.25 

rnddnskreg25- 

rnddnskreg28 50 800 50.06 6.75 6.83 7.00 97.05 18.50 

rnddnskreg29- 
rnddnskreg32 

5- 
200 800 60.08 6.50 6.50 6.50 37.24 20.00 

rnddnskreg33- 

rnddnskreg36 

5- 

200 800 80.10 6.00 6.00 6.00 28.90 20.00 

rnddnskreg37- 

rnddnskreg40 

5- 

200 1000 50.05 6.50 6.56 6.75 105.35 18.75 

rnddnskreg41- 
rnddnskreg44 

5- 
200 1000 60.06 6.50 6.50 6.50 27.76 20.00 

rnddnskreg45- 

rnddnskreg48 

5- 

200 1000 80.08 5.50 5.71 5.75 61.31 15.75 

AVG   63.43%    43.07s 18.46 

5. Conclusions 

The paper discusses the p-second center problem, which is a generalization of the well-

known and highly studied the p-center problem. The algorithm based on Variable 

Neighborhood Search method has been designed and implemented as a heuristic 

approach to problem solving. A solution to the p-second center problem represents the 

identification of the p centers for the purpose of minimizing the maximum 

distance from the n users to the closest and the second closest centers. 

The proposed algorithm was tested on OR-Library instances from the literature with 

up to 900 nodes, and the obtained experimental results confirmed the high efficiency of 

the algorithm in a reasonable amount of time. The algorithm found the best solution on 

average in 19.20 out of 20 cases or in 96% of the cases. The paper also presents 

a modification of the initially proposed algorithm as a VNS implementation that is 

capable of identifying the optimal solutions to the p-second center problem. It was 

tested over the same OR-Library test set. It turned out that the quasi-exact algorithm on 

average yields worse results as compared to the initial algorithm, but it managed to 

identify 12 exact solutions out of 40 OR-Library instances. 

To confirm the efficiency of the original algorithm, we also generated larger test 

instances with 1000, 1500, 2000, and 2500 nodes as well as instances defined over 
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graphs of varying densities (50%–80%). It was shown that the density of the graph did 

not affect the efficiency of the algorithm. The best solution was found for 40 out of 48 

instances in each of the 20 executions of the algorithm, or in 92.29% of the cases on 

average. For larger instances of the problem (up to n=2500), the algorithm was not as 

successful, but it was still stable. It found the best solution in 89.20% executions 

with an absolute deviation of the worst solution being not higher than 1.   
The proposed algorithm successfully solves the p-second center problem, but it 

would certainly be interesting to generalize the problem by taking into account more 

than 2 centers, i.e. apply the VNS heuristic to the p-α-closest center problem, where 

it would be necessary to minimize the sum of the distances to α closest centers. The 

proposed quasi-exact algorithm for the p-second center problem showed a 30% success 

rate in identifying exact solutions. As the topic of a future paper, it would be 

challenging to try to increase the success rate of the algorithm, for instance, by tracking 

the search history and comparing the current solution with potential extensions of the 

previous solutions. 
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