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Abstract. Data locality is an important concept in big data processing. Most of
the existing research optimized data locality from the aspect of task scheduling.
However, as the execution container of tasks, the executors started on which nodes
can directly affect the locality level achieved by the tasks. This paper tries to im-
prove the data locality by executor allocation for reduce stage in Spark computing
environment. Firstly, we calculate the network distance matrix of executors and
formulate an optimal executor allocation problem to minimize the total communi-
cation distance. Then, when the network distance between executors satisfies the
triangular inequality, an approximate algorithm is proposed; and when the network
distance between executors does not satisfy the triangular inequality, a greedy al-
gorithm is proposed. Finally, we evaluate the performance of our algorithms in a
practical Spark cluster by using several representative micro-benchmarks (Sort and
Join) and macro-benchmarks (PageRank and LDA). Experimental results show that
the proposed algorithms can decrease the execution time of tasks for lower data
communication.

Keywords: communication distance, data locality, executor allocation, spark frame-
work.

1. Introduction

With the increasingly high response requirement of applications in the era of big data,
Spark [1] attracts great attention in academia and has become the popular parallel com-
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puting framework for massive data processing [28]. The core abstraction of Spark is re-
silient distributed dataset (RDD) that can be cached to memory, thus avoiding writing and
reading data in HDFS between jobs. Therefore, compared with Hadoop [2], Spark can
take advantage of in-memory computing to perform jobs more efficiently.

A typical Spark application contains one or more jobs, and a job usually consists
of many stages. Since the stages are executed sequentially, the intermediate output of
the former stage is used as the input of the later stage. When the tasks of a stage run
in parallel on different nodes, the data communication across the network occurs [22].
As shown in Fig. 1, in the map stage (i.e., the first stage), each task reads a data block
to process and outputs the intermediate data to local disks. In the reduce stage (i.e., the
subsequent stages), each task fetches part of the intermediate data from the previous stage
for processing. This is the so-called shuffle that is a many-to-many communication. The
resulting large amount of network traffic in the two stages can congest the network and
extend execution time, thereby hindering the system [23].
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Fig. 1. Data communication between Spark stages.

For improving performance, data locality is a key factor considered by the task schedul-
ing of Spark stages [10]. The task scheduling determines the executor on which node the
task runs and the data locality refers to scheduling task close to data, so that the commu-
nication overload can be reduced [19], [15]. In particular, in the map stage, the taskSched-
uler uses the delay scheduling algorithm [34] that tries to assign the map task to the node
which stores the data block, and in the reduce stage, the taskScheduler assigns the reduce
task to one of the nodes that holds more intermediate data to the task, thus to minimize
the data transfer volume.

In MapReduce frameworks (e.g. Hadoop), most of the existing research focused on
optimizing data locality from the aspect of task scheduling [17], [21], [9]. In particular,
Guo et al. [16] assign map task to maximize the number of node-local tasks, and Shang et
al. [25] dispatch reduce task to minimize the network resources consumption. These task
scheduling methods are the direct way to improve the data locality and achieves better
performance, but they do not involve the problem of executor allocation in Spark.
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As the execution container of tasks, the executors can restrict the nodes available for
the task scheduling. This actually affects the locality level achieved by the tasks. On the
one hand, if the executor is not started on the nodes in which the data block is located
in the map stage, the map task is almost impossible to obtain data locally. On the other
hand, if the executors are started on the nodes away from each other in the reduce stage,
the reducer has to go through a long network distance to get data. Spark provides two
algorithms: spreadOut and noSpreadOut to decide the executors start up. Unfortunately,
neither of them fully exploit the benefits of data locality.

In this paper, we improve the data locality from the view of executor allocation consid-
ering the reduce stage in Spark computing environment. In general, the number of reduce
stage is much greater than that of map stage, so the reduce stage has an important impact
on the whole performance. Compared with the conference version [12], which proposed
an approximate algorithm for the case that the network distance between executors satis-
fies the triangular inequality, this paper also focuses on the executor allocation for the case
that the network distance between executors does not satisfy the triangular inequality. The
main contributions of this paper are summarized as below.

• We calculate the distance matrix of executors, and formulate an executor alloca-
tion problem to minimize the total communication distance. This problem is proved to be
an NP-Hard problem.

• When the network distance between executors satisfies the triangular inequality,
we propose an approximate algorithm and prove the approximate factor is 2.

• When the network distance between executors does not satisfy the triangular in-
equality, we propose a greedy algorithm and prove the correctness of the algorithm.

• We implement our algorithms in Spark-3.0.1 and evaluate their performance on
representative benchmarks. The experiment results explain that the proposed algorithms
can reduce the task execution time for better data locality.

The rest of this paper is organized as follows. Section 2 reviews more related research.
Section 3 describes the motivation of our optimization. Section 4 presents the proposed
executor allocation algorithms. Experiments and performance evaluation are given in Sec-
tion 5. Section 6 concludes this paper.

2. Related Work

Many research has been done to optimize the data locality in MapReduce frameworks,
which can be categorized as follows:

Task scheduling. In the design of MapReduce, Dean et al. [11] took the locality of
map tasks into account to save bandwidth consumption. The priority of tasks scheduled
to nodes is classified into three levels: node-local, i.e., the task and its data block are on
the same node; rack-local, i.e., the task and its data block are on different nodes but on
the same rack; and off-rack, i.e., the task and its data block are on different racks but on a
cluster.

Further, using the time-for-space strategy, Zaharia et al. [34] proposed the delay schedul-
ing algorithm. If there is no map task can obtain data locally on the request node, a small
amount of time is waited in the hope of obtaining better locality from subsequent nodes.
In a cluster that quickly releases resources, the delay scheduling can achieve a higher
proportion of node-local tasks while preserving fairness.
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Besides the map stage, the data locality for reduce tasks also affects the performance
[27], [8], [25]. Tang et al. [31] presented a minimum transmission cost reduce task sched-
uler (MTCRS). It decides the appropriate launching locations for reduce tasks according
to two factors: the waiting time of each reducer and the transmission cost set, which is
computed by the sizes and the locations of intermediate data partitions.

In order to alleviate data skew at the same time, Tang et al. [29] provided a reduce
placement algorithm CORP. It first uses a reservoir algorithm for sampling the input data
to estimate the distribution of keys/values, then on the basis of this, it calculates the dis-
tance and cost matrices among the cross node communication. Finally, the related map
and reduce tasks are scheduled relatively nearby physical nodes.

Data pre-fetching. From another angle, Sun et al. [26] designed HPSO (High Perfor-
mance Scheduling Optimizer), a prefetching service based task scheduler to improve data
locality for MapReduce jobs. Their idea is to predict the most appropriate nodes to which
future map tasks should be assigned and then pre-load the input data to memory without
any delaying on running normal tasks.

In [35], Zhang et al. proposed a pre-fetching method based on pre-scheduling in
Hadoop systems. The method hides the remote data access delay by pre-fetching, and
controls the resource competition by adjusting resource allocation of reduce tasks. Nev-
ertheless, the above pre-fetching techniques may incur additional overhead and could not
help to alleviate the network traffic of cluster.

High speed network. In addition, some researchers were dedicated to finding high
speed network to speed up the data transmission. Lu et al. [18] proposed a novel design
(RPCoIB) of Hadoop RPC with RDMA over InfiniBand networks. RPCoIB provides a
JVM-bypassed buffer management scheme and utilizes message size locality to avoid
multiple memory allocations and copies in data serialization and deserialization.

In [32], Yan et al. introduced R3S, an RDMA-based in-memory RDD storage layer
for Spark. R3S leverages high bandwidth networks and low-latency one-sided RDMA
operations to allow Spark nodes to efficiently access intermediate output from a remote
node.

In the above studies, these task scheduling methods are the direct way to improve
the data locality, but they do not involve the problem of executor allocation in Spark
computing environment. Therefore, the executors can restrict the nodes available for the
task scheduling. In our early work [13], we proposed an optimal task scheduling algorithm
and an executor allocation algorithm to optimize the data locality in the map stage. While
in this paper, we focus on the executor allocation in the reduce stage, with the purpose of
providing the possibility of better locality level when scheduling the reduce tasks.

3. Motivation

There are two methods: spreadOut and noSpreadOut provided by Spark to decide on
which nodes the executors start. The idea of the spreadOut strategy tries to launch the
required executors on as many nodes as possible, while noSpreadOut goes a inverse way,
it launches the executors on as few nodes as far as possible. We show how the executor
allocation affects the data locality in reduce task scheduling.

As shown in Fig. 2, suppose that a cluster has 4 idle nodes namely node0, node1,
node2, and node3, and the number of executors allowed to start on each node is 3, 2, 2, and
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1 respectively, as shown in Fig. 2(a). The number of executors required by the application
is 5. For these nodes that are sorted according to the number of executors allowed to
start, spreadOut takes turns to start the executor on each node until reaching the number
requirement, as shown in Fig. 2(b). In contrast, noSpreadOut starts the allowed number
of executors on a node in turn until the number requirement is met, as shown in Fig. 2(c).
For simplicity, we use the hop count to calculated the network distance, so the sum of the
communication distance between executors under spreadOut and noSpreadOut is 21 and
18 respectively. However, given an optimal executor allocation strategy shown by Fig.
2(d), the minimum total communication distance is 8. Then when scheduling the reduce
tasks to the nodes and run in the executors, the tasks need to go through a longer network
distance to get data under spreadOut and noSpreadOut than under the optimal strategy.

node0 node1 node2 node3

(a) Initial state

node0 node1 node2 node3

node0 node1 node2 node3

(b) SpreadOut strategy 

(c) NoSpreadOut strategy 

switch

node0 node1 node2 node3

(d) Optimal strategy 

: executors allowed to start : executors started

Fig. 2. Different executor allocation strategies.

From the above analysis, we can conclude that spreadOut and noSpreadOut may
cause the executors to start on the nodes away from each other, bringing a great com-
munication overhead when the reduce tasks fetch the intermediate data. Therefore, the
poor data locality could be obtained in the task scheduling. It also should be noted that if
there is little intermediate data generated in the previous stage, it is difficult to improve
job performance by improving the data locality in the reduce stage.

4. Proposed Executor Allocation Algorithm

This section formulates the optimal executor allocation problem, and then presents an
approximate algorithm and a greedy algorithm respectively.
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4.1. Optimal Executor Allocation Problem

When a Spark application is submitted to the cluster and to be executed, the master regis-
ters with the resource manager (such as YARN [30]) and applies for the resources to start
a group of executors. An executor is the container of running tasks, which is a collection
of computing resources (i.e., cpu and memory). A task can be scheduled to run on a node
requiring to have idle executors.

For illustrative purposes, some important variables involved in the model are declared
in Table 1.

Table 1. Variable Declaration

Variable Declaration
Nl, 0 ≤ l < α The lth node of the cluster
Rr, 0 ≤ r < β The rth rack of the cluster

eli, 0 ≤ i < m
The ith executor allowed to start, which
is located on the lth node

dij , 0 ≤ j < m
The network distance between
executor ei and ej

We first initialize the network topology of the cluster as the node set {N0, N1, · · · , Nα−1}
and rack set {R0, R1, · · · , Rβ−1}, 1 ≤ β ≤ α, where α is the number of nodes and β
is the number of racks. In the initial state of allocating executor for an application, some
particular data structures are defined as follows:

(1) E: A set of executors allowed to be started on the nodes, the number is m. The
element eli represents the ith executor that can be started on the lth node if marked. In the
Spark framework, the number of executors allowed to start on each node can be calculated
based on the free resources of the node, formalized as:

exe numi = min{[free cpui

cpu conf
], [

free memoryi
memory conf

]}, (1)

where exe numi indicates the number of executors allowed to start on node Ni, and
cpu conf and memory conf are the number of CPUs and memory capacity configured
by the executor respectively.

(2) D: A matrix of m ×m represents the network distance between executors of E,
represented as:

D =


d00 d01 . . . d0(m−1)

d10 d11 . . . d1(m−1)

...
...

. . .
...

d(m−1)0 d(m−1)1 . . . d(m−1)(m−1)

 ,

where dij represents the network distance between executor ei and ej . It is noted that dij
is set to 0 when i = j.

With the aim of capturing the data locality, we divide the proximity level (PL) of two
executors into three levels: (1) if two executors are on the same node, then PL is equal to
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0; (2) if two executors are on different nodes of the same rack, then PL is equal to 1; (3)
if two executors are on different nodes of different racks, then PL is equal to 2. Then the
network distance dij of D can be specifically calculated as:

dij =


0, ifPL = 0

2×
(

1
bandNS

+ latencyNS

)
, ifPL = 1

2×
(

1
bandNS

+ latencyNS

)
+ 2×

(
1

bandSS
+ latencySS

)
, ifPL = 2

, (2)

where bandNS is the network bandwidth from node to switch, bandSS is the network
bandwidth from switch to switch, latencyNS is the network delay from node to switch,
and latencySS is the network delay from switch to switch.

In this model, our purpose is to start the required executors on nodes close to each
other. Assuming that the number of executors required by the application is k, so the
optimal executor allocation problem can be described as selecting a subset E

′ ∈ E to
minimize the total communication distance between executors. This problem can be for-
malized as follows by using Integer Programming:

min

m−1∑
i=0

m−1∑
j=0

dij × (xi × xj),

subject to

m−1∑
i=0

xi = k, xi ∈ {0, 1}, 0 ≤ i < m− 1, (3)

where xi is a binary variable, whose value is 1 means that the executor ei is selected, and
value is 0 means that the executor is not selected.

Theorem 1. The optimal executor allocation problem (abbreviated as the OEA problem)
is NP-Hard.

Proof. The k-clique problem in graph theory can be educible to the OEA problem. That
is, for any instance of the k-clique, an instance of OEA can be created in polynomial time
such that solving the instance of OEA solves the instance of k-clique as well. According
to the NP completeness of the k-clique problem, the OEA problem can be proved to be
NP-Hard [14].

Definition 1. k-clique problem: Given a graph G(V,U) and an integer k, determine
whether G has a clique of size k.

Let P = (V,U, k) be an instance of k-clique, where V = {0, 1, ...,m − 1} is the
vertex set, U = {uij |i, j ∈ V } is the edge set, and k is a positive integer.

Then give an instance of OEA: Q = (E,D, k), where E is the set of executors allowed
to start, D is the distance matrix between executors, and k is a integer. For the executors
ei and ej of E corresponding to i and j of V , the element dij of D is assigned to:

dij =

{
0, if uij ∈ U
1, otherwised

, (4)

We claim that a clique of size k exists if and only if E contains a subset E
′

such that
the number of elements in the E

′
is equal to k, and

∑
ei,ej∈E′ dij = 0.
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Figure 3 shows an instance of k-clique, which contains the vertices 0, 1, 2, 3, 4, 5. On
this basic, an instance of OEA can be created and its network distance matrix D is shown
in Table 2.

2

3

4

0

1

5

Fig. 3. An instance of k-clique.

Table 2. Network distance matrix

Executor e0 e1 e2 e3 e4 e5
e0 0 0 1 0 1 1
e1 0 0 0 1 1 0
e2 1 0 0 0 0 1
e3 0 1 0 0 0 1
e4 1 1 0 0 0 0
e5 1 0 1 1 0 0

It can be seen from the above example that the instance of k-clique has a clique
of size 3. In the meantime, OEA has a solution E

′
= {2, 3, 4} such that k=3, and∑

ei,ej∈E′ dij = 0.
Hence, the existence of k-clique is a necessary and sufficient condition for the OEA

problem to be solved, with the size of k and the minimum total communication distance.
Hence the proof.

4.2. Approximate Algorithm

We first consider that the network distance between two executors satisfies the triangular
inequality [24], such as the homogeneous network of nodes, that is, the distance between
any two executors satisfies the following relationship: dij ≤ div + dvj .

Algorithm 1 describes the approximate algorithm for the optimal executor allocation
problem. Firstly, the algorithm selects k nearest executors (including ei itself) for each
executor ei. For executor ei, the set of its k nearest executors is represented as S(ei), and
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the sum of network distance from executor ei to other k − 1 executors is calculated and
represented as C(ei). Then, find the smallest C(ev) among all executors, and assign the
executor set S(ev) to MinSet. Finally, return to MinSet.

Algorithm 1: Approximate Algorithm
Input:

The set of executors allowed to start: E;
The network distance matrix: D;
The number of executors required: k;

Output:
The executors selected to start.

1 begin
2 for each executor ei ∈ E do
3 find the set of its k nearest executors: S(ei);
4 calculate the sum of network distance from executor ei to other k − 1 executors:
5 C(ei) =

∑
ej∈S(ei)

dij ;

6 end
7 find the smallest C(ev) and the executor set: MinSet;
8 return MinSet.
9 end

The algorithm takes O(m) time to find the nearest k executors by using the optimal
algorithm. For m executors, the time it takes is m×O(m). Therefore, the time complexity
of Algorithm 1 is O(m2), where m is the number of executors allowed to start.

Theorem 2. The approximate factor of the approximate algorithm to the optimal execu-
tor allocation problem is 2.

Proof. The solution of the approximate algorithm for the optimal executor allocation is
MinSet, so the total communication distance between executors of MinSet can be rep-
resented as MinCost. Let MinSet∗ be the optimal solution, and the total communication
distance between executors of MinSet∗ is MinCost∗. Then for MinCost∗, there is:

MinCost∗ =
1

2

∑
ei∈MinSet∗

∑
ej∈MinSet∗

dij ≥
1

2

∑
ei∈MinSet∗

∑
ej∈S(ei)

dij

=
1

2

∑
ei∈MinSet∗

C(ei) ≥
1

2

∑
ei∈MinSet∗

MinCost =
k

2
×MinCost.

(5)

For MinCost, there is:

MinCost =
1

2

∑
ei∈MinSet

∑
ej∈MinSet

dij . (6)

Let Cev gets the minimum total communication distance MinCost. According to the
triangular inequality, there is:
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∑
ei∈MinSet

∑
ej∈MinSet

dij ≤
∑

ei∈MinSet

∑
ej∈MinSet

(div + dvj)

=
∑

ei∈MinSet

∑
ej∈MinSet

div +
∑

ei∈MinSet

∑
ej∈MinSet

dvj

=
∑

ej∈MinSet

( ∑
ei∈MinSet

dvi

)
+

∑
ei∈MinSet

 ∑
ej∈MinSet

djv


= k ×

( ∑
ei∈MinSet

div

)
+ k ×

 ∑
ej∈MinSet

djv


= k ×MinCost+ k ×MinCost. (7)

Therefore, for MinCost, there is:

1

2
× 2k ×MinCost = k ×MinCost. (8)

According to equations (5), (6), (7), and (8), the approximate factor of our solution
MinSet is calculated as:

σ =
MinCost

MinCost∗
≤ k ×MinCost

k
2 ×MinCost

= 2. (9)

Therefore, the approximate algorithm for the optimal executor allocation problem is
a 2-approximate algorithm.

4.3. Greedy Algorithm

When the triangular inequality cannot be guaranteed in a data center, such as the het-
erogeneous network of nodes, we propose a greedy algorithm for the optimal executor
allocation problem.

Algorithm 2 uses the distance threshold to select the executors. To minimize the to-
tal communication distance, firstly, the algorithm calculates the maximum and minimum
distance between executors of E, and assigns the threshold to the minimum distance. Sec-
ondly, it finds all executor pairs in E whose network distance is equal to threshold, and
puts them in E

′
. Thirdly, the algorithm expands the executor set E

′
by searching executor

ev ∈ U that satisfies the distance between ev and any executor of E
′

is not greater than
threshold. This process is repeated until ev does not exist or the number of executors of
E

′
equals k. Finally, if the number of executors of E

′
equals k, return E

′
; Otherwise,

increases threshold and cycles the above steps.
Because k ≤ m, as long as the threshold is set reasonably, it can always return an

executor set of size k. The time complexity of Algorithm 2 is O(k ×m3), where k is the
number of executors required.

The correctness of Algorithm 2 is proved as follows:
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Algorithm 2: Greedy Algorithm
Input:

The set of executors allowed to start: E;
The network distance matrix: D;
The number of executors required: k;

Output:
The executors selected to start.

1 begin
2 calculate the maximum and minimum distance between executors of E: Max(D) and Min(D);
3 Threshold = Min(D);
4 while Threshold ≤ Max(D); do
5 initialize U = E; E

′
= ∅;

6 repeat
7 find executor pair eu, ev ∈ E, such that duv == Threshold;
8 E

′
= E

′ ∪ {eu, ev};
9 U = U − {eu, ev};

10 until eu, ev does not exist;
11 repeat
12 find ev ∈ U such that for each eu ∈ E

′
: duv ≤ Threshold;

13 E
′
= E

′ ∪ ev ;
14 U = U − ev ;
15 until ev does not exist or |E′ | = k;
16 if |E′ | = k then
17 go to 21;
18 end
19 else
20 Threshold++;
21 end
22 end
23 return E

′
.

24 end

Proof. Algorithm 2 returns an executor set E
′

with a Threshold. This means that no
more executor set can be found so that the size is at least k and the threshold is less than
Threshold. Assume that the executor set E∗ has a Threshold∗ such that

∑
u,v∈E∗ duv <∑

u,v∈E′ duv and Threshold∗ < Threshold. For the executor set E
′
, it starts from the

minimum distance and gradually expands the executor set according to the selected ex-
ecutors. Because Min(D) < Threshold∗ < Threshold, when Threshold is Min(D),
the set cannot be expanded to a value size of k, Algorithm 2 will continue to increase the
threshold and expand the executor set; when the threshold is Threshold∗, the executor
set will be expanded to a size equal to k, and exit. At this time Threshold = Threshold∗,
which contradicts the assumption.

5. Experimental Evaluation

In this section, we evaluate the performance of our proposed algorithms. The executor
allocation strategies: approximate algorithm and greedy algorithm are implemented by
modifying the function scheduleExecutorsOnWorkers of Spark-3.0.1 source codes. Hence
the system can use our achievement when allocating the executors on idle nodes.
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5.1. Experiment Setup

The experiments are carried out in a data center that contains 9 servers organized by
3 racks. These racks contain 2, 3, and 4 servers respectively, and each server has one
Intel(R) Xeon(R) CPU E5-2678, 64GB RAM and 512GB Disk. The KVM virtualization
technology is used to build medium-sized virtual machines, every VM is equipped with 4
virtual cores, 8GB RAM and 64GB disk space.

For software configuration, we use Java JDK-1.8, Apache Hadoop-2.7.3 and Apache
Spark-3.0.1, and the deployment mode is YARN. Unless otherwise stated, all configura-
tions are set by default. In particular, the block size of HDFS is set to 128MB and the
replication factor is 3.

For the purpose of evaluating the performance, as shown in Table 3, two micro-
benchmarks (join and sort) and two macro-benchmarks (pageRank and LDA (Latent
Dirichlet Allocation)) are chosen for testing. These benchmarks are characterized by dis-
tinct workload types and representative in big data processing.

Table 3. Benchmark and workload type

Benchmark Workload type
Sort Map and Reduce-Input Heavy Job
Join Reduce-Input Heavy Job

PageRank Iterative Application
LDA Iterative Application

We first compare the performance of approximate algorithm and greedy algorithm
with spreadOut and noSpreadOut [3] provided by Spark, and then compare them with
other recent executor allocation methods: iSpark [33] and Warm-up Manager [20]. iSpark
aims to timely scale up or scale down the number of executors in order to fully utilize
the allocated resources, and Warm-up Manager aims to reduce the initialization overhead
and to enable latency-sensitive applications to apply dynamic strategies. For fairness, the
following performance indicators are used:

Job execution time: the time from the start to the end of a job. Because the executor
allocation can also affect the data locality in the map stage, thereby influencing the ex-
ecution time of the job. Therefore, this indicator can comprehensively reflect the overall
performance of relevant algorithms.

Reduce stage execution time: the time from the reduce task obtains intermediate data
to the end of the task. Since there is a large amount of data communication in the reduce
stage, the impact of different executor allocation algorithms on job performance can be
directly observed through the execution time of the stage.

5.2. Performance

Satisfy the triangular inequality. We first deploy the Spark cluster on the data center
with 18 nodes (each server starts 2 VMs). To provide the homogeneous network of nodes,



Optimizing Data Locality by Executor Allocation in Spark Computing Environment⋆ ⋆ ⋆ 503

the bandwidth inside and outside the racks is set 10Gbps, so that the network distance
matrix of executors satisfies the triangular inequality. Then we estimate the performance
of approximate algorithm.

(1) Micro-benchmark
Sort is a popular application with the function of making data objects in order. The

experiment uses 30GB data set of the Wikipedia Corpus [6]. This application contains a
job with two stages: map stage and reduce stage, each stage has 240 tasks. To evaluate
the performance under different numbers of executors, the number of executors required
is set to 30, 40, and 50 respectively in the procedure.

Fig. 4(a) shows the performance comparison of the three executor allocation meth-
ods (spreadOut, noSpreadOut and approximate algorithm). It illustrates that approximate
algorithm has a lower job execution time than other two methods. Meanwhile, as the
number of executors increases, the job execution time is shorter due to the increase in the
parallelism of tasks.

We further observe the performance comparison in the reduce stage, as shown in Fig.
4(b). In this stage, the reducer takes a lot of time to obtain the intermediate data from
previous tasks. Since the reduce stage is considered in our optimization of data locality
through executor allocation, it can be seen that approximate algorithm has a obvious
reduction in the execution time. In particular, when the number of executors required
is 40, comparing with spreadOut and noSpreadOut, approximate algorithm reduces the
execution time by 37.1% and 28.2% respectively.
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Fig. 4. Performance comparison under Sort.

Furthermore, Fig 5 displays the empirical CDF of these reduce tasks when the number
of executors required is 40. We can see that the execution time of most tasks is between
100 and 200 seconds under approximate algorithm, which is better than the performance
under spreadOut and noSpreadOut. Specifically, the average execution time of reduce
tasks for spreadOut, noSpreadOut, and approximate algorithm is 229s, 200s, and 144s,
respectively.

To explore the reasons for performance improvement, we analyze the data locality
of reduce tasks, which is divided into three levels: local access data, cross-node traffic,
and cross-rack traffic. Table 4 shows the network traffic of reduce tasks during the stage
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Fig. 5. The empirical CDF of reduce tasks.

execution. In general, the locality level of approximate algorithm is much better than
spreadOut and noSpreadOut, with more local access data and less cross-node/rack traffic.
This is because approximate algorithm starts executors on the nodes close to each other,
providing reduce tasks with the possibility of better locality in task scheduling. In contrast,
spreadOut and noSpreadOut do not fully consider the data locality factor, leading to the
reduce tasks to traverse longer network distances to obtain data, so the overhead of data
communication is relatively high.

Table 4. Network Traffic of Reduce Tasks

Locality Level spreadOut noSpreadOut approximate algorithm
Local access data 23.5% 39.4% 57.7%
Cross-node traffic 45.9% 42.5% 33.2%
Cross-rack traffic 30.6% 18.1% 9.1%

Join is a widely used operation in data query. The application utilizes the left-outer-
join that connects a large data set to a small data set (i.e., 2GB×512MB) from Ratings
and classification data [4]. The same as before, we set the number of executors required
to 30, 40, and 50 respectively in the procedure.

Fig. 6 shows the performance comparison of relevant methods. Fig. 6(a) explains
that when the number of executors required is 50, by comparison with spreadOut and
noSpreadOut, approximate algorithm reduces the job execution time by 66.0% and 27.5%
separately. It observes that compared with the performance under the sort benchmark, the
performance of approximate algorithm under the join benchmark is more significant. This
is because join generates a larger amount of intermediate data, which leads to much more
data communication for the reduce tasks. It in turn makes the effect of optimizing the data
locality by executor allocation more prominent. Fig. 6(b) further illustrates that approxi-
mate algorithm outperforms others. In particular, when the required number of executors
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Fig. 6. Performance comparison under Join.

is 30, compared with spreadOut and noSpreadOut, approximate algorithm decreases the
reduce stage execution time by 43.2% and 25.2%, respectively.

(2) Macro-benchmark
To evaluate the performance under more complex applications, we select two popular

machine learning algorithms pageRank and LDA from the Spark examples for testing.
Since these two applications contain one or more jobs, in which every job usually contains
a lot of stages, the application execution time is used for evaluation.
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Fig. 7. Performance comparison under macro-benchmark.

PageRank is a widely recognized iterative algorithm for ranking web pages according
to their importance. The experiment uses 10GB data set of the WT10g [7], and set the
parameter numIterations to 10 in the procedure. The application execution consists of 1
job and 13 stages.

From the experimental result of Fig. 7(a), it can be seen that compared with spreadOut
and noSpreadOut, approximate algorithm has the shortest application execution time. In
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particular, when the number of executors required is 40, approximate algorithm reduces
the application time by 41.2% and 24.6% respectively.

LDA is a document generation model in natural language processing, which identi-
fies the hidden subjects in a large-scale documents. The experiment runs on 20GB arXiv
Bulk Data data set [5] and the procedure sets the parameter maxIterations to 20. This
application is concretely executed as 26 jobs and 90 stages totally.

The experimental results illustrate that approximate algorithm has a greater perfor-
mance advantage than other two methods, as shown in Fig. 7(b). In particular, when the
number of executors required is 50, approximate algorithm decreases the application time
by 72.7% and 43.2% compared with spreadOut and noSpreadOut, respectively. As we can
see for the application with many jobs and stages, such as pageRank and LDA, optimizing
the data locality by executor allocation in multiple reduce stages can bring a substantial
performance benefit.

(3) Performance comparison with other methods
We also compare the performance of approximate algorithm with other two recent

executor allocation methods: iSpark and Warm-up Manager. Fig. 8(a) shows the experi-
mental results under the micro-benchmark: sort and join when the number of executors
required is set to 50. We can see that approximate algorithm decreases more job execu-
tion time than iSpark and Warm-up Manager. In particular, under the join benchmark, the
execution time of approximate algorithm is reduced by 26.7% and 12.1%, respectively.
Meanwhile, Fig. 8(b) also explains that approximate algorithm has better performance
than iSpark and Warm-up Manager, and iSpark outperforms Warm-up Manager under
the macro-benchmark: LDA and pageRank which are iterative applications.
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Fig. 8. Performance comparison with other methods.

Not satisfy the triangular inequality. We replace the bandwidth 10Gbps of half inside
and outside racks with 20Gbps based on the original data center, so that the network
distance matrix of executors does not satisfy the triangular inequality.

(1) Micro-benchmark
Fig. 9 shows the performance comparison of spreadOut, noSpreadOut and greedy

algorithm under the sort benchmark. It can be seen that greedy algorithm has a shorter
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job running time than other methods. In particular, when the number of executors required
is 30, greedy algorithm shortens the job execution time by 25.1% and 20.0% compared
with spreadOut and noSpreadOut, respectively. Fig. 9(b) shows that when the number of
executors required is 50, the execution time of reduce stage reduced by greedy algorithm
is 59.7% and 46.3% respectively.
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Fig. 9. Performance comparison under Sort.

Fig. 10 depicts the performance results under the join benchmark. Fig. 10(a) shows
that when the number of executors required is 40, greedy algorithm decreases the job
running time by 61.4% and 37.9% over spreadOut and noSpreadOut, respectively. Fig.
10(b) further verifies the performance advantage of greedy algorithm: when the number
of executors required is 50, it decreases the reduce stage execution time by 70.4% and
47.9%, respectively.
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Fig. 10. Performance comparison under Join.

(2) Macro-benchmark
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The performance comparison under pageRank is exhibited in Fig. 11(a). It can be
seen that compared with spreadOut and noSpreadOut, greedy algorithm has the shortest
application execution time. In particular, when the number of executors required is 30,
greedy algorithm decreases the application time by 45.4% and 34.3% compared with
spreadOut and noSpreadOut, respectively.

Fig. 11(b) shows the experimental results under the LDA benchmark. It illustrates that
greedy algorithm can run the LDA application faster than spreadOut and noSpreadOut.
In particular, when the number of executors required is 50, greedy algorithm decreases
the application execution time by 70.4% and 47.9%, respectively.
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Fig. 11. Performance comparison under macro-benchmark.

(3) Performance comparison with other methods
When the number of executors required is set to 50, the performance comparison of

greedy algorithm with iSpark and Warm-up Manager is shown in Fig. 12. The experi-
mental results illustrate that under the micro-benchmark and macro-benchmark, greedy
algorithm always has the shortest job execution time. In particular, under the pageRank
benchmark, greedy algorithm reduces the execution time by 36.2% and 52.8% compared
with iSpark and Warm-up Manager, respectively.

5.3. Time Overhead of Algorithm

During the above experiment process, we recorded the average time required to start a
set of executors for an application, the results are shown in Table 5. Comparing with
spreadOut and noSpreadOut, because approximate algorithm and greedy algorithm needs
additional computation in order to select a subset from the executors that are allowed to
start on each node, they will take more time to launch the executors. This has a negative
impact on the performance of our proposed algorithms, especially when the number of
executors required is large. In addition, the time complexity of approximate algorithm
and greedy algorithm are O(m2) and O(k ×m3) respectively, where k is the number of
executors required, and m is the number of executors allowed to start, so greed algorithm
is slower than approximate algorithm for the executor start time. However, in contrast
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Fig. 12. Performance comparison with other methods.

with the application/job execution time, the time overhead of approximate algorithm and
greedy algorithm only takes up only a small part, so it can be ignored.

Table 5. Average Executor Start Time

Number of Executors 30 40 50
spreadOut 43.7ms 49.4ms 54.6ms

noSpreadOut 27.2ms 29.5ms 32.8ms
approximate algorithm 1.25s 2.67s 3.38s

greedy algorithm 2.36s 3.73s 4.75s

6. Conclusion

This paper has attempted to optimize the data locality by executor allocation for the reduce
stage in Spark computing environment. We first calculate the distance matrix of executors
and formulate the optimal executor allocation problem to minimize the total communi-
cation distance. This problem is proved to be an NP-Hard problem. Then, for the cases
where the network distance between executors satisfies and does not satisfy the triangular
inequality, an approximate algorithm and a greedy algorithm are proposed respectively.
Finally, we conduct extensive experiments and the results show that our algorithms can
optimize the data locality for reduce tasks and improve the application/job performance.
In general, for different workload types, the proposed algorithms can bring more perfor-
mance gain to the reduce-input heavy jobs and iterative applications than the map and
reduce-input heavy jobs.
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