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Abstract. The conceptual design of information systems is mandatory in several
application domains. The advent of the Internet of Things (IoT) technologies pushes
conceptual design tools and methodologies to consider the complexity of IoT data,
architectures, and communication networks. In agroecology applications, the us-
age of IoT is quite promising, but it raises several methodological and technical
issues. These issues are related to the complexity and heterogeneity of data (social,
economic, environmental, and agricultural) needed by agroecology practices. Moti-
vated by the lack of a conceptual model for IoT data, in this work, we present a UML
profile taking into account different kinds of data (e.g., sensors, stream, or transac-
tional) and non-functional Requirements. We show how the UML profile integrates
with classical UML diagrams to support the design of complex systems. Moreover,
We prove the feasibility of our conceptual framework through a theoretical quality
assessment and its implementation in the agroecology case study concerning the
monitoring of autonomous agricultural robots.
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1. Introduction

In recent years, the Internet of Things (IoT) [29] has received much attention in multiple
application domains, such as smart buildings and living, transport and mobility, health-
care, environment, energy, manufacturing, and agriculture and agroecology [4]. IoT repre-
sents a set of physical devices connected to the Internet that can generate, compute, store,
and send data in real-time through different media (e.g., ZigBee, Wi-Fi, LoRaWAN) [1].
Moreover, the volume, heterogeneity and speed at which IoT can generate data classify
them as a source of Big Data [29].
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Technologies used for the implementation of IoT architectures have reached maturity.
However, to the best of our knowledge, data-modeling methods for such architectures
have not been well researched so far [29]. The challenge in modeling IoT data is caused
by the fact that IoT data are: (1) distributed and communicated over complex network
architectures (such as edge-fog-cloud) and (2) generated by a complex system. Such a
system is typically composed of relational databases, NoSQL servers, and data stream
management systems (DSMSs) besides the IoT. These components are implemented with
various technologies supporting different programming languages and run on heteroge-
neous hardware (e.g., IoT devices, personal computers, and cloud servers). We refer to
data generated in such a system as polyglot data.

IoT data are not only persistent but also transient. IoT data arrive into a system in the
form of streams and are processed in real-time by streaming analytics applications [46]
and Complex Event Processing (CEP) applications [53]. These applications monitor and
discover trends and detect anomalies by means of continuous queries. Next, these data
are typically stored into repositories such as data warehouses [52], data lakes [44] or
lakehouses [54] to analyze them offline through OLAP (On-Line Analytical Processing)
applications. Indeed, IoT real-time data are often combined with offline data to provide
more advanced analysis [33].

Moreover, IoT applications are characterized by a geographically distributed deploy-
ment of devices and a network communication continuum over different layers (from the
edge to the cloud) [38]. Therefore, Quality of Service features (QoS) plays a significant
role in IoT data architectures, especially in the agricultural field of application, which
is usually characterized by low quality communication networks. QoS can reflect some
functional requirements, such as latency, which leads to a particular placement of data
and computation over the different layers. For example, in the context of hard real-time
applications, data and computation can be deployed at the edge level to improve perfor-
mance.

Conceptual design of Information Systems (IS) has several advantages [43]. First, it
allows to keep away implementation details and allows decision-makers and IS to ex-
clusively focus application content and functionalities. Second, it provides a formal and
non-ambiguous support used by decision-makers to validate their requirements. Third,
it streamlines the implementation phase providing some technical guidelines (and some-
times also an automatic implementation). Although the conceptual design of data for IoT
applications is crucial for their successful implementations, this topic has not been inten-
sively researched yet [41].

Indeed, existing conceptual models do not allow to represent different data types is-
sued from IoT in the same design framework. In addition, they do not support any QoS at
the conceptual level. Therefore, the software engineering process for IoT-based applica-
tions is based on different conceptual models for each data type (stream, data warehouse,
etc.), and QoS are taken into account at the implementation time. This implies that the
merging phase of these different implementations is difficult or sometimes unfeasible.

This lack of design methodologies for IoT applications is evident in several domains,
such as urban vehicles management (i.e., smart scheduling of traffic), health (i.e., real-
time monitoring of physical and biological behavior of patients), logistic (i.e., smart af-
fectation of human resources), tourism (i.e., enhance and optimize paths and stay) and
also agroecology, which is the focus of this paper.
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Nowadays, every organization, enterprise, and country must recognize the importance
of new agricultural paradigms considering environmental, animal, and human health for
sustainable development. In this line, agroecology is the main pattern to achieve this
mandatory goal of humanity. The Food and Agriculture Organization of the United Na-
tions defines agroecology as ”An integrated approach that simultaneously applies eco-
logical and social concepts and principles to the design and management of food and
agricultural systems. It seeks to optimize the interactions between plants, animals, hu-
mans, and the environment while taking into consideration the social aspects that need
to be addressed for a sustainable and fair food system” 7. Agroecology evolves precision
agriculture concepts, which mainly analyze crop-related data at detailed granularities, to
consider more complex and global agronomic, social, economic, and environmental con-
texts [17]. Therefore, agroecological systems need a comprehensive approach, where ver-
satile data types can be integrated and analyzed in multiple spatio-temporal dimensions.

Motivated by this lack of comprehensive solutions and by the formal support for data
conceptual models provided by UML profiles, in [7] we proposed a UML profile for the
data-centric design of agroecology IoT applications that considers some QoS network
features, relevant at the conceptual level for end-users. Our UML profile, which is based
on class diagrams, allows an easy understanding and a formal representation of these
different types of data within a unique framework, which allows at the same time a co-
herent and global representation of all relationships between data. It is a crucial factor for
the data-centric design of IoT applications. The different types of data have interactions
among them in terms of data associations and network communications.

In this paper, we extend [7] in the following ways:

1. We present a design and implementation methodology centered on our UML profile.
The main idea is to use the UML profile to define all data and non-functional require-
ments at a conceptual level in the same UML class diagram. Then, use these classes to
define dynamic aspects of the application by means of other standard UML diagrams.
In this way, our UML profile can be transparently adopted in all existing UML based
software engineering development methodologies. To validate this feature, we show
how classical UML-based software engineering design methodologies (such as [31])
can be used using our Class diagram UML profile. In particular, we leverage our case
study with autonomous agricultural robots as an example. Besides, we detail how the
UML Use Case and Activity diagrams can be used to derive and further detail the
implementation of our Class diagram.

2. We provide a theoretical assessment of our UML profile quality, evaluating five quan-
titative metrics: Reusability, Understandability, Well-structuredness, Functionality
and Extendibility according to [6,28].

3. We detail the technical implementation of each kind of data supported by our UML
profile.

The paper is organized in the following way: Section 2 presents a real-world applica-
tion in agroecology using IoT and autonomous robots. Section 3 presents our UML profile
[7]. Section 4.1 presents the theoretical quality assessment. Section 5 shows the details of
the implementation of the different supported data types (and underlying systems) using

7 https://www.fao.org/3/i9037en/i9037en.pdf



462 Sandro Bimonte et al.

our case study. Related work is shown in Section 6. Finally, Section 7 concludes the paper
and proposes future work.

2. Motivation: Agricultural robots monitoring and scheduling case
study

This section extends [7], presenting the motivation of our work by means of a case study,
which will be also used in this paper to describe our proposal. In particular, the case study
outlines the set of functional and non-functional requirements that must be supported.

The case study is based on the French I-SITE CAP2025 Superob project. The overall
goal of the project is to develop and deploy an architecture for scheduling and monitor-
ing field works of autonomous mobile robots used in agroecology practices. Autonomous
agricultural robots represent an innovative solution for agroecology since they allow pre-
cise technical tasks and reduce environmental impacts.

With the advent of IoT, smart farming becomes a reality in the context of the agri-
culture domain. Farms are more frequently equipped with physical sensors [4] to acquire
meteorological data such as rain, temperature, or soil moisture from the fields. Further-
more, autonomous robots are applied to handle technical operations, such as plowing
[49].

As a business-like example of our Superob project, let us consider a scenario where
a farmer needs to supervise the activities of some robots in a field. To this end, real-time
data monitoring is necessary. Therefore, such a system must handle different types of data.
In particular, we distinguish three basic data categories: stream, historical, and standard.

In this scenario, Real-time streaming data include, among others:

– Trajectories of robots, necessary to verify if a robot follows a scheduled trajectory,
track the work in progress, and reschedule future tasks when necessary.

– Meteorological data (e.g., rain and wind data), necessary to check whether a given
robot task can be done, e.g., some tasks such as spraying cannot be run when the
wind is too strong. These data can be provided by some external weather services
or by meteorological stations installed in the field. The choice depends on the needs
and economic possibilities of the farmer. Using sensors provides more precise spatial
scale data, but it is more expensive than free or commercial external meteorological
services. In any case, these two different information sources must provide a minimal
subset of equal attributes, such as air temperature and humidity.

– Odometry robot data (i.e., mechanical robot data), necessary to determine whether
robots are experiencing any mechanical problems.

– Scheduling data (i.e., demands from farmers), necessary to define the organization of
robots’ tasks.

Historical data are crucial for decision-making. Analytical queries analyze such data.
For example, historical data corresponding to the same robot in the same field and its
technical operations allow comparing the current work to the past ones, to decide if the
robot has abnormal behavior.

Finally, standard data are needed to complement real-time and historical data. Exam-
ples of standard data include: lists of plots (with their geometries and basic data), as well
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as robots characteristics. These data represent the contextual information associated with
other data and play the role of dictionary data.

Decision-support applications usually provide computations over data to calculate
new indicators. In our scenario, we compute continuous queries on real-time data to cre-
ate meteorological, robots-fault, and delay alerts. These alerts must also be stored since,
as described above, they are useful for the decision-making process.

Data type requirement: The aforementioned scenario allows us to state that agroe-
cology IoT applications must cope with: (1) complex spatio-temporal data (such as robots
trajectory), (2) stream data (such as weather information and robots data generated in
real-time data), and (3) historical data.

Non-functional requirements refer to systems and constraints, such as time compu-
tation or quality. In our context, since decision-makers must supervise their agricultural
practices in real-time, they must agree to a set of non-functional requirements that must
be supported by the system. In some cases, such as the computation time for robot faults,
they must be involved in the definition step of these constraints. Therefore, we consider
that taking into account non-functional requirements about data at the design step is a
mandatory issue for agroecology IoT-based applications.

Moreover, the discussed data are deployed over the network architecture presented
in Figure 1, which is typical for rural agricultural areas. As most farms are located in
rural areas, the cellular network coverage might not be enough to ensure the QoS, which
can be considered as network non-functional requirements, required by the application.
Also, the use of cellular networks induces an additional cost for every node (sensors
and robots) associated with the network. Consequently, they communicate and send their
data through a standard local Wi-Fi connection in this architecture. They could also use
other wireless technologies like Zigbee or LoRaWAN. Data from robots and sensors are
thus sent to a workstation deployed on the farm. The workstation has a standard internet
connection, through which data are sent to the cloud containing complex decision-making
applications.

Fig. 1. Network communication example in a field
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The network must ensure a particular QoS to meet the requirements of decision-
makers. For example, Internet communication (e.g., an ADSL network) available in the
farm must be fast enough to provide real-time data exchange with a cloud (e.g., online
adjustment of scheduled tasks). The control of faulty robots using odometry data requires
very low latency for real-time communications between a farmer and a robot. This latency
cannot be satisfied on the end-to-end link with cloud servers, and thus it should be locally
established. Hence, the local wireless network (Wi-Fi network) should be designed to
answer these performance needs.

Non-functional requirements requirement: For the previously mentioned reason,
we argue that network performance indicators as well as data non-functional require-
ments must be integrated into the design of data-centric agroecology IoT applications.

Depending on the network capacities of an Internet connection and a local Wi-Fi
network, the distribution, storage, and processing of data would be modeled differently.
For example, tasks requiring a high data rate and low latency (like remote control of faulty
robots) should be executed on the farm and not on the cloud in case that the Internet
connection does not support such a QoS.

Finally, let us note that data produced and consumed by the architecture components
are strongly related to each other, which must be reflected in a data model. For example,
a robot during its work must be associated with the plot where it is working, and it needs
access to meteorological sensors’ data of the plot.

Network communication also plays a crucial role in disseminating the information
obtained through data analysis once they have been analyzed, either on a farm workstation
or in the cloud. The information must reach its consumers, i.e., decision-makers of various
roles who may be geographically distributed. To this end, visualization tools must be
able to present the information asynchronously from multiple sources, producing data at
different rates. Furthermore, some of the information must be communicated in real-time,
e.g., rescheduling a robot that lost its trajectory or is malfunctioning.

From the above described example, we can conclude that the different actors involved
in the design and development of agroecology applications are:

– Agroecology stakeholders, who define the application’s requirements.
– Information systems experts, who are in charge of the implementation of the different

systems to store and provide standard, historical and stream data.
– IoT experts, who provide the implementation of different IoT devices (e.g., sensors,

robots, etc.).
– Network experts, who set up and configure the communication networks.

High quality model requirement: Since different actors are involved in the design
step, the formalism used must be effective and grant important quality issues, such as
understandability and reusability.

The usage of classical design and implementation methodologies is depicted in Fig-
ure 2. For each kind of data, a conceptual design step, and then its implementation, are
separately applied. Then, the communication network configuration is provided. Finally,
these different systems are coupled together to finalize the application deployment. Usu-
ally, this merge step raises several problems due to:

– At design step: Requirements are not well and exhaustively defined. Indeed, agroe-
cology stakeholders must exchange separately with other actors. Therefore, it does
not prevent them from having a global and unique vision of the defined requirements.
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Fig. 2. Existing methodologies

– At implementation step: the risks related to (i) Possible incompatibility of the different
systems implementation and the communication network communication constraints,
and (ii) Manually generation of code representing associations among the different
data, which is usually the source of technical and conceptual translation errors.

Integrated design and implementation requirement: The design step must be sup-
ported by a unique formal framework supporting different kinds of data and non-functional
requirements and that makes transparent all implementation issues related to the usage of
different technologies. Moreover, this formal framework could be used with other existing
design methodologies to represent the dynamic aspects of the system.

Therefore, there is the need for a unique data-centric conceptual model that allows
all involved actors to exchange information about the requirements of the agroecology
applications supporting different kinds of data and network communication issues.

An example of the implemented web interface application is shown in Figure 3. The
details of the implementation are shown in Section 5. Figure 3 clearly shows the different
kinds of data involved in the application:

– meteorological data, which represent air humidity and temperature. These data are
issued from the meteorological station.

– odometry data, which represent the robot speed. It is represented with a line chart.
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– real time trajectory data. These data represent the real time position of the robot with
a red line. The predefined trajectory is represented with a yellow line. A bullet point
can be used to also visualize other odometry data in real time.

– background data. The visualized map is issued from google map or any other map
server that could be used.

– video data collected by drone. This video is issued from a drone used in the experi-
ment we have done.

3. UML Profile

In this section, which extends [7] with two new subsections,we present our UML profile
for data-centric agroecology IoT applications. In Section 3.1, we present an overview of
our UML profile, and then we detail the data and associations’ representations.

3.1. Overview

Our UML profile provides a graphical and formal notation for functional requirements (in
terms of data). A UML profile provides a generic extension mechanism for customizing
UML models for particular domains and platforms. It is defined using stereotypes, tag
definitions, and constraints applied to specific model elements, like Classes, Attributes,
or Operations. We opt for an extension of UML elements of class diagrams since they are
the de-facto standard to represent data.

Our UML profile allows designing all different kinds of data, and their associations,
with the same UML Class diagram. Moreover, some network communication features can
also be added inside this Class diagram. In this way, the design step of the agroecology ap-
plication involves all the involved actors (agroecology stakeholders, information systems,
IoT and network experts) at the same time. They share the same graphical formalism to
exchange among them, which allows to avoid the merge step problems described in the
Section 2. Moreover, the usage of Class diagrams allows using our UML profile with other
tools provided by UML for the definition of functional and non-functional requirements,
such as Use Case, Activity and Sequence diagrams (as shown in Section 4.2).

The design and implementation methodology for IoT applications based on our UML
profile is depicted in Figure 4. The first step consists in the design of a conceptual model
for all data involved in the applications and the associated QoS. This step concerns all the
actors involved in the system (i.e. decision-makers - agroecology experts in our scenario,
IoT, information system and network experts). This step can be iterative, and can include
other UML diagrams to represent dynamic aspects of the application. Once an agreement
about the conceptual model is found, the real implementation can be provided in different
systems (sensors, database systems, etc.) for each data (by IoT and information system
experts). Finally, the network communication is configured by network experts. In our ap-
proach, moving from the conceptual model to the implementation steps is feasible and do
not require the intervention of decision-makers, since all the involved actors have reached
an agreement about all data, IoT devices, and network configurations that will be used by
the applications using the UML diagrams. This avoids the merge problems described in
the previous section.
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Fig. 3. Application user interface

Figure 5 shows the meta-model of our UML profile. In the next of this Section, we
detail each element of the meta-model8.

8 A video describing the usage of the UML profile with Eclipse can be found here www.youtube.com/
watch?v=uTRewVj_eDs

www.youtube.com/watch?v=uTRewVj_eDs
www.youtube.com/watch?v=uTRewVj_eDs
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Fig. 4. Our approach

Fig. 5. The meta-model of our UML profile

3.2. Data

Data are classified into two main groups, namely, Persistent and Volatile, which
are Class stereotypes. The Persistent stereotype is specialized in Dictionary and
Repository.

Dictionary represents transactional data (i.e., standard data) that can be deleted,
updated, and inserted in an On-Line Transaction Processing (OLTP) system. Dictionary



UML Profile for Agro-ecology Applications’ Data 469

can include some attributes stereotyped as Changing. This stereotype means that at-
tribute values can be updated, contrary to other attributes whose values do not change.
The following associated Object Constraint Language (OCL) rule states that the attribute
must not be changed (isReadOnly=true). Moreover, the Dictionary class must
provide some attributes that uniquely identify its instances. This constraint is represented
using the following OCL on such attributes: isUnique=true.

An example is shown in Figure 6, where the Dictionary stereotype is applied to
Robot. This class presents (1) some standard attributes (e.g., Name, SpeedMax, Weight),
and (2) some Changing attributes, like Available, which indicates when a robot is avail-
able for a particular task or is booked for another task within a given time slot.

Fig. 6. Examples of Dictionary, Sensor, Repository, and Store association examples

Repository represents read-only historical data with the following characteristics:

– Attributes of the Repository class cannot be updated; only new values can be
inserted. This constraint has been defined with OCL in the following way: self.
ownedAttribute->select(m|m.isReadOnly=false)->size()=0.

– An instance of the Repository class cannot be deleted; it can only be inserted.

Moreover, Repository includes one attribute with stereotype IdRepository
that uniquely identifies a datum in the collection of historical data (OCL: ownedAttribute
->select(m|m.oclIsTypeOf(IdRepository))->size()=1). Finally, to model
the temporality of the historical data represented by Repository, a Timestamp stereo-
type attribute is added, with an OCL constraint that forces it to have the TimeInstant
type (OCL: type.name=’TimeInstant’). Thus, Repository data represents his-
torical data used for analytical purposes, such as OLAP or Machine Learning applications.
An example is shown in Figure 6, where OdometryIntraH represents odometry historical
data of robots.

Volatile represents data producers. These data are not permanently stored, and are
characterized by a frequency generation represented by an operation with the Generation
stereotype. Generation has two tagged values:

– Period that represents a temporal generation frequency, e.g., every second. In case
of data generated on-demand, Period also accepts the onDemand value.

– TemporalUnit is the temporal granularity of Period. It takes values from enu-
meration TimeGranularitiy, e.g., second, minute, hour. This enumeration can
be easily extended with other temporal types.
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Moreover, Volatile also has one Timestamp attribute representing the time of the
data generation.

The Volatile class is specialized into another class, called Sensor, which repre-
sents volatile data that are generated by physical sensors. Sensor extends Volatile
with the Send operation, which represents the logic used for sending the data. It has the
same tagged values of Generation (Period, TemporalUnit), and the following
additional ones:

– Window represents a temporal window used to collect and process data before being
aggregated and sent.

– Aggregation represents the aggregation function used on the collected data in the
window before being sent. It takes values from enumeration Aggregations, e.g.,
Sum, Avg, Count (other aggregation functions can extend this enumeration).

It is crucial to specify these particular data sources at the design time since sensors
must send data through a communication network, which can have substantial impacts on
the system implementation.

An example of Volatile data are represented by the instances of class Demand
-illustrated in Figure 7-B. This class model the activity requests of working tasks per-
formed by a farmer. The instances of this class are generated on-demand. Consequently,
tagged value Period=onDemand.

An example of sensor data is shown in Figure 7-A. It represents meteo data acquired
by a sensor. Data (wind, rain, temperature, etc.) are collected each minute (Period=1
and TemporalUnit=minute). Then, averages in a moving 10-minutes window are
calculated.

Fig. 7. Example instances of Sensor (a), and Volatile (b)

Commonly, a continuous query is executed over a data stream.
A continuous query is a query, which is re-computed continuously. For example, the

query “Each minute, give me the average temperature of the last 10 minutes” will return
different results depending on the current time.

In our UML profile, the stereotype ContinuousQuery represents a continuous
query. It extends the Volatile stereotype with:

– ComputationOverhead tagged value, which represents the maximum time to
compute the query.
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– Input directed association, which represents the input data used for the query.
Input has two tagged values: maxLatency and maxDataLoss. maxLatency
represents the maximum tolerated time for input data to be transmitted into the sys-
tem that implements ContinuousQuery. maxDataLoss represents the percent-
age of data that can be lost. These QoS constraints are issued from the application
logic and come from the fact that data are generated in different points of a network,
as described in the IoT architecture. Other network performance constraints exist;
yet, they correspond to non-functional requirements (NFR), but not to the applica-
tion logic. For instance, bandwidth is associated with a particular implementation of
attribute data types (in terms of bytes used). Such NFR constraints should be repre-
sented at the Platform-Specific Model level following the Model-Driven Architecture,
while our UML profile would correspond to the Platform Independent Model level.

The NFR are used to guide the implementation of the system. They impact the choice
of the components of the system. For example, a low ComputationOverhead for the
DSMS component implementing the query could necessitate a distributed DSMS, or a low
maxLatency could lead to the use of a new communication network such as 5G instead
of ADSL. If the NFR are not met temporarily then the multi-representation solution can
be applicable. Multi-representation has been defined for classical data, and in particular
for Geographic Information Systems [56], as different representations and computations
of the same entity data according to different rules.

Figure 8 shows an example of ContinuousQuery. AlertDelayQuery computes in
real-time the delay of a robot according to its predefined trajectory. It takes as inputs:
Point-Time, which represents the real time position of the robot, and TrajectoryRef, which
represents the planned trajectory. The tagged value of the Input association states that
these GPS data must be received in real-time for the alert delay computation. Moreover,
AlertDelayQuery is computed each minute using the last 5 minutes of received data, and
5% of GPS data can be lost, contrary to TrajectoryRef that cannot be affected by data
loss (i.e. all data of the trajectory of reference must be present). End-users define the
configuration of AlertDelayQuery parameters.

Fig. 8. An example of stereotype ContinuousQuery
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Other kinds of queries are compatible with our approach. For example, it is possible
to provide multidimensional queries (i.e. read only on-line queries over warehoused data -
such as ”What is the average temperature per plot and month?”), or transactional queries
(i.e. update and write queries - such as ”Update the location of the sensors A”) [9].

3.3. Associations

This section describes how Volatile and Persistent data can be transparently as-
sociated to define a single coherent model.

From Figure 8, we can notice that any data can be associated with ContinousQuery
via Input association. Moreover, Volatile, Sensors, and ContinousQuery can
be associated with Repository data via the Store association. This association means
that initially volatile data are made persistent by using the Repository class. As for the
Input association, it has a maxLatency tagged value. This value represents a maxi-
mum time within which data must be stored in a repository. Since volatile data could be
sent through a communication network they cannot be stored immediately, thus we use
maxLatency value.

For example, Figure 6 shows that data collected by OdometryIntra into the robots
(odometry data collected 100 times per second, and sent every hour) are stored into
the Repository class OdometryIntraH. The Store maxLatency value is 24 hours
since these data are stored in a data warehouse refreshed every 24h.

The association between Store and Repository is a generalization, because the
Repository class must include in its structure all the attributes and associations of
classes Volatile, Sensor, and ContinuousQuery. Moreover, Repositorymust
not present methods of Volatile (OCL: ownedOperation->size()=0). There-
fore, the Store association represents a total cloning operation of the Volatile,
Sensor, and ContinuousQuery data in persistent storage.

Let us consider the example of Figure 6 again. If a persistent storage stored only the
values of the odometry attributes, such data would be incomplete. Note that OdometryIn-
tra is associated with Robot. Without the associated robot that generated these data, it
would not be possible to identify the robot that has generated such odometry data.

To conclude, this data-centric representation of all kinds of data and queries allows us
to associate all these data among them without considering if the data is classical data, or
sensor data or stream data or data resulting from computations.

Therefore, our proposal satisfies the Data types and non-functional requirements de-
scribed in Section 2.

4. Assessing proposed UML profile

In the above section, we have pointed out how our UML profile can be easily used to
represent different kinds of data and non-functional requirements, as described in section
2. Therefore, in this section, we provide some theoretical and practical evaluation to show
how the other defined requirements are supported by our proposal.
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4.1. Assessing the quality of the proposed meta-model

In this section, we provide a quantitative validation of the quality of our UML profile
following the framework proposed in [28], in order to show how our proposal satisfies
the High quality model requirement identified in Section 2. The framework proposed in
[28] allows measuring the quality of a metamodel using five metrics calculated from the
metamodel with a three step process. First, the following metrics are computed:

– ANDM: the average number of direct associations between metaclasses.
– ANM: the average number of attributes.
– ANMC: the average number of direct association between a metaclass and other kinds

(operation, property,...).
– ANR: average number of OCL constraints.
– NOH: the number of inheritance hierarchies
– ADI: the average depth of inheritance trees
– ANA: the average number of direct inheritance between metaclasses
– NAM: the number of abstract metaclasses
– NCM: the number of concrete metaclasses

Then, using the above presented metrics, some global metrics (such as modeling con-
cepts size, abstract metaclass size, intension, coupling, ...) are computed. For instance,
coupling that means the level of interdependence between the classes of a diagram, is
computed as the sum of ANDM and ANA.

Finally, five ultimate metrics (calculated using the metrics of the second step provided.

– Reusability: it measures the ability of a metamodel’s components to contribute to the
definition of different metamodels (e.g., in other application domains).

– Understandability: it represents the degree of ease to understand and to use the con-
tent of a metamodel by end-users.

– Functionality: it measures the number of concrete metaclasses which reflect the strength
of modeling ability of a metamodel.

– Well-structuredness: it represents how a meta-model is well-structured by measuring
the structure quality of its architecture by means of its metaclasses.

– Extendibility: it measures the ease to add new modeling element to a metamodel. It is
computed as 0.2 × Coupling + 0.3 × (Modeling concepts size + Abstract metaclass
size))):

Moreover, these quantitative measures enable quality comparisons against other meta-
models. Indeed, [6] evaluates and compares more than 2500 UML metamodels from the
literature using this framework ([28]). Similarly, we compare our UML profile with those
works using the percentile rank. In this way, we can assess if our metamodel is outstand-
ing, regular, or particularly bad on each quality measure.

Figure 9 shows the results of such comparisons. When compared to more than 2500
UML metamodels analyzed in [6], it is evident that:

– Our profile excels in Understandability and Well-structuredness, which are really im-
portant due to the diversity of actors involved in the design phase as described in
Section 2.
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Fig. 9. Comparison our metamodel according to the framework of [28], in the context of
all the meta-models considered in [6]

– Its Reusability and Extendibility are around the median. Therefore, it will not demand
significant efforts to add new data elements, such as multimedia data.

– Only the functionality is below average, but it is not particularly bad. A low func-
tionality usually means that the range of applications that our metamodel covers is
narrow. However, we must consider that we use highly abstracted concepts in our
profile, and thus each profile element relates to multiple implementation possibilities.

Considering the outcomes from this theoretical assessment, we infer that the quality
of our UML profile is appropriate for the design of agroecology applications.

4.2. Assessing the integrated design

In the next, we describe how our UML profile can be used in a classical software UML
based design methodology. For simplicity we exclusively focus on the class diagram rep-
resented in Figure 6. UML use case and activity diagrams are well recognized as effective
tools for collecting and formalizing requirements [32]. These diagrams are then used to
deduce Class diagrams. In our case study, one main functionality of the monitoring system
is the analysis of historical odometry data, which are collected by robots in the field. The
use case diagram showing this task is represented in Figure 10. It presents two actors, the
robot that collects the odometry data in real time, and the repository system (i.e., database
system) that stores all data collected by all robots during their work (i.e., historical odom-
etry data). Therefore, the following classes can be deduced: Robot, OdometryIntra (for
real time odometry data) and OdometryIntraH (i.e., for the Repository actor).

According to this use case, the associated activity diagram is shown in Figure 11.
From this activity diagram, it is possible to deduce the need for (i) a generation method
for OdometryIntra, (ii) a method that represents sending data over the network (from robot
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Fig. 10. Use case diagram

Fig. 11. Activity diagram

to the repository) (send()), and (iii) a store method to represent the integration of real time
odometry data in the repository (i.e. OdometryIntraH).

Sequence diagrams can be used to express time constraints. Therefore, the need for
the decision-makers to be able to analyze the last 24 hours collected odometry data could
be expressed by means of a sequence diagram. In this work, in order to keep the UML
models as simple as possible, instead of using a sequence diagram, we opt for using our
UML profile since it is possible to represent this constraint using the Store association
and its tagged value. Therefore, Store association represents the integration of real time
data into historical data and the temporal constraint. At this point, using the use case and
the activity diagrams we have easily obtained a skeleton of the three main classes and
their associations of Figure 6. Finally, discussing with the agroecology stakeholders, the
IoT, information systems and network experts can complete the class diagram to obtain
the final one depicted in Figure 6. Indeed, using this skeleton of class diagram makes it
more simple for agroecology stakeholders to define the details of each class, and therefore
the choice of the right stereotype. At the end, by means of our UML profile, agroecology
stakeholders are aware about the volatile (or not) character of data involved in the system
and the fact that data are exchanged over a communication network.

From the above described example, we can conclude that our proposal supports the
Integrated design and implementation requirement described in Section 2.

5. Implementation

This section presents the implementation in a commercial CASE tool, and how each type
of data of our agricultural case study is implemented (Section 5.2), and we detail its
corresponding IoT architecture (Section 5.3).
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5.1. CASE tool implementation

In this section, we present the implementation of our UML profile by using Papyrus,an
open-source software for UML modeling based on Eclipse. Papyrus supports the creation
of UML profiles by specifying instances of the different UML meta-elements (e.g., stereo-
types of properties, classes, operations, or OCL constraints). Papyrus allows checking
OCL constraints at design time. For example, let us consider Figure 12. It shows how Pa-
pyrus checks that the constraint: (OCL:ownedAttribute->select(m|m.oclIsTypeOf
(IdRepository))->size()=1)) for Repository (which indicates Repository
must include one attribute with stereotype IdRepository).

Fig. 12. Example of OCL constraint check with Papyrus

The UML profile implementation is available as open source project 9.

5.2. Data implementation

The implementation of our case study requires a complex digital ecosystem. Despite a uni-
form representation of data at the conceptual level, the different kinds of data must be gen-
erated and handled by diverse subsystems. For instance, Sensor and ContinousQuery
data require an implementation using programming languages and Data Stream Manage-
ment System. Persistent data either in a classical storage system (such as a rela-
tional database) or in a novel storage system (such as NoSQL systems when scalability is
needed) can be deployed.

Consequently, in our case study, each component of the digital ecosystem have a par-
ticular implementation.

9 https://www6.inrae.fr/tools4bi/Design/A-UML-Profile-for-Agroecology-data-centric-applications-design
We will provide it for download after the acceptance of the paper
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Meteorological data (represented by the Sensor MeteoSensor in Figure 7-A) is im-
plemented in an IoT device running RIOT OS 10. RIOT is an open source operating sys-
tem that supports several low-power IoT devices, micro-controller architectures (32-bit,
16-bit, 8-bit), and external devices. Applications for this OS are written in C and must
specify the behaviour of each involved device [5]. Figure 13 shows two fragments of the
code associated to MeteoSensor (Figure 7-A).

Fig. 13. Sensor implementation

The first code fragment (Figure 13) is the sensing and aggregation thread. To begin,
this thread samples the plot temperature 10 times with a periodicity of one minute (i.e.,
during 10 minutes). Then, it calculates the average temperature of the plot of the last 10
minutes and saves it as a public variable. Finally, the thread process starts again to run
indefinitely.

It is important to note that the data implementation strictly follows its conceptual
definition. The IoT code (Figure 13) senses data every minute, and calculates the average
and sends the data every 10 minutes as specified in MeteoSensor (Figure 7-A).

Odometry data (OdometryIntra in Figure 6) are implemented in Python in the Fleet
of Robots using Robot Operating System (ROS). Besides, robots have tasks, trajectories,
and timing constraints (e.g., indicated speed).
10 https://www.riot-os.org/
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Persistent data (e.g., OdometryIntaH in Figure 6) are stored in the relational
spatial DBMS PostGIS. These data are further loaded into a Data Warehouse implemented
in Mondrian and JRubik to analyze them.

The Data Warehouse storage is provided by PostGIS. It is important to note that the
implementation of Persistent data needs some particular SQL statements. Indeed,
attributes with the Changing stereotype are classical ones, contrary to the other ones that
cannot be updated. This constraint is implemented in SQL with a trigger on the UPDATE
SQL statement. An example for the name attribute of the Robot class is shown in Figure
14.

Fig. 14. SQL implementation example

The AlertDelayQuery continuous query (Figure 15) is implemented in Scala (the Se-
dona framework, which is a spatial extension of Apache Flink). This query joins GPS data
coming from the robots (Sensor Point-Time) with data stored in PostGIS (Dictionary
TrajectoryREF) (Line 1).

Then, the delay is computed (Line 2). Data is collected in a window of 1 minute (Line
3), and each 1 minute data is sent using the average aggregation function (Line 4).

Fig. 15. Spark Streaming implementation example
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Moreover, associations between Dictionary and Repository can be simply im-
plemented using foreign keys in a relational DBMS or integrity constraints in a NoSQL
DBMS. However, such mechanisms do not exist for Volatile data (Sensor and
ContinousQuery). They require an ad-hoc method: the data structure sent by sensors
must include their identifiers, such as previously described above for the meteorological
sensor.

5.3. Multi-layer network architecture

This subsection is issued from [7]. Inspired by the Lambda reference architecture for IoT
applications [48], we propose an architecture to host the technologies that handle the data
required in our case study. It is composed of three main layers: Field, Farm, and Cloud
(Figure 16). The Field and Farm layers are implemented in each farm. In contrast, the
Cloud layer is implemented only once for any number of farms.

Fig. 16. Architecture implementation - data mapping

The Field layer represents different data sources deployed in the field (i.e., Sensor
data). In our case study, it is composed of MeteoSensors and Robots, which provide data
and execute specific tasks. These IoT devices do not have direct Internet access on the
fields (there is no cellular network coverage). Thus, we deploy a Wi-Fi network to collect
these data at the Farm layer, which connects to the Internet through ADSL.

However, ADSL may not guarantee the QoS required by the ContinuousQuery
of our case study. For instance, the Input association between AlertDelayQuery and
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TrajectoryREF (Figure 8) requires a maximum latency of 1 second with no data lost.
Therefore, we implement these queries in the Farm layer. Moreover, we host a DBMS
for TrajectoryREF in the same layer (Farm) since this allows for a local connection to the
DBMS with less latency and data loss issues. Finally, the Farm layer only sends processed
data streams to the Cloud layer.

The Cloud layer implements the storage of Repository and Dictionary data
coming from all the farms. This layer hosts a data warehouse that analyzes the historical
odometry data of the robots, providing an inter-farm analytical vision of all the available
data.

This way, our case study shows that the proposed UML profile can effectively repre-
sent the multiple kinds of data present in a complex IoT-based application. The data was
implemented in different languages, systems, and infrastructures that must successfully
communicate and cooperate to provide useful decision support.

6. Related Work

In this section, which extends [7], we present some of the most relevant contributions
related to our proposal comparing them according to the requirements defined in Section
2.

Regarding the conceptual design and implementation of IoT, [13] proposes a UML
profile for IoT physical devices considering fog and cloud concepts for objects inter-
operability and reusability. In the same way, [34] provides an automatic implementation
framework for modeling different IoT systems using simple drag-and-drop designs. How-
ever, these works focus strictly on abstracting and solving (highly relevant) issues for the
physical implementation of IoT rather than on data definition or integration. Other works
have successfully integrated IoT data into different systems. For instance, [37] provides
additional semantics to the design of wireless sensors networks to ease the further use of
generated data. [26] defines a conceptual model for integrating IoT data into digital twins.
Besides, [2] provides a meta-model for the integration of IoT data into web services.

In the section, we present existing works about designing complex and IoT data. [40]
and [41] provide a survey of existing conceptual models for sensors and IoT data. They
state that no existing work defines a data-centric model for data issued from sensors and
IoT devices, respectively. So the authors propose a UML profile for modeling IoT data,
which makes transparent all technical details related to the implementation. Moreover,
[39] extends [40] to integrate sensors data with Stream Data Warehouses. However, these
works do not support volatile data in the form of continuous queries, polyglot data asso-
ciations are not possible, and non-functional requirements. Consequently, even through
multiple approaches for building IoT architectures have been proposed, to the best of our
knowledge, these approaches fail to provide a comprehensive formalism for representing
volatile and persistent data while hiding the complex technical issues of their implemen-
tations.

In the context of database systems, numerous modeling methods (based on ER or
UML) have been contributed for standard and temporal databases. For example, [11],
proposes the usage of UML to represent temporal data properties, while [55] details an
extension of the ER model. In the same way, some studies propose conceptual models for
Data Warehouses, which can be considered as a particular kind of persistent data, through
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UML [10] or ER extensions [12]. However, all these works do not take into account
volatile data.

Conceptual models for stream data have not received much attention from the research
community so far. To the best of our knowledge, only [9] proposed a UML profile for rep-
resenting continuous queries integrated into a data warehouse approach. However, sensors
data cannot be modeled nor non-functional requirements.

Numerous works studied the conceptual representation of Extraction, Transformation,
Loading (ETL) processes. Extraction and loading are the most frequently researched op-
erators (tasks). [50] and [3] proposed formal representations of the operators. They are
similar to our Input and Store associations stereotypes. ETL models based on formal pro-
cess notations, such as BPMN or UML Activity diagrams, are not adapted for our data-
centric approach (as reviewed in [3]) since they model data and operations into separate
diagrams. Only [50] adopted a data-centric approach. However, the approach is applica-
ble to modeling only relational systems, and it ignores QoS notions, such as the Latency
constraint, which we found necessary to model streaming-data applications as in IoT.

Non-Functional Requirements (NFR) can be defined as constraints attributes to define
system quality and how it should perform. They are considered as one of the main aspects
for the success of a system, because they provide an enormous help to understand at an
early stage various problems of the system implementation. According to [21], NFR are
goals to be achieved in the design pattern. Not taking into account NFR may generate
more risks than functional requirements (FR) [20]. Nowadays NFR are more and more
demanded by stakeholders, but they are mostly neglected or poorly handled. This affects
the stakeholders decision making process, thus understanding and integrating NFR in sys-
tem design can lead to better user experience and cost reduction.
In this context, several works have tried to give more importance to NFR, for instance
[51] introduces an architecture with a process to separate, identify and integrate NFR, and
[15] proposes a UML extension to define NFR and integrate them into different UML
diagrams. However those works do not address IoT data.

In the context of IoT, to the best of our knowledge the majority of artifacts focus on
the reliability and usability of the solution, but other NFR are not well taken into account
[25]. [45] presents an agile approach to handle NFR such as (security and performance)
in scrum, and [47] presents a NFR template and shows that NFR (cost, sensitivity, design
complexity, storage, development process, environmental impact) can be very helpful to
enhance IoT systems. [30] provides a UML-based approach to represent a variety of NFR
in telecommunication domains, [8] proposes an MDA approach to handle the energy con-
sumption of wireless sensor network using SysML and Modelica languages. However,
these works do not focus on data design, and they do not take into account data and net-
work NFR at the same time.

In the context of database systems, [36] shows that most of database design do not
address NFR, and that in the future of database performance era, more NFR should be
taken into consideration. Some works insist on the importance of NFR in the conceptual
design [16],[14]. Indeed, some works propose to integrate NFR of the design process, such
as [19] that propose an approach based on MDA and NFR integration to build database
design, and [35] that details an approach with five steps to take NFR in consideration
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before suggesting the appropriate database design (conceptual model, FR definition, NFR
definitions, model fragmentation, database model).

[16] propose an ER framework that integrates NFR (validation, delivery,reliability
and authorization) in the conceptual data models. In the same way, [27] propose to enrich
the ER model with the workload of each entity in order to automatically generate the
best NoSQL logical schema. These contributions remain focused on static persistent data,
ignoring the particular features and challenges of volatile data, and network NFR.

Some works present NFR for real-time databases. [24] provides a UML profile for
real time database modeling with temporal constraints and data quality, and [18] presents
a UML package for real time objects with temporal constraints. Those works focus on
temporally-constrained data, which is similar to our volatile data. Nonetheless, they dis-
regard the existence of multiple subsystems that rely on particular technologies (e.g., sen-
sors as the data generators) and the explicit association of different kinds of data.

Table 1 provides a summary and a comparison of most important works based on a
data-centric approach previously described according to the requirements we have defined
in Section 2: (i) Integrated design and implementation, which means the usage of a formal
framework that can be used for representing also dynamic aspects of the system, (ii) The
non-functional requirements for data and network, (iii) Types of data supported.

Table 1. Comparison of related work
Work Integrated design and implemen-

tation
Non-Functional Requirements Data Types

[40] Yes No Partial (sensors data)
[41] Yes No Partial (IoT devices data)
[39] Yes No Partial (sensors data and stream

data warehouse)
[11] Yes No Partial (dictionary data)
[55] No (ER formalism) No Partial (dictionary data)
[9] Yes No Partial (not sensors data)
[16] No (ER formalism) Data (Dynamic - such as Usability,

and Static - such as Accuracy)
Partially (dictionary data)

[27] No (ER formalism) Data (such as Volume) Partially (dictionary data)
[24] Yes Data (such as Temporality) Partial(sensors and dictionary data)
[18] Yes Data (Temporality) Partial (dictionary and stream data)
Our
Ap-
proach

Yes Data (Temporality and Perfor-
mance), Network (Latency)

All (persistent and volatile data)

From table 1 that reports only data-centric proposals, we can notice that all the works
focus on NFR that concern data, and the majority of works only target few data types, and
some of them are based on the ER formalism, which does not allow to represent dynamic
aspects.

To conclude, existing works do not provide a unique and global conceptual represen-
tation of all involved data for complex IoT-based applications.

7. Conclusion and Future Work

IoT technologies are more and more used in all application domains, such as urban,
health, tourism, etc. IoT provides decision-makers with complex real-time data at dif-
ferent spatio-temporal scales.
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However, the adoption and deployment of IoT technologies raises a challenging re-
search agenda related to standardizing design artifacts for IoT, sketching scalable archi-
tectures, and devising new algorithms for efficiently managing and processing IoT data at
different levels. In particular, in the agriculture and agroecology context, IoT projects fea-
ture complex requirements, involving both heterogeneous hardware systems (e.g., robots,
sensors, networks’ hardware, and protocols, both in-situ and cloud servers), heteroge-
neous software systems, and complex spatio-temporal data. This complexity makes the
design of conceptual data models of agroecology IoT applications mandatory for suc-
cessful projects. The modeling has to encompass: (1) all heterogeneous data involved
(i.e., from streamed sensors data, spatio-temporal data, to classical static and computed
data) and (2) communication networks features.

Therefore, motivated by the lack of such a comprehensive conceptual framework, in
[7], we proposed a UML profile to design data-centric agroecology IoT applications. We
applied the UML profile for the monitoring of autonomous agricultural robots. Apart
from feasibility implementation of the UML profile in a Big Data architecture, [7] does
not present any validation of the proposed approach. Therefore, in this work, we provide
a theoretical assessment of the UML profile based on existing metrics. Our experiments
show the efficacy of our UML proposal from a theoretical point of view. Moreover, we
provide a design and implementation methodology based on our approach, that can be
integrated in classical existing software engineering methodologies. In order to validate
this feature, we have shown by means of our real case study, how the UML profile class
diagrams can be transparently used by UML sequence and activity diagrams.

Our UML profile does not allow representing multimedia data (video and images) that
are commonly used in agriculture applications. Therefore, we plan to extend our profile to
also represent multimedia data. Finally, setting the optimal (in practice sub-optimal) QoS
values is challenging and it is considered a difficult optimization problem. A promising
approach to supporting parameters and performance tuning is based on machine learning
(ML) algorithms, e.g., [22,23,42]. Such algorithms require large volumes of test data to
learn reliable performance models. Thus, excessive experimental evaluations are needed
to provide performance data, to feed ML algorithms. In our project, tuning the parameters
will be based on excessive experiments, therefore, we will address this issue in future
work.

Acknowledgments. This work is supported by the French National Research Agency projects
ANR-19-LCV2-0011 Tiara, and French government IDEX-ISITE initiative 16-IDEX-0001 (CAP
20-25).

References

1. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (iot) communication
protocols: Review. In: Proceedings of the 8th International Conference on Information Tech-
nology (ICIT). pp. 685–690. IEEE, Amman, Jordan (2017)

2. Alulema, D., Criado, J., Iribarne, L., Fernández-Garcı́a, A.J., Ayala, R.: A model-driven engi-
neering approach for the service integration of iot systems. Cluster Computing 23, 1937–1954
(2020)
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