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Abstract. The 5G communication technology has the ability to create logical net-
works, called network slices, which are specifically carved to serve particular ap-
plication domains. Due to the mix of different application criticality, it becomes
crucial to verify if the applications’ service level agreements are met. In this pa-
per, we propose a novel framework for modeling and verifying 5G orchestration,
considering simultaneous access and admission of new requests to slices as well as
virtual network function scheduling and routing. By combining modeling in user-
friendly UML, with UPPAAL model checking and satisfiability-modulo-theories-
based model finding, our framework supports both modeling and formal verifica-
tion of service orchestration. We demonstrate our approach on a e-health case study
showing how a user, with no knowledge of formal methods, can model a system in
UML and verify that the application meets its requirements.
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1. Introduction

The fifth generation of wireless technology, 5G, has the potential to support a variety of
applications with different requirements, be it low latency, high bandwidth or increased
number of connections. This is ensured via its ability to create end-to-end network slices,
tailored to support respective application requirements [15]. A 5G network slice is com-
posed of several virtual network functions (VNFs) that are chained in order to meet the
application’s functionality. Most often, VNFs have constraints on CPU, RAM, storage,
which need to be met by the servers that host them. In addition, servers are connected via
links, hence chaining VNFs incurs additional resource overhead in terms of link band-
width and latency. Adding to the complexity, VNFs can be shared between slices that are
requested simultaneously by various 5G user equipment (UE).

To analyze if a 5G network slice instance can effectively serve its applications, one
needs to ensure that the respective VNFs are allocated, scheduled, and routed according
to the current network scenario. This is referred to as dynamic 5G service orchestration.
For instance, when applications of different criticality share network resources, one needs
to ensure that all slices facilitate meeting the requirements of considered applications.

⋆ This is an extension of previous work published at ECBS 2021 [12].
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Although much research has been devoted to solving the 5G service orchestration
problem by providing optimal VNF allocation and routing schemes [19,14], there is a
lack of endeavors that provide modeling and formal verification frameworks that can an-
alyze such schemes to provide guarantees of the intended system behavior. In this paper,
we propose such a modeling and formal analysis framework that combines user-friendly
UML-based modeling [8] with mathematical assurance via exhaustive model checking in
UPPAAL [13] and model finding using Z3 [21]. This work builds on our previous results
[11], the UML5G-SO framework, which allows for modeling and analysis or VNF allo-
cation and routing, assuming static worst-case scenarios. We augment the UML5G-SO
framework to support dynamic system behavior stemming from slice requests from UE,
scheduling, link utilization, etc. Our contribution includes the following: (i) extending the
UML5G-SO profile with stereotypes to model UE and the controllers for handling and
monitoring the dynamic requests, (ii) defining the behavioral view of a system built based
on our profile in terms of restricted UML statechart patterns (see Sec. 4.4), (iii) defin-
ing pattern-based timed automata semantics for restricted statechart patterns, enabling
model-checking UML5G-SO behaviors with UPPAAL [13], (iv) defining an alternative
semantics in first-order logic with linear arithmetic for the restricted statechart patterns, as
well as (v) implementing tool support for the automatic generation of UPPAAL and SMT
models from UML diagrams. To demonstrate our approach, we consider a case study of
simultaneous access of shared network resources by two applications of different critical-
ity. This paper is an extension of our earlier work [12], and in this extended journal version
we have added a formalization for semantics using first-order logic with linear arithmetic,
and support for generating SMT models. While we show that the scalability of SMT mod-
els surpass that of model checking, the possibility of simulating traces step-by-step is lost
and queries must be expressed in first-order logic (in contrast to TCTL queries). Hence,
the two semantics facilitate two complementary approaches for verification.

The goal is to create a framework in which a user with no experience in formal meth-
ods can use to formally verify properties of a 5G service orchestration system. The usabil-
ity is our prime concern, and we wish to provide an interface which relates to the service
orchestration-problem and hides as many verification details as possible.

The rest of the paper is organized as follows. Sec. 2 details the problem statement, In
Sec. 3, we give an overview of UML 2.0 modeling, timed automata, the UPPAAL model
checker, first-order logic, and the Z3 tool. In Sec. 4, we present our extended UML5G-
SO profile in UML 2.0 allowing UML modeling of dynamic service orchestration in 5G
systems. Sec. 5 presents the formal semantics of the UML model in terms of UPPAAL
timed automata, while Sec. 6 presents alternative semantics in first-order logic. There-
after, in Sec. 7, we present our methodology and the G5 tool that allows the automated
verification of system requirements, followed in Sec. 8 by a case study with experimental
verification results, continued by a brief discussion of the gained insights. We compare
our contribution to related work in Sec. 9, before presenting the concluding remarks and
directions of future work, in Sec. 10.

2. Problem Description

This paper aims at providing a modeling and formal verification framework for dynamic
5G service orchestration. Concretely, the framework allows a 5G engineer to model an
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existing service orchestration configuration (that is, VNF allocation and routing) of a
network slice, and verify if the solution meets its application requirements, under various
dynamic behaviors assumed as follows:

– Dynamic network load: We produce a dynamic network load by using a set of 5G
user equipment (UE) that can request a network slice at any point of time.

– Dynamic VNF scheduling: We assume that hosts executes VNFs according to a given
scheduling policy, with an execution time within its best- and worst-case time bounds.

– Dynamic link utilization: Based on the execution of the VNFs, we model the utiliza-
tion of each link’s bandwidth, to ensure that it is never over-utilized.

Consider an overlay network consisting of virtual machines (hosts). We assume that this
network is powered by 5G, which supports end-to-end network slices. A slice consists
of a number of virtual network functions (VNF), generally interconnected via a VNF
Forwarding Graph, in this paper assumed to be a VNF Forwarding Sequence. A virtual
network function is defined as a software implementation of a network function, which
can be easily deployed on virtual resources [14]. We also assume that the hosts communi-
cate via virtual links, which incurs overheads in terms of bandwidth capacity and latency.
For the overlay network to serve various applications, the network slices’ VNFs need to:
(i) be allocated on hosts, respecting processing, memory, and storage capabilities, and (ii)
be routed such that the respective VNF chaining is achieved. In our previous work [11],
we have proposed a UML profile called UML5G-SO, and associated static OCL-based
analysis of 5G service orchestration solutions, for checking if a given VNF allocation and
routing of a slice meets the application’s Quality-of-Service (QoS) requirements. How-
ever, our analysis considered only static worst-case scenarios, assuming that the system is
serving a maximum number of user requests under a maximum load. This is unrealistic if
one considers varying network load using hosts and links in a dynamic manner.

We assume that each slice has a certain allocation and routing defined when the system
starts its operation. Our aim is to analyze if the given allocation and routing can meet the
application’s QoS, considering dynamic behaviors as described above. To address this,
we provide a modeling and formal verification framework that combines UML-based
modeling with model checking and with SMT model finding.

2.1. Running Example

To illustrate our framework we will use a small running example in this paper. We consider
a small use case where we only have one user equipment subscribing to one slice with a
latency requirement of 50 ms. The slice consists of two VNFs, each allocated to a separate
host, connected by a single link. The use case is illustrated in Fig. 1, where the single
slice S1 consists of V1 and V2 (both of the same type). The requirement is to ensure that
executing VNF V1 on H1, traversing the link L1 and executing VNF V2 on H2 in total
takes less time than the slice deadline of 50 ms.

3. Preliminaries

In this section, we introduce the types of UML diagrams that we use in this paper, as well
as briefly overview timed automata and satisfiability modulo theories (SMT).
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Fig. 1. Illustration of the running example

3.1. UML Diagrams

The Unified Modeling Language (UML) [8] is a modeling language that helps design-
ers to express structural and behavioral artifacts of complex systems. In order to capture
the essentials of a 5G-SO system, we specify its structure and behavior, by using our
UML5G-SO profile. A profile diagram is used to extend existing UML models by defin-
ing stereotypes, tagged values and constraints for capturing domain-specific concepts. For
a deeper understanding of UML profiles, we refer the reader to relevant literature [9,8].

We use UML class diagrams and object diagrams to represent a system’s structure,
and UML statecharts to model a system’s behavior. While the former are quite straight-
forward, we provide a brief explanation of statecharts, as they are central to this work.
UML statecharts (or UML state-machine diagrams) depict behavior via states and transi-
tions between states. While each state simply has a name, a transition includes a trigger,
a guard, and an action. The triggers are usually events (Ev), and the response actions
(A) become the effects on the transitions. The guard (G) is a Boolean expression that
has to evaluate to true in order for the transition to be fired. The UML syntax for a state
transition is Ev(parameters)[G]/A. We chose UML statecharts for their effectiveness
of capturing the behavior of individual classes (system’s components).

In our work, we consider only two kinds of UML events, time events and call events
[8]. We define a time event via the keyword “after”, followed by an expression encoding
a time value. We model call events as synchronization events that are unicast to other
statecharts. The unicast communication offers handshake synchronization between two
statecharts, and is blocking, i.e., the synchronization takes place only if both sender and
receiver are ready to traverse their edges [24]. In addition, we consider that statecharts
can be composed in parallel, defining their interactions via call events [24].

Example 1. Fig .2 shows an example of two statecharts that synchronize when executing
in parallel. The initial one is the controller that has a state S1 waiting for a user equip-
ment (UE) request. On receiving the call event, rcvUEReq(Slice), it queues the respective
VNFs to be executed in the host, and generates a call event (action), sendTrigger(vnfId),
which is unicast to the host. In state Sa, the host is ready to synchronize and receives the
event rcvTrigger(vnfId), moving to state Sb, where it executes the respective VNF and
moves back to state Sa, when triggered via a time event, modeled by after(execTime).

3.2. Timed Automata and UPPAAL

A Timed Automaton (TA), as used in the model-checker UPPAAL [13], is defined as a
tuple, ⟨L, l0, V, C,A,E, I⟩, where: L is the set of finite locations, l0 is the initial location,
V is the set of data variables, C is the set of clocks, A = Σ∪τ is the set of actions, where



Supporting 5G Service Orchestration... 333

Sa Sb
rcvTrigger(vnfId)

after(execTime)
S1

rcvUEreq(Slice)/QueueVNF(), 
sendTrigger(vnfId)

||

Fig. 2. Parallel Composition of UML Statecharts

Σ is the finite set of synchronizing actions(c! denotes the send action, and c? the receiving
action) partitioned into inputs and outputs, Σ = Σi ∪Σo, and τ /∈ Σ denotes internal or
empty actions without synchronization, E ⊆ L×B(C, V )×A×2C×L is the set of edges,
where B(C, V ) is the set of guards over C and V , that is, conjunctive formulas of clock
constraints (B(C)), of the form x ▷◁ n or x− y ▷◁ n, where x, y ∈ C, n ∈ N, ▷◁∈ {<,≤
,=,≥, >}, and non-clock constraints over V (B(V )), and I : L −→ Bdc(C) is a function
that assigns invariants to locations, where Bdc(C) ⊆ B(C) is the set of downward-closed
clock constraints with ▷◁∈ {<,≤,=}. Invariants bound the time that can be spent in
locations, hence ensuring progress of TA’s execution. An edge from location l to location
l′ is denoted by l

g,a,r−−−→ l, where g is the guard of the edge, a is an update action, and r
is the clock reset set, that is, the clocks that are set to 0 over the edge. A location can be
marked as urgent (marked with an U ) or committed (marked with a C) indicating that the
time cannot progress in such locations. The latter is a more restrictive, indicating that the
next edge to be traversed needs to start from a committed location.

The semantics of TA is a labeled transition system. The states of the system are pairs
(l, u), where l ∈ L is the current location, and u ∈ RC

≥0 is the clock valuation in location
l. The initial state is denoted by (l0, u0), where ∀x ∈ C, u0(x) = 0. Let u ⊨ g denote the
clock value u that satisfies guard g. We use u+ d to denote the time elapse where all the
clock values have increased by d, for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u + d > if u ⊨ I(l) and (u + d′) ⊨ I(l), for

0 ≤ d′ ≤ d, and

(ii) Action transitions: < l, u >
a−→< l′, u′ > if l

g,a,r−−−→ l′, a ∈ Σ, u ⊨ g, clock
valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks in the reset
set r of the edge, such that u′ ⊨ I(l′).

The UPPAAL model checker provides exhaustive model-checking of TA models like
the ones overviewed. A real-time system can be modeled as a network of TA (NTA) com-
posed via the parallel composition operator (||), which allows an individual automaton to
carry out internal actions, while pairs of automata can perform handshake synchronization
(via c! and c?). The locations of all automata, together with the clock valuations, define
the state of an NTA. The properties to be verified by model checking on the resulting NTA
are specified in a decidable subset of (Timed) Computation Tree Logic ((T)CTL) [4], and
checked by the UPPAAL model checker. UPPAAL supports verification of liveness and
safety properties [13]. The queries that we verify in this paper are of the form: Invariance,
A□p, stating that p should be true in all reachable states for all paths.
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3.3. Satisfiability Modulo Theories and Z3

In this paper, we use a standard approach towards first-order logic using Boolean operators
(∧,∨,⇒) as well as quantifiers (∀,∃). A formula is satisfiable if there is a model (an
interpretation) that makes the formula true, otherwise it is called unsatisfiable. In this
work quantifiers can be handled by enumeration as all underlying domains are finite. For
an introduction and more we refer the reader to [26].

The satisfiability modulo theories (SMT) problem is posed as: given a formula, to-
gether with one (or more) background theories, is the formula satisfiable or not? In this
paper we use the Z3 SMT solver [21], which can both answer such queries modulo the
theory of linear arithmetic, as well as provide concrete values of a model (which is useful
when analyzing answers).

Fig. 3. The UML5G-SO Profile (Extended Version)
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4. UML Modeling of Dynamic 5G Service Orchestration

In this section, we exemplify how the UML5G-SO profile can be used for modeling 5G-
specific scenarios using our running example.

4.1. The Enhanced UML5G-SO Profile

The enhanced version of the UML5G-SO profile is shown in Fig. 3 (changes highlighted
with colors and in bold). We define three stereotypes as follows: (i) UserEquipment, ex-
tending UML Metaclass::Component, models 5G UE. The stereotype has an attribute
to specify its activation time (assumed periodic); (ii) Request Handler, extending UML
Metaclass::Component, takes care of parallel UE requests and allows VNFs to be routed
according to their VNF forwarding sequence; (iii) Monitor, extending UML Metaclass::Class,
monitors various served requests, and is used to establish if the latter meet their require-
ments or not. We also replace the execution time attribute of the previous VNF stereotype
with two attributes specifying best-case (BCET) and worst-case execution time (WCET).

4.2. Class Diagram Modelling of System Components

The class diagram is used to describe component types for a system. Using the stereo-
types from the profile and adding attributes and functions, we introduce a class for each
component type (e.g., a slice type, a kind of host). These are used by object diagrams to
specify instances of systems, which can be analyzed using the methods in this paper.

Example 2. To illustrate, we show in Fig. 4 a class diagram for a running example. Some
of the classes, MonitorReq and ReqControl , are defined because they are required to
model the full behavior of the system. The rest are introduced to model the components
of the system, e.g., the Ethernet and Server).

In this example there is only one slice type, 5GCamera accessing Slice. The user
equipment class is created by applying the UserEquipment stereotype and contains the
attributes ueId , sId and maxReq , which specify its id, the id of the slice it accesses, and
the maximum number of requests the UE can perform, respectively. The user equipment
generates the slice request event, evSliceReq , each time the UE gets activated, with a
period equal to its activation time actTime . Similarly, the Slice class are defined by ap-
plying the 5GNetworkSlice stereotype and adding an attribute for the id.

We also apply stereotypes on ReqControl ,MonitorReq and VM . The ReqControl
class is supplemented with an attribute for its id, and a set of functions: initialise(),
queueVNF (), consumeBW (), releaseBW (), and calcLDelay(). When a UE requests
a slice, the initialise() function initializes its VNF forwarding sequence and its routing
scheme (note that we assume that all VNFs are allocated). The ReqControl also takes care
of queuing the respective VNFs to their hosts via the queueVNF () function. The func-
tions consumeBW (), releaseBW (), calcLDelay() consume the link bandwidth while
routing through it, release it after its usage, and calculate the respective delays in routing
across the links. The VM class has one attribute, id and two functions, scheduleVNF ()
and dequeueVNF (), the former encoding the scheduling algorithm, and the latter being
responsible for dequeueing the next VNF to be executed.
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Fig. 4. Class Diagram for our running example

Once the class diagram description of our system is formulated, we encode the behav-
ior of each active class by using a restricted form of UML statecharts. In our examples,
the classes that possess behavior are marked with an asterisk, e.g., see Fig. 4.

4.3. Object Diagram Description of System Instance

Given a class diagram, describing each component in the system, it is possible to depict
a system instance by means of an object diagram. In the object diagram, the classes are
instantiated and their attributes assigned values, according to the corresponding use case.

Example 3. In Fig. 5 an object diagram shows the running example system instance.

4.4. Restricted Statechart-based Behavioral Description of our 5G-SO System

In this section, we discuss the behavioral description of our system using UML statecharts
restricted to fit our needs. We define the restricted form of statecharts, as follows:

Definition 1. A restricted statechart (RSC) is a UML statechart obeying the following:

– All states are simple (without hierarchies) and without associated execution history.
– The states can either be the usual simple states of UML statecharts, hereby called

“active” states, or pseudostates that represent the initial and final states, only.
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Fig. 5. Object Diagram for our running example

– The transitions follow usual UML syntax, Ev(params)[G]/A, where Ev(params)
are UML call or time events (Sec. 3), G are Boolean conditions evaluated over system
variables, and A include variable assignments and other user-defined functions.

A transition Ev(params)[G]/A is triggered when the event Ev(params) occurs and G
is true, or as soon as G is true in case of no triggering event. Moreover, the transitions
from psuedostates to active states or vice-versa are considered instantaneous if there are
no triggering events or guards enabling them. Different statecharts synchronize via uni-
cast or broadcast synchronizations, defined via a parallel composition of the independent
restricted statecharts. In addition, the statecharts follow the run-to-completion execution
semantics [5], i.e., a statechart completes processing each event before it can start process-
ing the next one. The statecharts in Fig. 6 are examples of restricted statecharts, as they

VM(hostId)

Idle Execute

[QueueNonEmpty]/
schedule(), dequeue(),
t=random(BCET,WCET)

WaitforVNFExecution WaitForLinkDelay

evVNFExeDone/checkRoute()

after(lDelay)/
releaseBW(), 
evQueue(vnfId)

CheckLinkAvailability

[IslinkBWavailable] 
/consumeBW(); 
calcLdelay();

[IsAllSiceVNFExecuted ]

      after(t)/evVNFExeDone

RC (rcId)

Idle evReq(mId)/initialise(), 
evQueue(vnfId)

after(actTime)[nReq<=maxReq]/
evSliceReq(sliceId),nReq++

SendReq

UE(ueId,sliceId,maxReq,actTime)

Idle

evSliceReq(sliceId)/
evReq(mId)

Wait
after(deadline)

Fail

MO(mId)

evQueue(vnfId)/queue(vnfId)

Idle

[nReq<=maxReq]/
evSliceReq(sliceId),nReq++

[nReq>maxReq]

Fig. 6. Restricted statechart representation of the case-study-specific behavior

obey all restrictions in Def. 1. Note that the statecharts UE, RC, VM and MO, correspond
to the active classes UserEquipment, ReqControl, VM, MonitorReq, respectively.
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Pattern-Based Behavioral Representation To model the behavior of the components,
we apply a pattern-based representation. We begin with an auxiliary definition.

Definition 2. An assignment for a set of variables V, is a mapping from variables to
values such that each variable is assigned one value. The set of possible assignments for
V is denoted as AV .

A restricted statechart pattern, RSC(para) is a reusable RSC structure used to define
repetitive behaviors, and is represented as the following tuple:

RSC(para) = ⟨Sp, sip, Vp,Evp, Fp, Lp,−→p⟩ : para, (1)

where:
– para refers to the list of parameters instantiated with values when the pattern is used,
– Sp = Sact∪Spsu = {s1, .., sn}, is the set of states, i.e., the set of active states (Sact),

and the set of pseudostates (Spsu), that is, initial and final states,
– sip ∈ S is the initial pseudostate,
– Vp is the set of system variables,
– Evp = Evt ∪ Evc is the set of events, where Evt is the set of time events and Evc

is the set of call events. Further, Evc = Evtrig ∪ Evact, where Evtrig is the set of
events triggering the transition, and Evact is the set of generated events,

– Fp is the set of user-defined functions, where for each f ∈ Fp, f : AVp
7→ AVp

,
which maps each variable assignment to a (possibly identical) variable assignment,

– Lp ⊆ Evp × Gp × AVp
× Fp × Evp is the set of labels, where for each label

(evt, g, a, f, evg) ∈ Lp:
• evt is a triggering event,
• g is a guard (i.e., Gp is the set of Boolean expressions over Vp),
• a is an assignment,
• f is a user-defined function,
• evg is a generated event.

– −→p⊆ Sp × Lp × Sp, denoted by s
Lp−−→p s′, {s, s′} ∈ Sp.

Example: In Fig. 6 we present the four patterns corresponding to the active classes in
Fig. 10. We exemplify the restricted statechart RSCUE (ueId , sliceId ,maxReq , actTime),
describing the behavior of UserEquipment:

– Sp = Spsu ∪ Sact , where Spsu = {Initial ,Final} and Sact = {Idle,SendReq},
– sip = Initial,
– Vp = {nReq}, para = {ueId , sliceId ,maxReq , actTime},
– Evp = {evSliceReq(sliceId), after(actTime)},
– Fp = {∅},
– Lp = {(∅, ∅, ∅, ∅, ∅), (∅,nReq ≤ maxReq ,nReq++, ∅, evSliceReq(sliceId)),
(after(actTime),nReq ≤ maxReq ,nReq++, ∅,
evSliceReq(sliceId)), (∅,nReq > maxReq , ∅, ∅, ∅)},

– −→= {Initial −→ Idle, Idle
∅,nReq≤maxReq,nReq++,∅,evSliceReq(sliceId)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SendReq ,

SendReq
after(actTime),nReq≤maxReq,nReq++,∅,evSliceReq(sliceId)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SendReq ,

SendReq
∅,nReq>maxReq,∅,∅,∅−−−−−−−−−−−−−−→ Final}
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Once the patterns are defined, the patterns can be instantiated by assigning p ∈ para
with actual values. We denote by “p = v′′ the assignment of parameter p with value v, so
the instantiated RSC(para) is:

RSCi(v1, v2, . . .) = ⟨Spi, sipi , Vpi, Evpi, Fpi, Lpi,−→pi⟩ : (p1 = v1, . . .) (2)

Example 4. Consider the RSCUE pattern. An example of a parameter assignment is:

para = {(ueID , 1), (sliceID , 1), (maxReq , 1000), (actTime, 5)} (3)

The resulting statechart is shown in Fig. 7.

User-Defined Functions. Some of the classes contain user-defined functions, expressing
some behavioral aspect of the system. These must be formalized both for the TA model as
well as the SMT model. In general, for the TA model we consider user-defined functions
to be given as C-like code, as supported by UPPAAL. For the SMT model instead, the
effect of executing the function must be formulated in first-order logic. A list of user-
defined functions used in our model is found in Table 1.

Example 5. Consider the function schedule() from our running example. Its C-like code
is shown in Listing 1.1. A SMT-formalization of its effect is presented later (see Eq. 42).

Listing 1.1. Function for priority-based scheduling
int i, j, tmp;
for (i = 0; i<VM.MQ.length; i++) {

for (j = 1; j<VM.MQ.length; j++) {
if (VM.MQ[i].Prio > VM.MQ[j].Prio) {

tmp = VM.MQ[i]
VM.MQ[i] = VM.MQ[j]
VM.MQ[j] = temp

}
}

}

Table 1. User-defined functions

Function Purpose
initialise() Initializes the slice VNF forwarding sequence, VNF allocation and routing, upon

receiving a particular slice request from the UE.
queue(VNFId) Queues the VNF that are ready to be executed into the message queue of the VM

where it is allocated.
schedule() Sorts the VNFs in the queue according to priorities of the VNFs such that the

head of the queue has the highest priority.
dequeue() Removes the VNF that is executed from the message queue.

calcLdelay() Calculates the sum of latencies over all the links involved a particular path be-
tween consecutive VNFs in VNF forwarding sequence.

consumeBW () The required bandwidth of a slice is consumed from the available link bandwidth.
releaseBW () Once a slice has finished utilizing a link, release the respective bandwidth.
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after(5)[nReq<=1000]/
evSliceReq(1),nReq++

SendReq

5GCamera(1, 1,1000,5)

Idle

[nReq<=1000]/
evSliceReq(1),nReq++

[nReq>1000]

Fig. 7. Example of an instantiated RSCUE

Parallel Composition of RSC(para). A 5G system comprises a number of interacting
components, each behaviorally defined by an RSC pattern. Hence, to evaluate how a sys-
tem is executed, we must compose in parallel the involved RSC patterns. Given a system
consisting of n RSC(para), we denote their parallel composition by:

RSC 1(para1) || RSC 2(para2) || · · · || RSCn(paran) (4)

Example 6. The UML statechart-based behavioral model of our running example is de-
fined as the parallel composition of each system component’s RSC(para):

RSCUE1 || RSCMO1 || RSCRC1 || RSCHost1 || RSCHost2 (5)

where RSCUE1 is the instantiations of the pattern RSCUE(para) for UE1 in the system.
Similarly, we define instantiations of RSCMO(para), RSCRC(para) and RSCVM (para),
representing the UML statechart patterns defined for the active classes corresponding to
MonitorReq, ReqControl, and VirtualMachine, respectively.

Request Controllers and Monitors. There are two active classes, request controllers and
monitors, which play a special role in the model. These are simulation artifacts that facil-
itate keeping track of which VNF is currently executed where, and what has to be done
next. The model only requires that sufficient instances of these two classes are provided.

5. TA Semantics of RSC Patterns

To formally verify properties of a 5G-SO system, we need to assign formal semantics to
the RSC model of component behavior, corresponding to RSC informal semantics. We
define semantics in terms of TA that behave according to timed transition semantics (see
Sec. 3.2). For each restricted statechart pattern (see Sec. 4.4), we have a corresponding TA
pattern. The semantics of the system is defined as the underlying timed transition system
of the network of all TA obtained by instantiating the corresponding TA patterns.

5.1. UPPAAL TA pattern

Using the definition of RSC(para) in Sec. 4.4, and the definition of TA (see Sec. 3.2),
we define a semantic encoding of the RSC(para) components, respectively, in terms of
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TA(para). Like RSC(para), a TA(para) is also defined as a reusable TA structure, for
reoccurring behavior, as follows:

TA(para) = ⟨Lp, l0p, Vp, Cp, Ap, Ep, Ip⟩ : para, (6)

where:

– para is a list of parameters that gets instantiated with values when the pattern is used,

– Lp =
n⋃

i=1

Lai ∪
n⋃

i=1

Lci ∪
n⋃

i=1

Lei where Lai correspond to Sact in RSC(para), Lci

is the set of committed locations introduced to handle the simultaneous synchroniza-
tions involving the trigger (evt) and effect actions (evg) occurring in a transition, Lei
is the set of error locations introduced to capture errors of message queue being full,
not enough request controllers/monitors to handle the request, or deadline violation,

– l0p = Idle is the initial location,
– Vp is the set of variables defined in the corresponding RSC(para), and other local

variables that are used to model the parameter passing (by making a local copy of the
parameter passed), and other variables if needed to define the error conditions that
lead to Lei,

– Cp is the set of clock variables that measure the time elapsed for the corresponding
Evt,

– Ap = Async ∪ Aasg ∪ Audf , where Async corresponds to the synchronizing events
in Evc and other urgent synchronizations (execute?) defined to trigger a transition
as soon as the guard evaluates to true, Aasg is the actions involving assignment of
variables and clock resets, Audf is the set of user-defined functions in RSC(para),

– Ep = Ee ∪ Ea , are the TA edges, where Ee refers to the set of edges defined by
−→p in RSC(para), decorated with Lp in RSC(para) and other guards defined over
the clock variables along the transitions enabled with Evt events; Ea are the edges
defined to connect (Lai and Lci) 3 and (Lai and Lei) 4,

– Ip is the set of invariants that are defined over Lai that generate Evt.

Example 7. As an example, we present the TA pattern, TAUE(para), depicted in Fig. 8,
which corresponds to RSCUE(para). TAUE(para) is defined as follows:

TAUE(ueId, sId,maxReq, actT ) =

⟨Lue, l0ue, Vue, Cue, Aue, Eue, Iue⟩ : (ueId , sId ,maxReq , actT ),
(7)

where:

– Lue = {Idle,Start ,Select ,NoFreeMonitor ,NoFreeContr},
– l0ue = Idle ,
– Vue = {ueId , sId ,maxReq , actT ,nReq , reqSId , avContrs, avMonitors}, such that
ueId represents the id of the UE, and sId represents the id of the slice it requests,
maxReq is the maximum number of slice requests that a UE can make, nReq keeps
track of the number of UE requests, reqSId is a variable that copies the sId to reflect
the passing of sliceId parameter in RSCUE , avContrs , and avMonitors , to capture
errors if there are no available controllers or monitors to handle the requests,

3 If both the trigger and effect actions occur simultaneously in a transition, the latter will be transformed to
two edges with a committed location in between, in which the former is synchronized with the trigger action
and the latter is synchronized with the effect action.

4 The edge connecting La and Le is decorated with guards that are true when meeting the error conditions.
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Fig. 8. UPPAAL TA pattern for UserEquipment

– Cue = {x} is the one-clock set containing the clock that models the activation time,
– Aue = {req !, execute?} ∪ {reqSId = sId ,nReq++, x = 0}, where A comprises

the set of synchronization channels associated with generating a slice request (req!)
and enforcing UE to not idle (execute?), the corresponding variable assignments, and
reset action on clock x,

– Eue = {Idle execute?,nReq<maxReq,x=0−−−−−−−−−−−−−−−−−−→ Start ,Start
x==actT−−−−−−→ Select ,

Select
avContrs==0−−−−−−−−−→ NoFreeContr ,Select

avMonitors==0−−−−−−−−−−→ NoFreeMonitor ,

Select
req!,(avContrs>0&&avMonitors>0),nReq++,reqSId=sId,x=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle},

– Iue : Start −→ (x ≤ actT ).

Using a similar approach, we generate TAVM (para), TARC (para), and TAMO(para)
patterns corresponding to their RSC counterparts. The instantiation of TA(para) assigns
the parameters in para with actual values. Using “p = v” to denote the assignment of
parameter p with value v, we define the instantiated pattern as:

TAi(v1, v2 . . .) ::= ⟨Lpi, l0pi, Vpi, Cpi, Api, Epi, Ipi⟩ : (p1 = v1, p2 = v2, ...) (8)

Example 8. Consider TAUE introduced above. An example parameter assignment is:

para = (ueID = 1, sId = 1,maxReq = 1000, actT = 5) (9)

Parallel Composition of TA(para). Given a system consisting of n TA(para), that is,
TA1(para1),TA2(para2), . . . ,TAn(paran), their parallel composition is denoted as:

NTA = TA1(para1) || TA2(para2) || . . . || TAn(paran) (10)

Example 9. Consider the running example. Assuming that there are only one parallel
request, the behavior is formalized as a network of timed automata:

TAUE1 || TAMO1 || TARC1 || TAHost1 || TAHost2 (11)
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5.2. Queries

Given an instantiated UPPAAL model, we can formulate (T)CTL queries to check prop-
erties of the system. For example, the following query is satisfied if there is no scenario
where a deadline is violated (i.e., checking that the monitor does not register a missed
deadline):

A □ not MO .MissedDeadline (12)

Note that the bandwidth requirement is automatically met upon satisfaction of the latency
requirement, since we construct the models in such a way that a UE can complete its
request only if the necessary bandwidth is available.

6. First-Order Semantics

In the previous section, we assigned semantics to the 5G system in the form of timed
automata. As an alternative, in this section we present a formalization of semantics in first-
order logic with linear arithmetic. We show how the behavior depicted in the statechart in
Fig. 6 can be represented. As mentioned, in this paper we assume that we already have
a sound allocation and routing; nevertheless, it is also straightforward to encode this in
logic, see our previous work where a formalization was presented in OCL [11].

As a starting point, we consider a given 5G-SO system described by an object dia-
gram. We present a set of formulas that model the intended semantics, and then we add
constraints for the desired property to be checked, e.g., “deadlines are not violated”.

Example 10. Consider the network given in Fig. 5, consisting of two hosts and one link.
On this network, we wish to serve one slice consisting of two VNFs. All requests for
slices are generated by a single user equipment.

We start with a formalization of the objects found in an object diagram.

Definition 3. We define a 5G-SO system as the tuple: 5GSO = (H,L, S, V, U), where
H is the set of Hosts, L is the set of Links, S is the set of Slices, V is the set of VNFs
and U is the set of User Equipment.

Each object has a number of properties, e.g., a slice has a deadline and a VNF forward-
ing sequence, which are listed in Table 2. In formulas, we use prop(o) to denote the value
of the prop assigned to object o. For example, deadline(s) denotes the deadline assigned
to slice s. All relevant properties and corresponding functions are shown in Table 2.

Example 11. Our running example has H = {H1, H2}, L = {L1}, S = {S1}, V =
{V1, V2} and U = {U1}. Properties from the object diagram are defined accordingly, e.g.,
bw(L1) = 500, deadline(S1) = 75, vnffseq(S1) = [V1, V2], and subslice(U1) = S1.

We introduce two core concepts for our model: requests and schedules. A request
describes, for a given slice, what VNFs needs to be executed, when and for how long.
Since our model assumes an allocation of VNFs to hosts, and given best-case and worst-
case execution times, we can represent a request as a sequence of host and durations.
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Table 2. Properties of a 5G system

Object type Description Type Function name
Link Bandwidth capacity of the link Integer capacity

Link Latency of the link Integer latency

Slice Latency requirement of slice Integer deadline

Slice Constituting sequence Sequence vnffseq
of VNFs of VNF types

VNF Best-Case Execution Time Integer bcet

VNF Worst-Case Execution Time Integer wcet

User Equipment Subscribed slice Slice subslice

Definition 4. A request R is defined as a constraint-triple (Rstart , Rdeadline , Rpriority)
and a sequence of host-duration triples:

Rexec = [(h1, dmin1, dmax 1), . . . , (hn, dminn, dmaxn)], (13)

where start , Rdeadline , Rpriority ∈ N, hi ∈ H and dmini, dmax i ∈ Z+.

The constraint-triple gives the starting time of a request ((Rstart ), its (relative) dead-
line (Rdeadline ), and its priority (Rpriority ). The host-duration triple consists of a host, a
minimum and a maximum execution time. Intuitively, (h1, 5, 15) means the request re-
quires host h1 to execute between 5 and 15 time units. This information is derived from
the best- and worst-case execution time of a VNF, as well as to which host it is allocated.

Example 12. In our running example, considering that the user equipment has only two
activation, it generates two requests R1 and R2 according to S1, which consists of VNFs
[V1, V2], and thus: R1

exec = e, Rstart = 0, Rdeadline = 75 and Rpriority = 1, and R2
exec =

e, Rstart = 50, Rdeadline = 125 and Rpriority = 1, where e = [(H1, 5, 15), (H2, 10, 20)].

Our second concept describes how a request can be fulfilled. A schedule is a sequence
of actions. Each action is either a computation-based host-action, a communication-based
link-action or one of the meta-actions initialize and complete. Each action has a time-tuple
that describes when the corresponding is executed.

Definition 5. A schedule for a request R, denoted SR, is a sequence of actions, each
action being one of the following:

– I(T ) - This signifies the start of the request
– Hp

h(T ) - This signifies the host h computing with priority p

– Lw
l (T ) - This signifies link l communicating with and bandwidth of w

– C(T ) - This signifies the completion of the request

where T = (t0, tB , tE) is the timing information for the action. It is interpreted as fol-
lows: t0 is the first possible time the action can be performed; tB is the time when the
action is actually started, and tE is the time when the action is finished. It is required that
the schedule begins with an initialize-action and ends with a complete-action.
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Note that for the meta-actions all time-values will be equal, so we can write I(0, 0, 0)
as I(0) (and similar for the completion action).

In contrast to Sec. 5 where we have described the semantics from a behavioral point
of view, here we describe the possible resulting execution traces. For a particular request,
we know which hosts need to execute, for how long, with what priority, as well as what
links should be traversed in between with what delay. Therefore, we can for each request
introduce a schedule fulfilling that request, i.e., it performs the necessary actions.

Example 13. The following schedule fulfills the request R1 in Example 12:

[I(0), H1
1(0, 0, 10), L50

1 (10, 10, 20), H1
2(20, 30, 40), C(40)] (14)

The schedule is initialized at time zero, then H1 computes for ten time units, L1

communicates for ten time units, and finally H2 computes for ten time units. Note that
the second host-action has a delay between when it was available and when it was started.

For a set of request, we can create a set of schedules fulfilling those requests, but with-
out the timing information. We do not go into detail, but in principle, for each request, a
schedule is obtained by converting each host-duration triple to its corresponding host-
action, adding link-actions in between (for the corresponding links), and finally prepend-
ing an initialize-action and appending a complete-action. The resulting schedule contains
no timing information, these are the variables of the model (i.e., the values sought after).

Example 14. Consider our running example. Since the user equipment generates two re-
quests, we will need to create two schedules as follows:

[I(r1b), H1
1(h00 , h0b , h0e), L50

1 (l00 , l0b , l0e), H1
2(h10 , h1b , h1e), C(r1e)] (15)

[I(r2b), H1
1(h20 , h2b , h2e), L50

1 (l10 , l1b , l1e), H1
2(h30 , h3b , h3e), C(r2e)] (16)

The variables (e.g., h00 , l1b , r2e ) represents timing information, which is to be determined.

6.1. Constraints

As seen above, given a set of requests, we can introduce a set of schedules fulfilling
those requests. First, we present constrains requiring these schedules to be sound (Sound
schedules). Next, we need to ensure that the schedules are compatible, that is, a host is not
used by two schedules at the same time (No host overlap), and the sum of bandwidths
used on a single link at any point in time does not exceed the link capacity (No link
over-utilization). We also need to ensure that the scheduling policy is enforced, in this
case-study being “first-come first-served” priority-based scheduling (Scheduling). Note
that we also need to enforce this to routing over links (Routing), where priority is ignored.

We begin with some useful predicates and sets, which will be used in the remainder
of this section. Furthermore, we assume that A is a set containing all action-time pairs.

Predicates:

disjoint(T 1, T 2) := T 1
E ≤ T 2

B ∨ T 2
E ≤ T 1

B (17)
in(t, T ) := TB ≤ t < TE (18)

used(l, t, Lbw
l′ (T )) := in(t, T ) ∧ l = l′ (19)
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The disjoint predicate is true whenever the actual executing time of the two time-tuples
T 1 and T 2 does not overlap; in is true when t is in the actual executing time of T ; and
finally used is true if link l is used by link-action Lbw

l (T ) at time t.

Sets:

hostActions(h) := {Hp
h′(T ) | Hp

h′(T ) ∈ A, h = h′} (20)

linkActions(l) := {Lbw
l′ (T ) | Lbw

l′ (T ) ∈ A, l = l′} (21)
hostEnds(h) := {t | Hp

h′(T ) ∈ A, h = h′ ∧ t = TE} (22)

linkStarts(l) := {t | Lbw
l′ (T ) ∈ A, l = l′ ∧ t = TB} (23)

linkEnds(l) := {t | Lbw
l′ (T ) ∈ A, l = l′ ∧ t = TE} (24)

The set hostActions(h) (linkActions(l)) contains all host-actions (link-actions) for
host h (link l); hostEnds(h) is the set of all times at which a host-action for host h ends
executing, and finally linkStarts(l) and linkEnds(l) are defined analogously.

Sound schedules. First, we require that each schedule SR begins at its start time, thus
for each initialize-action I(T ):

T0 = Rstart (25)

Next, no action can actually begin executing before it is ready:

T0 ≤ TB ≤ TE (26)

The duration of host-actions must be in the interval of the dmin and dmax of the
corresponding action in the request, thus for all Hp

h(T ):

dmin ≤ TE − TB ≤ dmax (27)

Durations of link-actions must be equal to the latency of the link, thus for all Lbw
l (T ):

TE − TB = latency(l) (28)

We require that for all actions in a schedule no action can begin before the preceding one
has ended. Hence, for each pair of successive actions (a1, T 1), (a2, T 2) in a schedule:

T 2
0 = T 1

E (29)

Example 15. For our running example, the following constraints would be introduced:

r1b = 0, r1b = h00 , h0e = l00 , l0e = h10 , h1e = r1e (30)
r2b = 75, r2b = h20 , h2e = l10 , l1e = h30 , h3e = r2e (31)
h00 ≤ h0b ≤ h0e , l00 ≤ l0b ≤ l0e , h10 ≤ h1b ≤ h1e (32)
h20 ≤ h2b ≤ h2e , l10 ≤ l1b ≤ l1e , h30 ≤ h3b ≤ h3e (33)

5 ≤ h0e − h0b ≤ 15, l0e − l0b = 10, 10 ≤ h1e − h1b ≤ 20 (34)
5 ≤ h2e − h2b ≤ 15, l1e − l1b = 10, 10 ≤ h3e − h3b ≤ 20 (35)
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No host overlap. We must ensure that no two host-actions of the same host overlap.

∀ Hp
h1
(T 1), Hp

h2
(T 2) ∈ A h1 = h2 ⇒ disjoint(T 1, T 2) (36)

Example 16. For our running example, the following constraints (simplified by removing
antecedent and replacing disjoint with its definition) would be introduced (we only write
those where the hosts are the same, as the others are trivially satisfied):

h0e ≤ h2b ∨ h2e ≤ h0b (37)
h1e ≤ h3b ∨ h3e ≤ h1b (38)

No link over-utilization. We must ensure that the sum of the bandwidth usage of active
actions at any given point is less than the capacity of the link. However, note that if over-
utilization would occur, it would at least occur when a new link-action is started:

∀l ∈ L ∀t ∈ linkStarts(l)

 ∑
Lbw
l (T )∈A

used(l,t,Lbw
l (T ))

bw

 ≤ capacity(l) (39)

Example 17. For our running example there are two points in time when a link action
begins (l0b , l1b ), so these two time-points must be checked. For clarity, let load(cond , bw)
be a function which returns bw if cond is true otherwise 0. Using this, we can expand the
summation sign and explicitly enumerate the two time-points:

load(in(l0b , T (l00 , l0b , l0e)), 50) + load(in(l0b , T (l10 , l1b , l1e)), 50) ≤ 500 (40)
load(in(l1b , T (l00 , l0b , l0e)), 50) + load(in(l1b , T (l10 , l1b , l1e)), 50) ≤ 500 (41)

Scheduling. As mentioned, we present a formalization of first-come first-serve schedul-
ing of VNFs. We can ensure this by enforcing that if a host-action is not started imme-
diately, during all time-steps between T0 and TB there is another computing host-action,
which was ready earlier or at the same time with higher or equal priority. Note that we
do not need to check all time-steps, but it is enough to check that indeed at T0 this is the
case, and then all time-steps where a host-action (of the same host) ends (since this is the
only time when the host could become idle):

∀(Hp1

h (T 1)) ∈ A ∀t ∈ hostEnds(h) ∪ {T 1
0 }

T 1
0 ≤ t < T 1

B ⇒ (42)

∃Hp2

h (T 2) ∈ hostActions(h) Hp1

h (T 1) ̸= Hp2

h (T 2) ∧ in(t, T 2) ∧ T 2
0 ≤ T 1

0 ∧ p1 ≥ p2

Example 18. In our running example, there are in total four host-actions (two per request),
and for each host-action there is one other host-action of the same host, thus for each
host-action there are two time-points to check, the first possible time for the action, and
the end-time for the other host-action. For each check, we can replace the existential
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quantifier with its enumeration, which in this case is only one action. We show this for the
first host-action (the constraints for the other host-actions are analogous):

h00 ≤ h00 < h0b ⇒ in(h00 , (h20 , h2b , h2e)) ∧ h20 ≤ h00 ∧ 1 ≥ 1 (43)
h00 ≤ h2e < h0b ⇒ in(h2e , (h20 , h2b , h2e)) ∧ h20 ≤ h00 ∧ 1 ≥ 1 (44)

Routing. Routing must also be enforced, and we use the same policy as for scheduling,
“first-come first-serve”. We can ensure this by enforcing that if a link-action is not started
immediately, during all time-steps between T0 and TB there are other communicating
link-actions, which were ready earlier or at the same time, consuming bandwidth such
that the link-action can not be accommodated. Note that we do not need to check all time-
steps, but it is enough to check that indeed at T0 this is the case, and then all time-steps
where a link-action (of the same link) ends (since this is the only time when the link could
get sufficient free bandwidth):

∀ Lbw
l (T 1) ∈ A ∀t ∈ linkEnds(l)

in(t, T 1) ⇒


∑

Lbw′
l (T 2)∈A,Lbw

l (T 1 )̸=Lbw′
l (T 2)

used(l,t,Lbw′
l (T 2))

bw′

 > capacity(l)− bw (45)

Example 19. The routing for our running example is similar to the scheduling constraint,
except that the existence of another host-action, is replaced by summing the bandwidth
usage of all active link-actions (and we use the same function load as in no over-utilization
constraint). We show for the first link-action, the second case is symmetrical:

l00 ≤ l00 < l0b ⇒ load(in(l00 , T (l10 , l1b , l1e)), 50) ≤ 500 (46)
l00 ≤ l1e < l0b ⇒ load(in(l1e , T (l10 , l1b , l1e)), 50) ≤ 500 (47)

6.2. Queries

If all constraints above are satisfied, the underlying set of schedules are compatible. Now,
we can add additional constraints corresponding to queries, that is, properties to check.

Deadline violation. To check if any single schedule violates its deadline we add:∨
SR∈SC

T 2
E − T 1

B > Rdeadline , (48)

where SC is the set of all schedules, and I(T 1), C(T 2) are the initialize- and complete-
action of each schedule SR, and Rdeadline is the deadline of the corresponding request.

Example 20. For our running example, the deadline query would be:

r1e − r1b > 75 ∨ r2e − r2b > 75 (49)
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6.3. SMT solving

To practically use these semantics to determine a property for a given 5G-SO system, we
create one request for each activation of the user equipment. These are then encoded as
schedules, with corresponding constraints, in Z3, together with the property to be checked.

Since the deadline constraint is true if at least one schedule violates its requirement,
if the resulting SMT-problem has a solution this means that there is at least one execution
trace in which the system fails, thus the configuration is not a solution. Note the inverse
of the result: if no SMT model is found then the 5G-SO system is safe.

7. Modeling and Verification Framework

By combining the UML profile (Sec. 4) with the semantics (Sec. 5 and Sec. 6) we obtain
a framework which can be used to model various 5G-specific scenarios, and analyze them
by employing a suitable back-end (e.g., UPPAAL, Z3). Our framework has two benefits:
(1) a practitioner can use an industrially-accepted UML tool to model the system without
knowledge of the underlying TA and first-order logic modeling, and (2) the verification
results provide guarantees of the 5G-SO modeled behavior.

The intended workflow of the framework is to start from a case study and its require-
ments in natural language. First, the UML5G-SO is applied profile and a structural rep-
resentation is created using a class diagram. Some of the classes in the diagram, referred
to as active classes, have behavior modeled by UML statecharts. Next, the requirements
of the case study are formalized either as (T)CTL queries or SMT formulas. This part is
meant to be done by an expert working with both 5G as well as the underlying semantics.

Afterwards, a 5G expert can continue work without knowledge of formal methods.
To verify a particular 5G-SO system, the class diagram is instantiated, yielding an ob-
ject diagram of the system. Secondly, the semantics are applied ( using TA templates or
SMT formulas). Finally, the corresponding queries or formulas are analyzed to verify the
system. We provide a tool, G5, which can execute the second and third step automatically.

7.1. G5

As a proof-of-concept of how employing our profile allows for automatic verification of
object diagrams, we provide a tool, G55, which facilitates verifying the assertion that all
deadlines are met in a specific 5G-SO system. The tool is implemented in Python and
takes as input an object diagram, specified in the soil-format (of the USE tool [28]); it
can automatically generate both a TA model and an SMT model, and use a corresponding
back-end to verify that all deadline requirements of slices are met. The user designs their
system in an UML tool, saving an object diagram corresponding to the system they wish
to analyze. Then in the G5 tool, the diagram is loaded and by the press of a button,
deadline-violations can be checked.

5 https://github.com/ptrbman/GGGGG
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7.2. Comparison of semantics

We have now presented two formalizations of the 5G system semantics, one based on
TA and the other on first-order logic. They are formulated independently, but aimed at
expressing the same behavior. Consider a counter-example found in the SMT-model of a
particular 5G system. We can then extract all the schedules with their action-time pairs
and form an execution trace of the system. In the same manner, if the deadline-query of
the TA formalization is unsatisfied then there exists a counter-example that can also be
seen as a trace.

We conjecture that it is always possible to translate a counter-example trace (from
TA) to corresponding schedules with action-time pairs (to SMT) and vice versa. If this
conjecture holds, both formalizations should always yield the same answer to the ques-
tion whether a deadline is violated or not. We explore this further in the experimental
evaluation.

8. Case study

As a case study, we consider a robot-assisted surgery application and a video-streaming
application, accessing a health slice and a video slice, respectively, within the same small
cell (i.e., bandwidth resources are consumed from the same cell tower). Applications ac-
cess their respective slices via their 5G user equipment (UE). In our case study, a 5G
camera accesses an instance of the health slice, and a mobile phone accesses an instance
of the video slice. We consider that health slices have a higher priority over video slices.

Fig. 9. Case study

We assume that we have one UE accessing the health slice and two UE accessing the
video slice. The case study is depicted in Fig. 9. Slices consist of their respective VNF
instances, e.g., the health slice consists of VNF sequence [V1, V2], and the video slice has
the VNF sequence [V1, V3, V4, V5]. Note that the slices share V1. The overlay network
comprises four hosts onto which VNFs are allocated. For instance, as shown in Fig. 9, we
consider that V1 and V3 are allocated to Host1. Furthermore, the hosts are connected via
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virtual links, e.g., Host1 and Host2 are connected via L1. However, not all hosts have a
one-to-one link connectivity established, e.g., there is no direct link between Host1 and
Host3. Hence, any routing scheme from Host1 to Host3 must use the path consisting of
links [L1, L2], or the alternative path [L4, L3]. The slices cater to different application
requirements, for example while the robotic surgery application requires both low latency
and high bandwidth, the video streaming application has high bandwidth requirements,
but not critical latency constraints. We focus on two requirements in this case study, the
end-to-end latency requirements of the slices are met and that the end-to-end bandwidth
requirements of the slices are met.

8.1. Modeling with the Framework

The class diagram description of our case study is shown in Fig 10. We apply stereotypes
and add attributes and functions, in the same manner as in Example 4. We model two
categories of 5G user equipment, 5GCamera and MobilePhone , which access the two
kinds of slices, HospitalSlice and VideoSlice, respectively. We also apply stereotypes on
ReqControl ,MonitorReq and VM in the same manner as in Example 2. We also present
an object diagram modeling of the use case. In Fig. 11 all the components of the system
instance is shown with their assigned attributes.

We need to define queries corresponding to the requirements. By construction, both
formalizations only gives solutions respecting bandwidth requirements. For latency re-
quirements, we use the queries in Eq. 12 for the TA model and Eq. 48 for the SMT model.

8.2. Experimental Evaluation

We conducted an experimental evaluation of our framework on the use case. All experi-
ments are run on a Mac, with 1,4 GHz Quad-Core CPU and 16 GB RAM, using G5.

Use Case Instantiation To create a TA model we instantiate our TA patterns described
in Sec. 5, in correspondence with the object diagram (compare with Fig. 11). In order to
verify the model, we assume that the network has enough request controllers and monitors
to handle the requests from independent UE (i.e., we find parameters s.t. it is sufficient).

For the SMT model we instantiate the formulas described in Sec. 6. Instead of finding
a sufficient number of monitors and executors, we need to create one schedule for each
request (i.e., the sum of all maximum activations of all user equipment). We then generate
a model as described above to check individual queries.

One crucial common factor of performance between the two models is the maximum
activation times. The number of required monitors and executors is heavily dependent on
these numbers (as well as the number of schedules). We set the maximum activation of
all user equipment to the same value, and will refer to this as MA. To check scalability,
we set this value to one and try with increasing values until timeout.

We verify the generated model against the formalized requirement, using the UPPAAL
model checker version 4.1.19 6. We also add error locations to capture queues being full,
and insufficient request controllers or monitors available (e.g., see Fig. 8). In case the

6 https://www.it.uu.se/research/group/darts/uppaal/download.shtml
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Fig. 10. Class diagram representation of our case study (It inherits all relations and multi-
plicities in the profile). Active classes are denoted with an asterisk.

verification fails, the mechanism allows for detecting if the model has reached any of the
error locations. From Table 3, one can see that the time taken for exhaustive verification of
certain queries is not promising, hence we acknowledge that exhaustive model checking
may not always be the best solution at hand to verify big complex systems like a 5G-SOS,
as it suffers from state-space explosion. However, if one is able to model and verify some
critical part of the network and functionalities, it provides guarantees over all possible
system behaviors. As shown in Table 3 the scalability of the SMT model is better than
for the TA model, but it is still non-linear (as expected, as the number of constraints are
quadratic in the number of schedules).

8.3. Discussion

The use case helps us see how it is possible to draw up UML diagrams (class and object)
to describe a scenario and then analyzing it using formal methods. Currently, the number
of request controllers and monitors needs to be manually by the user, as we have not
found a method to calculate a reasonable bound, but other than this most details of the
verification process is hidden.
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Fig. 11. Object diagram representation of the use case

The performance of both models (SMT and TA) are not enough to analyze systems
with a large number of activations of user equipment. Nevertheless, it can be used to
analyze systems of small size and there is room for optimizations which could greatly
increase the performance. It is also important to emphasize, that in contrast to many other
approaches which has a more detailed view of a similar system (see e.g., [10]), we are not
aiming at just running or simulating a system but modeling it formally s.t. it is analyzable.

It is clear that the SMT model scales better than the TA model (at least for the use
case). However, all these results are satisfied, and the performance could be different
when compared on unsatisfiable use cases. Moreover, (T)CTL queries can be easier to
work with for formulating properties, and UPPAAL allows for studying a single execution
and going back and forth to analyze and make different choices.

Table 3. Results and running-times of checking deadline on the use case with both models
for different maximum activations (MA). All times are in seconds.

MA 1 2 3 4 5 6 7 8 9 10 11
TA Time 31.21 T/O - - - - - - - - -
TA Result sat - - - - - - - - - -
SMT Time 0.04 0.20 0.82 2.90 6.56 70.87 46.35 903.23 1399.85 321.38 T/O
SMT Result sat sat sat sat sat sat sat sat sat sat -
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To help establish the equivalence of the models, we conducted a simple experiment
generating 100 systems (with four hosts, five links, two slices, eight VNFs and two UE).
These were tested using both models checking if their answers agree, and in every case
they did. Of course this does not prove the models equivalence but shows support for it.

9. Related Work

Substantial work within the field of 5G service orchestration is aimed at providing optimal
VNF placement algorithms and routing schemes [7,18,1,6]. There is also interesting work
looking into scheduling of VNFs [2], and slice chain reconfiguration [16]. In [29], Yuan
et. al. applies machine learning for resource allocation in network slicing, although this is
at a lower level (radio) than what we are looking at in this paper. Outside the scope of 5G,
there is work on allocating virtual machines among hosts in an energy-efficient manner
[3], which could be adapted and integrated into a VNF placement scheme.

However, not much effort has been invested in modeling and formal analysis of 5G
orchestration systems, which in turn would verify if a given VNF placement, resource
allocation, and routing meets the application requirements. Nevertheless, there exists in-
teresting work that considers the description of VNFs and VNF chaining in isolation, to
analyze if application requirements are met, for instance, the Gym framework [25] and
the work by Peuster and Karl [23]. In contrast to our work, these approaches model VNFs
and their chaining at a low level, without considering a system perspective, or 5G-specific
scenarios. Spinoso et al. [27] employ SMT solvers (e.g., Z3), to verify VNFs and VNF
chains against safety and reachability properties. Although the approach is promising, the
framework is strictly formal, lacking the bridge to industrially-accepted modeling lan-
guages such as UML. In addition, the authors do not consider the service-orchestration
problem and the QoS requirements that we study in this paper. In another interesting work
[17], Luque-Schempp et al. investigate the use of formal methods in the context of a 5G
network, focusing on Software Defined Networking and Network Function Virtualization
modeling and verification via selected formal tools like theorem provers, model check-
ers, and SMT solvers, at different levels of network abstraction, without considering 5G
service orchestration. Unlike our approach, the framework does not employ modeling
techniques other than those of the formal tools, making it less appealing to practitioners.

Even if placed outside the 5G realm, the work on modeling E-service orchestration
by Petri Nets [20] could be extended to use the timed variant of the formalism together
with the respective tool support (e.g. TINA model checker) to solve the 5G orchestration
problem. However, our UPPAAL-supported approach benefits from the several options
for diagnosis, as well as replaying counterexamples in the tool’s user-friendly GUI.

In the domain of E-health, there is a proposed framework for fog-assisted monitoring
of patients [10]. A prototype testing efficiency of introducing fog/nodes is created and can
therefore provide empirical evidence of improvement, while we hope that with a formal
methods framework like the one in this paper, such improvements can instead be proven.

The use of UML to model 5G service orchestration is not investigated much in the lit-
erature. One recent work [22] models 5G network slices, namely, resource driven, service
driven, deployment driven, using different UML diagrams. However the modeling is not
backed by formal analysis like the one presented in this paper.
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10. Conclusions and Future Work

In this paper, we have proposed a framework to model and analyze dynamic 5G service
orchestration systems. Our solution combines the features of user-friendly UML modeling
with formal analysis using the UPPAAL model checker, or SMT checking, and provides
one with automated support to model and formally verify the structure and behavior of
dynamic 5G SOS systems. Using our tool support requires knowledge of UML and of the
UML5G profile, but no experience with timed automata or model checking. This shows
the power of complex automatic reasoning tools when provided to a UML user.

In our current model, we have considered only dynamic behavior arising from simul-
taneous user requests, VNF sharing, variable link and server utilization, etc. In the future,
we would like to consider other factors like host failures, which entails VNF reallocation
or rerouting of network traffic through an alternative path.

Acknowledgments. This work is supported by the EU Celtic Plus/Vinnova project, Health5G -
Future eHealth powered by 5G, and the KKS synergy project ACICS - Assured Cloud Platforms
for Industrial Cyber-Physical Systems, which are gratefully acknowledged.
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