
Computer Science and Information Systems 20(1):277–306 https://doi.org/10.2298/CSIS210707057X

Formalization and Verification of Kafka Messaging
Mechanism Using CSP

Junya Xu1, Jiaqi Yin2,⋆, Huibiao Zhu1,⋆ and Lili Xiao1

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

hbzhu@sei.ecnu.edu.cn
2 Northwestern Polytechnical University, Xi’an, China

jqyin@nwpu.edu.cn

Abstract. Apache Kafka is an open source distributed messaging system based
on the publish-subscribe model, which achieves low latency, high throughput and
good load balancing. As a popular messaging system, the transmission of messages
between applications is one of the core functions of Kafka. Therefore, the relia-
bility and security of data in the process of message transmission in Kafka have
become the focus of attention. The formal methods can analyze whether a model is
highly credible. Therefore, it is significant to analyze Kafka messaging mechanism
which describes the communication process and rules between each module entity
in Kafka from the perspective of formal methods.
In this paper, we apply the process algebra CSP (Communicating Sequential Pro-
cesses) and the model checking tool PAT (Process Analysis Toolkit) to analyze
Kafka messaging mechanism. The results of verification show that the model caters
for its specification and guarantees the reliability of messages in the normal com-
munication process. Moreover, in order to further analyze the security of Kafka
messaging mechanism, we add the intruder model and the authentication protocol
Kerberos model and compare the verification results of Kafka messaging mecha-
nism with or without the secure protocol Kerberos. The results show that the Ker-
beros protocol has improved the security of Kafka messaging mechanism in some
aspects, but there are still some security loopholes.

Keywords: Distributed Messaging System, Kafka Messaging Mechanism, CSP,
Formalization, Verification

1. Introduction

Since distributed messaging system provides an effcient and stable transmission channel
for the realization of streaming calculation, data transmission and other functions, it has
been widely used to capture and analyze large amounts of data in real time. A messaging
system is responsible for the transmission of data among applications, and these applica-
tions only focus on the data rather than the datials of transmission. Data transmission in
the communication process of distributed message system is based on a reliable message
queue, which mainly has the following two modes: point-to-point and publish-subscribe
[6,25]. In a point-to-point mode, a producer sends data to a queue and one or more con-
sumers consume data from this queue in sequence. Each data can only be used once, i.e.,

⋆ Corresponding authors

278 Junya Xu et al.

when a consumer consumes a piece of data in this queue, this data is removed from the
messaging queue. ActiveMQ, ZeroMQ and RabbitMQ [1,16] are well-known message
queuing platforms. Unlike point-to-point, in a publish-subscribe mode, producers publish
messages grouped into topics, while consumers can subscribe to one or more topics and
consume all the data in these topic. In addition, the same piece of data can be consumed
by multiple different groups of consumers, and the data will not be deleted immediately
after consumption. Apache Kafka is a high-performance cross-language distributed mes-
saging system based on publish-subscribe mode [8,24,26], which has been widely used
by Internet companies such as Yahoo, Twitter, etc.

As a popular open source distributed messaging system, Kafka has the following
advantages [8,26]. First, Kafka provides high throughput for both publishers and sub-
scribers. It can produce about 250,000 messages (50 MB) per second and process 550,000
messages (110 MB) per second. Second, Kafka can be persisted. Messages are persisted
to disks, so it can be used for bulk consumption, such as Extract-Transform-Load (ETL)
and for real-time applications. At the same time, it prevents data loss by persisting data
to disks and using replica mechanism. Third, it is easier for Kafka to expand outward.
There are multiple producers, brokers and consumers, all of which are distributed. As a
result, it can expand the machine without downtime. Fourth, the state in which messages
are processed is maintained on the consumer side, not on the server side, so that it can
be automatically balanced when message processing fails. Finally, Kafka supports both
online and offline scenarios.

The formal methods are the research methods based on mathematical logic, which
can verify and evaluate the reliability of the model through the specification, modeling
and analysis of the model. Therefore, we consider to analyze whether the data in Kafka
messaging mechanism is reliable from the perspective of formal methods. In this paper,
we use the classical process algebra CSP [3,9,19] to give a formal model of Kafka messag-
ing mechanism, and utilize the model checker PAT [10,13,17,20] to verify some impor-
tant properties, including Deadlock Freedom, Acknowledgement Mechanism, Parallelism,
Sequentiality and Fault Tolerance. Moreover, we introduce the intruder to simulate the
attack behavior in the real network and introduce the authentication protocol Kerberos to
improve the security of the Kafka messaging mechanism. We also model the intruder and
Kerberos based on the original model to further analyze the security of Kafka.

The remainder of this paper is organized as follows. Section II gives a brief introduc-
tion to Kafka messaging system, the process algebra CSP and the model checking tool
PAT. In section III, we model the core components in Kafka messaging system using CSP.
At the same time, we adopt the model checking tool PAT to implement the constructed
model and verify five properties. Moreover, we analyze the security of Kafka messaging
mechanism by modeling the intruder and Kerberos and comparing the verification results
of the constructed model with or without the Kerberos protocol in Section IV. Finally, we
conclude this paper and make a discussion on the future work in Section V.

2. Background

In this section, we start with an overview of Kafka messaging system. At the same time,
we also give a brief introduction to process algebra CSP and model checking tool PAT.

Formalization and Verification of Kafka... 279

2.1. Kafka messaging system

In this paper, we focus on Kafka messaging mechanism which describes the process of
communication among producers, consumers and other components as shown in Fig.1.

Fig. 1. The Kafka Messaging System

Before we introduce the Kafka messaging system, we first need to know a few com-
mon terms [16] in Kafka as follows:

– ZooKeeper: ZooKeeper helps Kafka store and manage the information of Kafka clus-
ter.

– Producer: Producers consist of applications and are publishers of data, primarily
sending messages to Brokers in Kafka.

– Broker: The Kafka messaging system contains one or more brokers that save data
from producers and provide these data to consumers.

– Topic: Each message published to Kafka has a category called Topic. Producers and
consumers only need to specify the topic of messages to publish and consume the
data, regardless of which brokers data is stored on.

– Partition: A topic can be divided into multiple partitions, each of which is an ordered
queue, and each message in a partition is assigned an ordered id. Kafka only guaran-
tees that messages are sent to the consumer in the order of one partition, not the order
of the whole of a topic.

– Replica: Replica is for backup to ensure that data is not lost when a broker in Kafka
fails and Kafka continues to work. Each partition of a topic has several replicas in-
cluding one leader and several followers.

280 Junya Xu et al.

– Leader: The leader is a ‘master’ replica of multiple replicas of each partition, and is
the object on which the producer sends the data and the object on which the consumer
consumes the data.

– Follower: The follower is the ‘slave’ replica of multiple replicas of each partition,
and synchronizes data from the leader in real time to keep the data synchronized with
the leader.

– Consumer Group: Each consumer group consists of multiple consumers subscribing
to the same topic. In Kafka, the data of the same partition can only be consumed by
one consumer within the group, but consumers in other groups still use this data.

– Group Coordinator: There is only one group coordinator for a consumer group. It
needs to manage the load balancing among the consumers in this group, and sends
partitioning strategy to all the consumers in that group.

– Consumer: It is the consumer of messages and pulls messages from the subscribed
topic.

Based on the above concepts, we introduce Kafka messaging mechanism from the
following three aspects: production of messages, rebalance of a consumer group and con-
sumption of messages.

Fig. 2. The Production of Messages

As shown in Fig.2, before publishing this message, a producer firstly needs to find the
leader of a partition in this topic from ZooKeeper[18] and then sends the message to that
leader. When a leader receives the message, it needs to write the message to a local log.
Afterwards, followers of this partition need to pull this message from the leader and send
‘ACK’ to the leader after writing it to the local log. Finally, after receiving ‘ACK’ from
all followers of this partition, the leader needs to send ‘ACK’ to the producer to state that
the message has been delivered successfully.

In Kafka messaging mechanism, there are three types of values of ‘ACK’ sent by the
leader in a partition to a producer: ‘ACK=0’, ‘ACK=1’ and ‘ACK=all’ [5]. In this paper,
our model takes the third approach to ensure data security and reliability.

– ‘ACK = 0’ indicates that a producer does not care about the processing result of the
message on the brokers. As long as it sends the message, it considers the message
delivered successfully.

Formalization and Verification of Kafka... 281

– ‘ACK = 1’ means that the message only needs to be written to the local log of the
broker by the leader in this partition to return a successful commit.

– ‘ACK = all’ represents that before it is considered as a successful commit, the message
not only needs to be stored by the leader, but also requires to be stored by all the
followers of this leader .

The group coordinator of a consumer group need to manage all members in this group,
and the process is called rebalance, which consists of two main steps: join and synchro-
nization. In the process of consumers joining the group as shown in Fig.3 (a), all con-
sumers in this group send ‘JoinGroup Request’ to the group coordinator and request to
join. After receving all requests, the group coordinator selects one from members to play
the role of leader and sends a reply message to each member of this group along with
the member information of the cousumer group and the subscribed topic information to
the leader. The leader needs to complete the partitioning strategy, which means that each
consumer in this group should consume data from the corresponding partition of a topic.
Fig.3 (b) shows the process of group synchronization. When the leader of consumers in
this group completes the partitioning strategy, it encapsulates the strategy in the message
named ‘SyncGroup Request’ to the group coordinator. Other consumers also send mes-
sages called ‘SyncGroup Request’. After receiving all requests of synchronization, the
group coordinator sends the partition strategy to all members of this group.

(a) Process of JoinGroup (b) Process of SyncGroup

Fig. 3. The Rebalance of a Consumer Group

Finally, we introduce the process by which consumers pull messages from the sub-
scribed topic. In Kafka messaging system, consumers use the ‘pull’ mode to consume
messages in sequence from the leader of the partition. Because the data transmission rate
in the ‘push’ mode is determined by a server, but it is easy to cause problems like network
congestion due to the lack of time for consumers to process the data.

It is worth noting that the message in the same partition of a topic can only be con-
sumed by one consumer within the consumer group, but consumers in other consumer
groups can still pull this messages. Moreover, when the number of partitions is greater
than the number of consumers in a group, some of the consumers can pull messages from
multiple partitions. In addition, we know that a topic can be divided into multiple parti-
tions, and ‘ordered’ means that messages within each partition are sent to consumers in
order, but there is no guarantee that messages within a topic are ordered.

282 Junya Xu et al.

2.2. CSP

Communicating Sequential Processes (CSP) [3,9] is the algebraic theory proposed by
C.A.R. Hoare. The language is mainly designed to describe and analyze the behavior
of concurrent systems and processes, which has been successfully applied in modeling
and verifying various concurrent systems and protocols [7,11,27]. We give the following
syntax of the CSP language used to describe the process in this paper, where P and Q are
processes, a denotes the event and c represents the name of channel.

P,Q = Skip | Stop | a→ P | c?x→ P | c!x→ P | P □ Q |
P ∥ Q | P ||| Q | P ◁ b▷Q | P ;Q | P [|X|]Q

– Skip represents that the process which does nothing but terminates successfully.
– Stop denotes that the process does nothing and it is in the state of deadlock.
– a→ P describes an object which first performs the event a and then behaves like P .
– c?x→ P receives a message through channel c and stores the value in the variable x

and then the behavior is like process P .
– c!x→ P sends message x through channel c and then behaves like process P .
– P □ Q stands for the choice between process P and process Q, and this selection is

decided by the environment.
– P ∥ Q denotes that processes P and Q execute concurrently and are synchronized

with the same communication events.
– P ||| Q describes that processes P and Q run concurrently without barrier synchro-

nization.
– P ◁ b ▷ Q indicates if the Boolean condition b is true, the process behaves like P ,

otherwise like Q.
– P ;Q describes that processes P and Q execute in sequence.
– P [|X|]Q denotes that the parallel composition of P and Q performs the concurrent

events on the set X of channels.

2.3. PAT

Process Analysis Toolkit (PAT) [13,17], a toolset based on the process algebra CSP, is
designed for applying model checking techniques for analysis of various systems and
protocols. It supports to check for more properties [4,21], including deadlock freedom,
reachability, complete LTL model checking, etc. Here we give some syntax of PAT used
in this paper as follows.

– # define V 0
It defines a global constant V with the initial value 0, and a global constant must be
assigned an initial value in PAT.

– var x = 1
It means that a variable x is defined with an initial value of 1. If the variable is not
assigned an initial value, it defaults to 0.

– channel c 0
This statement declares that c is the channel name and 0 is the buffer size. Notice
that channel buffer size must be greater than or equal to 0. When the buffer size of a
channel is equal to 0, it sends and receives messages synchronously.

Formalization and Verification of Kafka... 283

– # assert P deadlockfree;
This statement defines an assertion and it checks whether process P will enter a
deadlock state or not.

– # define goal x = false;
assert P reaches goal;
This first statement defines an assertion and the second statement checks whether
process P will reach a state, where the property goal is satisfied or not.

– # define goal x = false;
assert P | = goal;
This statement declares an assertion that checks whether process P always satisfies a
state, where the property goal is satisfied or not.

– |||i : {0..N} @P (i);
This statement means that multiple processes run interspersed, specifically expressed
as P (0), P (1), P (2) ... P (N).

3. Modeling

In this section, we use process algebra CSP to model the Kafka messaging mechanism
which descirbes the process of communication between components in Kafka messaging
system shown in Fig.1.

3.1. Sets, Messages and Channels

In order to model the process of message transmission and the behavior of components,
such as producers and consumers, etc. In Kafka, we give the definitions of sets, messages
and channels used in our model.

Table 1. The relationship between involved constants and pre-defined sets

Set Constants
Module Z(zookeeper), P(producer), PA(partition), F(follower),

GC(groupcoordinator), C(consumer)
ID TID(topic id), PID(producer id), LPAID(leader-partition id),

FPAID(follower-partition id), CLeadID(leader-consumer id),
CID(consumer id), GCID(GroupCoordinator ID)

Data Data
Req ReqData(request for data),

reqTID(Request for the topic’s id), reqLPAID(Request for the leader-partition’s id),
Join(request to join a group), Sync(request for group synchronization)

Ack true/1(positive feedback), flase/0(negative feedback)

First, we give the definitions of some sets that are used in the model. Module set is
composed of all modules in Kafka messaging system, including zookeeper, producers,
consumers, groupcoordinators, leader-partitions and follower-partitions. ID set consists
of unique identifier for each of the above module. Req set defines request information.

284 Junya Xu et al.

Table 2. The relationship between involved variables and pre-defined sets

Set Constants
Module z(zookeeper), p(producer), pa(partition), f(follower),

gc(groupcoordinator), c(consumer)
ID tid(topic id), lpaid(leader-partition id), fpaid(follower-partition id),

cleadid(leader-consumer id), cid(consumer id), gcid(GroupCoordinator ID)
Data data
Req reqdata(request for data),

reqtid(Request for the topic’s id), reqlpaid(Request for the leader-partition’s id),
join(request to join a group), sync(request for group synchronization)

Ack p ack, c ack, f ack, sync ack (positive feedback/negative feedback)

Data set includes the data transmitted between modules and Ack set contains feedback
information.

In addition, we also give some constants based on the defined sets in Table I and some
important variables we use in Table II respectively.

Based on the above sets, we describe the definition of the messages transmitted among
components. In this paper, messages during communication are defined into the following
three types:

MSGreq = {msgreq.A.B.content | A ∈Module,B ∈Module, content ∈ Req}
MSGrep = {msgrep.A.B.content | A ∈Module,B ∈Module, content ∈ Ack}
MSGdata = {msgdata.A.B.content | A ∈Module,

B ∈Module, content ∈ {Data, ID}}

where, MSGreq is composed of the request messages transmitted between compents,
MSGrep represents the response messages and MSGdata means the data messages. A
and B is sender and the receiver respectively, and content represent content contained in
each messagee.

Then, we define that MSG consists of the above three types of messages.

MSG = MSGreq ∪ MSGrep ∪ MSGdata

Next, we define the channels used to simulate the communication among various mod-
ules. These channels of all modules use COM PATH to represent in this paper:

– ComZP: the channels between zookeeper and producers. In a system, zookeeper may
interact with multiple producers, and corresponding channels will also be generated.
We use subscript p to distinguish each channel expressed as ComZPp.

– ComPL: the channels between producers and leaders of the partitions. A produder
can publish data on different topics to different leaders of topics by corresponding
channels. We use the subscript i to distinguish each channel, which is described as
ComPLi.

– ComLF: the channels between followers and leaders of the partitions. A partition
usually has one leader and multiple followers, so we use the subscript i and ComLFj

to describe the multiple channels between leader and followers in a partition.

Formalization and Verification of Kafka... 285

– ComGC: the channels between group coordinators and consumers. A consumer sends
a request to the group coordinator, and the group coordinator publishes synchroniza-
tion messages over this channel. Since a group coordinator manages multiple con-
sumers within a consumper group, and there may be multiple consumper groups, we
use the subscript m to distinguish them and denote them as ComGCm.

– ComLC: the channels between consumers and leaders of the partitions. Each con-
sumer can pull the data from mutiple leaders of partitions in different topics, and we
use ComLCn to distinguish each channel.

– ComFC: the channels between consumers and followers of the partitions. When a
broker on which the leader of a partition goes down, the consumer pulls data over the
channel when one of followers becomes the leader of this partition. We use subscript
l and ComFCj to describe the multiple channels.

3.2. Overall Modeling

According to the above description, the model of Kafka messaging mechanism includes
six subprocesses, including ZooKeeper, Producer, Consumer, GroupCoordinator,
LPartition and FPartition. In order to facilitate the overall modeling and simulate the
communication process of the model entity, we abstract the data transmission in Kafka.
The overall model is shown in Fig.4.

Fig. 4. The Communication Flow of Kafka Messaging Mechanism

Then, we formalize the whole model System() as below:

System() =df ||| pid∈PID, lpaid∈LPAID, fpaid∈FPAID, gcid∈GCID, cid∈CID

(ZooKeeper [|COM PATH|] Producerpid

[|COM PATH|] LPartitionlpaid [|COM PATH|] FPartitionrfpaid

[|COM PATH|] GroupCoordinatorgcid [|COM PATH|] Consumercid)

286 Junya Xu et al.

where, the System process is composed of the following processes: ZooKeeper, Producer,
LPartition , FPartition, GroupCoordinator and Consumer concurrently using a
set of channels COM PATH . In addition, we define identifiers and a range of values for
identifiers to distinguish each process. pid represents a producer’s number and PID indi-
cates the range of pid. Other characters, such as lpaid and fpaid, have similar meanings.
[|COM PATH|] is the communication channel.

3.3. ZooKeeper

In Kafka, messages from the same Topic are divided into partitions and distributed over
multiple brokers, and zookeeper needs to maintain a relationship between the partitions
and the brokers. After receiving the request message from Producerpid, ZooKeeper pro-
cess sends the information of these partitions to Producerpid by the channel ComZPp.
Each channel has its own id to prevent multiple processes of the same type from compet-
ing for resources on the same channel.

ZooKeeper() =df ComZPp?msgreq.pid.reqtopid.reqlpaid →
ComZPp!msgdata.P ID.TID.LPAID → ZooKeeper()

3.4. Producer

Producers, responsible for publishing data to partitions in a specified topic, are the impor-
tant parts of Kafka messaging system. Producerpid process needs to find the leader of
each partition from ZooKeeper on the channel ComZPp. At the same time, Producerpid
provides a core parameter ‘ack’ to define the conditions for the message to be ‘submitted’.
In our model, it requires that the message has been stored not only by the leader-partition,
but also by all follower-partitions of this leader.

Producerpid() =df ComZPp!msgreq.P ID.reqTID.reqLPAID →
ComZPp?msgdata.pid.tid.lpaid →(

ComPLi!msgdata.P ID.LPAID.Data
□ ComPLi?msgrep.p ack

)
; Producerpid()

where, p ack is a variable to describe a response message recevied from LPartitionlpaid.
When its content is P ack[lpaid] = 1, it means that the data was successfully stored to
the broker by all the replicas in this partition numbered lpaid.

3.5. LPartition

Each topic are divided into multiple partitions, but each partition has only one leader.
As an important component of data storage, it needs to communicate with producers,
consumers and followers of this partition. There are three types of channels that need to
be used in this process: ComPLi, ComLCn, and ComLFj .

First, it needs to accept the message from Producerpid process and then stores the
message. Second, it needs to send the message which Consumercid process needs. Fi-
nally, it also needs to send the message to FPartitionfpaid of this partition to complete
the copy of the message.

Formalization and Verification of Kafka... 287

LPartitionlpaid() =df

ComPLi?msgdata.pid.lpaid.data →
ComLFj?msgreq.fpaid.tid.lpaid →
ComLFj !msgdata.Data →
ComLFj?msgrep.fpaid.f ack →
GetStateF (tid, lpaid, fpaid);(
(ComPLi!msgrep.P ack[lpaid] {P ack[lpaid] = 1})
◁F ack == true && lpaid ∈ LPAID ▷ SKIP

)

□

ComLCn?msgreq.reqdata {DataS[lpaid][cid][seq] = 1;
seq = Seq[lpaid]; Seq[lpaid] + +} →

ComLCn!msgdata.Data

;

LPartitionlpaid()

In the above formula, GetStateF (tid, lpaid, fpaid) is used to get the status of all
followers to check whether they have all stored data; P ack[lpaid] = 1 indicates that the
data is stored not only by the leader, but also by all followers of this partition numbered
lpaid; DataS[lpaid][cid][seq] records the state of the data with a sequence number of
seq; and Seq[lpaid] is the order of the data in LPartitionlpaid .

3.6. FPartition

The followers of each partition plays an important role in data security and data reliability
which supports a copy mechanism. In detail, when process LPartitionlpaid receives a
message from Producerpid, all processes FPartition of this partition need to pull the
message and store it. This is to ensure that when the broker of on which LPartitionlpaid

is located fails, FPartitionfpaid of this partition can communicate with Consumercid
instead of it.

FPartitionfpaid() =df
ComLFj !msgreq.FPAID.TID.LPAID →

ComLFj?msgdata.data{stateF [tid][lpaid][fpaid] = 1} →
ComLFj !msgrep.FPAID.F ack

□

(
ComFCl?msgreq.reqdata →
ComFCl!msgdata.Data

)
 ;

FPartitionfpaid()

where, the array stateF [tid][lpaid][fpaid] indicates the state of FPartitionfpaid of the
Lpartitionlpaid in topictip, i.e., whether data is received. After receiving the data suc-
cessfully, the value of stateF [tid][lpaid][fpaid] will change to 1.

3.7. GroupCoordinator

The group coordinator is responsible for managing all members of this group. After all
consumers in this group making requests, GroupCoordinatorgcid process selects a con-

288 Junya Xu et al.

sumer to take a leadership role and sends it group membership information and subscrip-
tion information. In addition, process GroupCoordinatorgcid notifies each consumercid
in the group of the partitioning strategy developed by the leader of consumers.

GroupCoordinatorgcid() =df ComGCm?msgreq.join → GetStateC(cid);(
ConsumerL[cid] = 1 ◁ C ack == true▷ SKIP

)
;

ComGCm!msgdata.Join.CLeadID.CID.TID.LPAID →
ComGCm?msgreq.sync.cid.tid.lpaid→
ComGCm!msgrep.Sync Ack

◁ ConsumerL[cid] == 1 ▷(
ComGCm!msgdata.Join.CLeadID.CID →
ComGCm?msgreq.sync→ ComGCi!msgrep.Sync Ack

)

; GroupCoordinategcid()

where, ConsumerL[cid] = 1 indicates that the consumer whose number is cid takes a
leadership role in this consumer group and is responsible for the assignment of consumer
and partition.

3.8. Consumer

Consumers is the core part in data consumption. First, it needs to join a consumer group
by sending a request to GroupCoordinatorgcid. After joining and synchronizing the con-
sumer group, it can pull messages from the assigned LPartition according to the parti-
tioning strategy. In addition, the Consumercid can also pull messages from the follower-
partitions of LPartition in order to ensure that after the leader-partition crashes, con-
sumers will still have access to the information they need.

Consumercid() =df ComGCi!msgreq.Join →
ComGCm?msgdata.join.cleadid.cid.tid.lpaid{consumer[lpaid][cid] = 1}
→ ComGCm!msgreq.Sync.CID.TID.LPAID
→ ComGCm?msgrep.sync ack{consumerS[cid] = 1}

□

(
ComGCm?msgdata.join.cleadid.cid → ComGCm!msgreq.Sync
→ ComGCm?msgrep.sync ack{consumerS[cid] = 1}

)

; GetSync(cid);

(
ComLCn!msgreq.ReqData →
ComLCn?msgdata.data{Data[lpaid][cid] = 1}

)
□

(
ComFCl!msgreq.ReqData →
ComFCl?msgdata.data{DataF [lpaid][fpaid][cid] = 1}

)

◁S Ack == true && consumer[lpaid][cid] == 1▷
SKIP

; Consumercid()

In the above formula, consumer[lpaid][cid] = 1 represents that consumercid estab-
lishes a connection to LPartitionlpaid, that is, this consumer can pull messages from

Formalization and Verification of Kafka... 289

the leader of partition numbered lpaid. consumerS[cid] indicates whether consumercid
completes the group synchronization. GetSync(cid) is a function to get the state of pro-
cess consumercid synchronization. Data[lpaid][cid] indicates the transmission of data
between Consumercid and LPartitionlpaid, where Data[lpaid][cid] = 1 indicates suc-
cess. In addition, we use DataF [lpaid][fpaid][cid] to define whether consumercid can
pull data from FPartitionfpaid of LPartitionlpaid.

4. Architecture Verification

In order to evaluate the correctness and reliability of Kafka in the normal communication
process, we use the model checking tool PAT to verify the properties of the constructed
formal model, including Deadlock Freedom, Acknowledgement Mechanism, Parallelism,
Sequentiality and Fault Tolerance. Here, we give the detailed verification procedure:

4.1. Deadlock Freedom
We need to ensure that each process in the system we build can communicate and interact
with each other smoothly, and that the whole system does not stop due to one process get
into a deadlock state. PAT provides a primitive assertion to describe this situation:

#assert System() deadlockfree;

The Deadlock Freedom property is used to verify whether our system is in the dead-
lock state.

4.2. Acknowledgement Mechanism
In order to avoid losing data, there is an ack mechanism designed to describe a scenario
that followers copy data from the corresponding leader-partition in Kafka. Data reliability
is important for data storage, thus we give the definition of the property and the assertion:

#define Acknowledgement Mechanism (P ack[1] == 1 && P ack[2] == 1);

#assert System() reaches Acknowledgement Mechanism;

If all the final values of the variable P ack[lpaid] are changed from 0 to 1, we will
say that the property Acknowledgement Mechanism is satisfied.

4.3. Parallelism
According to the partitioning strategy in our model, a partition of the same topic can only
send data to one consumer of the same consumer group. In addition, we should ensure
that when a consumer pulls data from the corresponding partitions, it will not affect the
data of other consumers. Then we define the assertion as follows:

#define Parallelism (Data[0][0] == 1 &&Data[0][1] == 0

&& Data[1][0] == 0 && Data[1][1] == 1);

#assert System() reaches Parallelism;

If our system satisfies the property Parallelism, then according to the partitioning
strategy, consumercid can connect to the corresponding channels of partitionlpaid in a
topic respectively.

290 Junya Xu et al.

4.4. Sequentiality

In Kafka, the data pulled by consumers and sent by corresponding partitions are all in
order. In the above implementation section, we adopts DataS[LPA][C][Seq] to represent
whether the data is sent, where if its value is equal to 1, it means the data sent successfully,
otherwise, not. The definitions and assertion are as follows:

#define channel1 Seq

((DataS[0][0][0] == 1&&DataS[0][0][1] == 0)

|| (DataS[0][0][0] == 1&&DataS[0][0][1] == 1)

|| (DataS[0][0][0] == 0&&DataS[0][0][1] == 0));

#define channel2 Seq

((DataS[1][1][0] == 1&&DataS[1][1][1] == 0)

|| (DataS[1][1][0] == 1&&DataS[1][1][1] == 1)

|| (DataS[1][1][0] == 0&&DataS[1][1][1] == 0));

#define Sequentiality (channel1 Seq && channel2 Seq);

#assert System() | = Sequentiality;

Since we randomly set the number of data to 2, there are three cases where the system
satisfies this property. The first shows none of the messages are sent, the second indicates
that the previous message is sent and the subsequent message is not sent, and the third
expresses that all the messages are sent successfully.

4.5. Fault Tolerance

The Fault Tolerance property describes that a consumer still gets the needed message
when a partition taking a leadership role breaks down. The replica mechanism enables
Kafka messaging system to own this property, and the assertion is defined as follow:

#define Replication

(DataF [0][0][0] == 1 && DataF [0][1][0] == 1

&& DataF [1][0][1] == 1 && DataF [1][1][1] == 1);

#assert System() reaches Replication;

Based on the partitioning strategy assumed in this paper, if processes consumer0 and
consumer1 can respectively pull data from the followers of partition0 and partition1,
it means the property Fault Tolerance is satisfied.

4.6. Verification and Results

Based on the above definitions and assertions, we implement the code in PAT and it
searches the state space of the system until it finds a counter example or runs out of
state space. At the end, we get the results of verification shown in Fig.5.

From Fig.5, we can see that the five properties are all valid, which means the pat-
tern of the distributed messaging system can guarantee the correctness and reliability of
communications.

Formalization and Verification of Kafka... 291

(a) dealock freedom (b) Acknowledgement Mechanism

(c) Parallelism (d) Sequentiality

(e) Fault Tolerance

Fig. 5. Verification Results in System()

– The propertry Deadlock Freedom means that our model does not run into a deadlock
state.

– The propertry Acknowledgement Mechanism represents that each replica stores the
message published by the producer to ensure the reliability of the message delivery.

– The propertry Parallelism ensures that there is no interference between consumers
within the same consumer group.

– The propertry Sequentiality indicates that the data consumption of each partition in
Kafka is orderly.

– The propertry Fault Tolerance describes that Kafka messaging system is robust and
does not crash even if the leader of a partition fails.

5. Security Verification

In this section, we introduce the intruder model to judge whether the messaging mech-
anism can guarantee its reliability and security. Meanwhile, we introduce the Kerberos
protocol to improve the security of data transmission and further analyze Kafka messag-
ing mechanism by comparing the verification results.

292 Junya Xu et al.

In an insecure network environment, some intruders may attack the process of data
transmission, resulting in data leakage and other problems, which are described:

– Camouflage: An intruder can either send bogus messages to a broker by pretending
to be a producer, or send request for consuming data to a broker pretend to be a
consumer. The broker is unable to determine whether the entity sending messages
has a legitimate identity, and will store the data recevied from the intruder disguised
as the producer as the normal data, or will transmit the data stored on the broker to
the intruder disguised as the consumer, resulting in data inauthenticity or data leakage
and other problems.

– Interception: When a producer transmits a message containing real data to the bro-
ker, an intruder can intercept the message and discard it or tamper with it so that the
broker does not receive the real message. In other case, when the broker sends data
to a consumer, an intruder can also intercept the message so that the real consumer
cannot receive the message and is in a waiting state, and the real data is stolen by the
intruder, resulting in data leakage.

5.1. Intruder

We also deem an intruder as a process that can pretend to be a producer or a consumer
to intercept messages on channels ComPL and ComCL, as well as to use fake channels to
send bogus or tampered messages to the broker. Here, we introduce these channels that
an intruder might use:

INTER PATH =df FakePL ∪ InterceptPL ∪ FakeCL

∪ InterceptCL ∪ InterceptCF

Then, we define the set Fact, which represents the fact that an intruder might acquire:

Fact =df Producer ∪ Consumer ∪ MSG

Next, we define the rule to express how the intruder can deduce new facts from what
it has known, shown as follows:

F 7→ f ∧ F ⊆ F ′ ⇒ F ′ 7→ f

where, set F denotes the facts the intruder has known, and f is the fact deduced from set
F . F 7→ f represents that fact f can be deduced from the set F .

Also, we define the funtion Info, which indicates how an intruder obtains a new fact
from an already obtained message:

Info(msg.A.B.content) =df { A.B.content }

In addition, we declare a channel Deduce used for deducing new facts:

Channel Deduce : Fact.P (Fact)

Based on the above description, an intruder can eavesdrop and intercept message
transmitted between processes on the normal channels to obtain new facts, and can also

Formalization and Verification of Kafka... 293

interfere with the communication by sending false messages. We first present a model of
an intruder masquerading as a producer process:

FakePro(F) =df □m∈MSGInterceptPL!m→ FakePro(F ∪ Info(m))

□□m∈MSG∩Info(m)⊂FFakePL!m→ FakePro(F)

□□f∈Fact,f ̸∈F,F 7→fInit{datac leakage = flase} → Deduce.f.F → (DataP Leaking Success{datap leakage = true} → FakePro(F ∪ {f}))
◁ f == Data ▷
(DataP Leaking Success{datap leakage = false} → FakePro(F ∪ {f}))

Similarly, we also present an intruder model masquerading as a consumer:

FakeCon(F) =df □m∈MSGInterceptCL!m→ FakeCon(F ∪ Info(m))

□□m∈MSG∩Info(m)⊂FFakeCL!m→ FakeCon(F)

□□f∈Fact,f ̸∈F,F 7→fInit{datac leakage = flase} → Deduce.f.F → (DataC Leaking Success{datac leakage = true} → FakeCon(F ∪ {f}))
◁ f == Data ▷
(DataC Leaking Success{datac leakage = false} → FakeCon(F ∪ {f}))

5.2. Updated Model

Fig. 6. Channels of Kafka Messaging Mechanism with Intruders

After modeling the intruder, we consider adding intruders to the existing system model
as shown in Fig.6. In this system model, we only extract one producer process, one broker
process and one consumer process. Therefore, we need to add the intruder process and
the channels used on the basis of the original process interaction, so that the intruder can
complete the communication interaction with the normal process.

System I =df System FakingP || System FakingC

System FakingP =df (Producer
′
[|COM PATH|] Broker

′

[|COM PATH|] Consumer
′
[|INTR PATH|] FakePro)

System FakingC =df (Producer
′
[|COM PATH|] Broker

′

[|COM PATH|] Consumer
′
[|INTR PATH|] FakeCon)

294 Junya Xu et al.

Updated Producer Next, we need to update the Producer process so that an intruder
can send fake data to a broker, and intercept data sent by a producer to a broker. Therefore,
we need to add channels FakePL and InterceptPL to replace the original normal com-
munication channel. We use the rename operation in CSP to update the communication
channels, where {|c|} describes the set of all events that occur on channel c:

Producer
′
() =df Producer()[[

ComPL?{|ComPL|} ← ComPL?{|ComPL|},
ComPL!{|ComPL|} ← ComPL!{|ComPL|},
ComPL!{|ComPL|} ← InterceptPL!{|ComPL|}]]

Updated Broker Then, we need to update the Broker process so that an intruder can
transmit messages to a broker by disguising a producer, or it can also transmit the message
for requesting data to a broker by disguising a consumer and steal the data transmitted by a
broker. We added the renamed channel to update the communication channel to complete
the communication behavior of the intruder.

Broker
′
() =df Broker()[[

ComPL?{|ComPL|} ← ComPL?{|ComPL|},
ComPL?{|ComPL|} ← FakePL?{|ComPL|},
ComPL!{|ComPL|} ← ComPL!{|ComPL|},
ComCL?{|ComCL|} ← ComCL?{|ComCL|},
ComCL?{|ComCL|} ← InterceptCL?{|ComCL|},
ComCL!{|ComCL|} ← ComCL!{|ComCL|},
ComCL!{|ComCL|} ← FakeCL!{|ComCL|}]]

Updated Consumer Similarly, an intruder can disguise as a real consumer to intercept
and tamper with a request message from a consumer over the normal channel to a broker.
The updated Consumer process describes as follow:

Consumer
′
() =df Consumer()[[

ComCL?{|ComCL|} ← ComCL?{|ComCL|},
ComCL!{|ComCL|} ← ComCL!{|ComCL|},
ComCL!{|ComCL|} ← InterceptCF !{|ComCL|}]]

5.3. Verification Results of Model with Intruder

We implement the updated model and the intruder model in PAT and get the results of
verification shown in Fig.7.

From Fig.7 (a), we can see the three properties are all valid, which means that an in-
truder can disguise a producer and successfully intercept the data message transmitted by

Formalization and Verification of Kafka... 295

(a) Camouflage Producer (b) Camouflage Consumer

Fig. 7. Verification Results in System I()

a real producer in the normal transmission process, thus causing the data leakage prob-
lem. Similarly, we see the results shown in Fig.7 (b) that three properties are all valid,
which means that an intruder can disguise a consumer to intercept the data transmitted by
a broker to a consumer, thus leading to the problem of data leakage.

5.4. Kerberos

After the 0.9.0.0 version of Kafka messaging system, security mechanism was introduced.
This paper analyzes the security of Kafka messaging mechanism by adding the modeling
of Kerberos authentication protocol and comparing the validation results of the messaging
mechanism model with no security mechanism.

Fig. 8. Channels of Kafka Messaging Mechanism with Intruders

Kerberos [2,22] is a protocol based on key encryption technology by MIT, which pro-
vides authentication of identity for applications of client and server. There are three main
modules: client, server and key distribution center(KDC). KDC is composed of authen-
tication server (AS) and ticket granting server (TGS). Fig.8 describes the authentication
process of Kerberos protocol in detail.

– In the first step, the client needs to prove his identity to the AS in the KDC.

296 Junya Xu et al.

– In the second step, AS determines whether the user’s identity is valid. If it is valid,
AS will generate the session key between the client and TGT3. Then it encrypts the
session key and TGT with the client’s public key and transmits it to the client.

– Third, after receving the encrypted message transmitted by AS, the client decrypts
the ciphertext message with its private key to obtain TGT and session key. Then, the
client transmits TGT to TGS together with Auth4.

– Step 4, Similarly, TGS uses its private key to decrypt TGT to obtain the information
of the client and session key between the client and TGS, and uses the session key to
decrypt Auth to obtain the identity information provided by the client. At this time,
TGS checks whether the timestamp is expired and verifies the consistency of the
client’s information by comparison, as well as encrypts the session key between the
client and the server. When the information is verified successfully, TGS returns the
encrypted session key and ST5.

– Step 5, the client decrypts the message with the session key between the client and
TGS to obtain the session key of the client and the server, and uses this session key
to encrypt Auth

′6. Then the ciphertext message ST and Auth
′

are sent to the server.
– The sixth step, the server obtains the identity information by decrypting ST with its

private key and the identity information by decrypting Auth
′

with the session between
the client and the server, respectively. After the verification is passed, the server uses
the session key between the client and the server to encrypt the server’s identity in-
formation and timestamp, and transmits the ciphertext message to the client. Finally,
the client determines whether the server identity is consistent. If consistent, the con-
nection is successful, that is, the client can access the server.

Kerberos Model First, we need to add some definitions for other sets: the set Key con-
tains the long-term key MK and the short-term key SK, the set Time contains the defini-
tion of discrete time.

In addition, we also defined the encryption function E and decryption function D,
which are specifically expressed as follows:

E(k,msg); D(k, emsg)

Where, function E uses key k to encrypt the message msg, which is represented as
emsg, and function D uses key k to decrypt the encrypted message emsg. Therefore, we
can draw the following conclusion:

D(k,E(k,msg)) = msg

Next, we define some of the channels used by the processes when modeling the Ker-
beros protocol, as follows:

Time, ComUA, ComTA, ComSA

3 TGT: the ticket provided to TGS when applying for the server ticket encrypted the public key of TGS,
containing the client’s identity, time stamp and the session key between the user and TGS.

4 Auth: authentication information of the client encrypted by the session key between the client and TGS,
including user name, timestamp.

5 ST: the ticket to access the server encrypted with the server’s public key, containing the client’s identity,
timestamp, and session key between the server and the client.

6 Auth
′
: authentication information of the client encrypted by the session key between the client and the server

Formalization and Verification of Kafka... 297

Based on the definitions of sets, functions and channels, we model the Kerberos pro-
tocol. First, we need to define a process Clock to synchronize time of the whole system.
Clock process represents a discrete increase in time t, and when receiving a request mes-
sage, it responds with a message containing the current time t.

Clock() =df tick − > {t = t+ 1} − > Clock()

□ time ? request − > time ! t − > Clock();

To facilitate the modeling of the Kerberos protocol, we will model steps 1-6 in Fig.8
respectively. The Step 1 and Step 2 in Fig.8 are the interactions between the client and
AS. Process USER AS needs to send a request to process Clock and takes the returned
time t as the initial time. Next, process UER AS sends a message including its name
and initial time to AS and expects a reply from AS. If the authentication fails, process
UER AS will stops. If the anthentication is successful, process UER AS will decrypt
the message with its private key MK−1

user to get TGT and session key between TGS and
client SKTGS .

USER AS(user) =df time ! Request → time ? t { starttime = t } ;
ComUA ! name.starttime{name = user} → ComUA ? name fail→ Stop

□

(
ComUA ? x
{ TGT = D(MK−1

user, x); SKTGS = D(MK−1
user, x)} → Skip

)
In the communication between the client and AS, process AS will judge whether the

username is valid after receiving the message sent by process UER AS. If not, a failed
reponse is returned to UER AS. If successful, AS generates SKTGS , as well as uses
the client’s public key MKuser to encrypt SKTGS and TGT , and sends the encrypted
message to UER AS.

AS() =df ComUA? x{name = getname(x); name faking = ¬(valid(name))} ;
ComUA ! Name Fail→ Skip
◁ name invalid == true ▷(
ComUA ! E(MKuser, (TGT, SKTGS))
{TGT = E(MKTGS , (username, starttime, lifetime, SKTGS))} → Skip

)
 ;

In the above formula, the function getname() is used to get the client’s name, and the
function valid(name) is used to determine whether the name is valid.

Steps 3 and 4 in Fig.8 are the interactions between the client and TGS. USER TGS
process sends the TGT and Auth to process TGS, and expects to receive a reply from
TGS. The first case is when the process stops because the ticket expires due to a timeout.
In the second case, when the identity information in TGT does not match the identity
information Auth, the process terminates. The last one is that the authentication succeeds,
and process USER TGS receives ST and the session key SKServer between the client
and the server.

298 Junya Xu et al.

USER TGS(user, server) =df ComTA ! TGT.Auth

{Auth = E(SKTGS , (username, starttime, lifetime))} → ComTA ? Timeout → Stop

□

(
ComTA ? invaild → Stop

□(ComTA ? y { SKServer = D(SKTGS , y)} → Skip)

)
After receiving the message from process USER TGS, process TGS first sends a

request message to process Clock and obtains the time t of the current system. Then, it
uses the private key MK−1

TGS to decrypt TGT to get SKTGS as well as the client’s iden-
tity information, initial time and life time provided by AS. Next, TGS decrypts Auth
transmitted by process USER TGS with SKTGS , obtains the client’s information, ini-
tial time and life time given by client, and judges whether the timeout is determined by
comparing the life time of the ticket with the current time. If the time runs out, TGS
will directly send the message named Timeout to USER TGS. If the ticket is within
the valid time, TGS compares the information provided by AS and the client, and an
invalid reply message is sent if it does not match. If it is consistent, TGS generates ST
and SkServer encrypted with SKTGS , and sends them to process USER TGS.

TGS() =df dComTA ? y → time ! Request → time ? t { nowtime = t } →
TGT = get(y) → msgTGT = D(MK−1

TGS , TGT)→
SKTGS = get(msgTGT)→ a = getname(msgTGT) →
starttimet = get(msgTGT) → lifetimet = get(msgTGT)→
Auth = get(y) → msgAuth = D(SKTGS , Auth)→ b = getname(msgAuth) →
starttimea = get(msgAuth) → lifetimea = get(msgAuth)→
ComTA ! Timeout → Stop
◁ nowtime− starttimet > lifetimet || nowtime− starttimea > lifetimea▷ComTA ! invaild → Stop ◁ a ̸= b ▷

ComTA ! E(SKTGS , SkServer).ST
{ST = E(MKServer, (username, starttime, lifetime, SKServer))} → Skip

 ;

Finally, the interactions between the client and the server correspond to steps 5 and 6
in Fig.8. Process USER Server transmits Auth

′
and the ticket ST to process Server.

If process USER Server receives an invalid message from Server, the process stops.
Otherwise, USER Server decrypts the message by using SkServer to get the informa-
tion of the server, and determines whether it is valid. If it is valid, the authentication is
successful, otherwise process USER Server terminates.

USER Server(user, server) =df ComSA ! ST.Auth
′

{Auth
′
= E(SKServer, (username, starttime, lifetime))} →

ComSA ? invaild → Stop

□

ComSA ? z { server name = D(SkServer, z)} →
Server faking success = ¬(valid(server name))→
(Stop◁ Server faking success == true ▷ Skip)

 ;

Formalization and Verification of Kafka... 299

Firstly, process Server uses the private key MK−1
Server to decrypt ST to get the

client’s name provided by TGS and the session key SKServer. Then, Server decrypts
Auth

′
using SKServer to obtain the client’s name provided by USER Server. If this

name matches the name provided by TGS, process Server sends a message contain-
ing the identity information of the server encrypted with SKServer to USER Server,
otherwise it sends an invalid message reply.

Server(server) =df ComSA ? z → ST = get(z) →
msgST = D(MK−1

Server, ST)→ c = getname(msgST)→

SKServer = D(MK−1
Server, ST)→ Auth

′
= get(z) →

msgAuth′ = D(SKServer, Auth
′
)→ d = getname(msgST) →(

ComSA ! invaild → Stop ◁ e ̸= f ▷
ComSA ! E(SKServer, (server name, starttime, lifetime)) → Skip

)
;

5.5. Updated Model Based on Kerberos

Updated Producer based on Kerberos In Kafka messaging mechanism based on Ker-
beros, process Producer, as a client, first authenticates with AS and obtain a ticket to
access TGS. Then it needs to authenticate with TGS to obtain tickets to access the
server Broker and authenticate with Broker to send messages to Broker. The updated
Producer

′
model is as follows:

Producer
′
=df USER AS(producer); USER TGS(producer, broker);(

ComPL ! Data → ComPL ? ack → Producer
′

◁ Connect Success == true ▷ Stop

)
;

Updated Broker based on Kerberos AS a server, process Broker needs to verify the
identity of the client who wants to access it. After the verification is passed, Broker also
needs to provide its own identity to the client. Only after the two-way authentication is
successful, the following communication with the client will continue. The updated model
is as follows:

Broker
′
=df Server(broker);(

ComPL ? data → ComPL ! Ack → Broker
′

□ComCL ? request → ComCL ! Data → Broker
′

)
;

Updated Consumer Based on Kerberos Similarly, process Consumer is a client that
need to be authenticated by AS and TGS to obtain a ticket to access Broker. It also needs
to authenticate with Broker to send messages requesting data. The updated Consumer

′

model is as follows:

Consumer
′
=df USER AS(consumer); USER TGS(consumer, broker);(

ComCL ! Request → ComCL ? data → Consumer
′

◁ Connect Success == true ▷ Stop

)
;

300 Junya Xu et al.

Updated Intruder First, we update the facts the intruder has learned:

FACT
′
=dfFact ∪ Time ∪ Key ∪ MSG

∪ { E(k, content) | k ∈ Key, content ∈ {Data,Key, T ime}}

Next, we add the following rules :

{MK−1, E(MK, content)} 7→ content,

{SK−1, E(SK, content)} 7→ content,

{MK, content)} 7→ E(MK, content),

{SK, content)} 7→ E(SK, content)

The first two rules describe that the intruder can use the corresponding key to decrypt
the encrypted messages and get some contents. In the same way, the next two rules repre-
sent encryption. The final rule is a structural rule, explaining that the intruder can deduce
fact f from a lager set F

′
, if f can be deduced from set F .

Finally, we present an updated model of the intruder process disguised as a producer:

FakePro
′
(F) =df

□m∈MSGInterceptPL!m→ FakePro
′
(F ∪ Info(m))

□□m∈MSG∩Info(m)⊂FFakePL!m→ FakePro
′
(F)

□□f∈Fact′ ,f ̸∈F,F 7→fInit{datac leakage = flase} → Deduce
′
.f.F → (DataP Leaking Success{datap leakage = true} → FakePro

′
(F ∪ {f}))

◁ f == Data ▷
(DataP Leaking Success{datap leakage = false} → FakePro

′
(F ∪ {f}))

Similarly, we update the intruder model that disguises the consumer:

FakeCon(F)
′
=df

□m∈MSGInterceptCL!m→ FakeCon(F ∪ Info(m))

□□m∈MSG∩Info(m)⊂FFakeCL!m→ FakeCon
′
(F)

□□f∈Fact′ ,f ̸∈F,F 7→fInit{datac leakage = flase} → Deduce
′
.f.F → (DataC Leaking Success{datac leakage = true} → FakeCon

′
(F ∪ {f}))

◁ f == Data ▷
(DataC Leaking Success{datac leakage = false} → FakeCon

′
(F ∪ {f}))

Formalization and Verification of Kafka... 301

Overall Model based on Kerberos In Kafka messaging mechanism based on Kerberos
protocol, the overall model is described as follows:

System K =df System FakingP || System FakingC

System FakingP =df (Producer
′
[|COM PATH|] Broker

′
[|COM PATH|]

Consumer
′
[|COM PATH|]Kerberos [|INTR PATH|] FakePro

′
(F))

System FakingC =df (Producer
′
[|COM PATH|] Broker

′
[|COM PATH|]

Consumer
′
[|COM PATH|]Kerberos [|INTR PATH|] FakeCon

′
(F))

Kerberos =df (AS [|COM PATH|] TGS [|COM PATH|] Clock)

5.6. Verification Results of Model based on Kerberos

We implement the updated model based on Kerberos protocol and the updated intruder
model in PAT and get the results of verification shown in Fig.9.

(a) dealock freedom (b) Acknowledgement Mechanism

Fig. 9. Verification Results in System K()

From Fig.9 (a), we can see deadlock freedom is vaild, which means the communica-
tion can be completed successfully in the system. Producer Faking Success is invalid,
which means that an intruder cannot disguise a producer and send bogus messages. The
property DataP Leaking Success is valid, which means that an intruder can still inter-
cept the data message transmitted by a real producer successfully, thus causing the data
leakage problem.

Similarly, in Fig.9 (b), the property deadlock freedom is vaild, which means each pro-
cess in the system will not run into a deadlock state . The property
Consumer Faking Success is invalid, which means that an intruder cannot send a bo-
gus messages for requesting data by disguising a consumer. The property
DataC Leaking Success is valid, which means that an intruder can still intercept the
data transmitted by a broker to a consumer, thus leading to the problem of data leakage.

302 Junya Xu et al.

6. Related Work

In recent years, there have been some researches on the performance of Kafka messag-
ing system in the field of distributed messaging system [14,15,16,29,30]. For instance,
in order to set the configuration of the Kafka system correctly under certain hardware
conditions to ensure its performance, Han et al. [29] analyzed the structure and workflow
of Kafka and proposed a queue-based package flow model to predict the performance of
Kafka cloud services. In the paper, they observed the effect of these parameters on the per-
formance by substituting the correlation and fitting results into the fundamental constants
of the model and inputting various configuration parameters.

Also, Han et al. [30] introduced a testing tool TRAK to compared the reliability of
different messaging transmission semantics in Kafka under the environment of poor net-
work performance by using two indicators namely message loss rate and repetition rate.
And in the reliability evaluation of Kafka application scenarios, such as tracking website
user information, monitoring server logs, online bank transfer and online booking, etc.
Han et al. [28] also tested the effect of various configuration parameters on the reliability
of the Kafka system in order to help users weigh the performance and reliability of the
application in practical application.

In addition, Sean et al. [15] wanted to find the practical problems that arise when
companies use Kafka as a single data store, and to be able to propose solutions to solve
these problems. To this end, they proposed some preliminary approaches to ensure the
consistency of data from multiple database tables when distributed over Kafka, and how
to solve compliance problems by encrypting/decrypting data from Kafka producers and
consumers. We can see that these studies mostly focused on the performance analysis of
Kafka and how to improve the performance of Kafka applications, but in this paper we
focus on the reliability and security of data in the interaction and messaging transmission
of various components in Kafka.

At the same time, there are many successful studies on the property analysis and verifi-
cation of systems and network protocols by formal methods [7,11,12,23,27]. For instance,
Lowe et al. [12] analyzed and verified the communication protocol TMN using CSP and
FDR, and they have detected the security loopholes of the protocol and put forward the
optimization scheme from the theoretical aspect. Thampibal et al. [23] proposed an alter-
native of formalizing the high-level railway network by using hierarchical timed coloured
Petri nets and verified the constructed model with CPN tool to ensure its correctness and
security. Wang et al. [27] analyzed the security of the OpenFlow scheduled bundle mech-
anism and found that it suffered from some kinds of possible attacks by modeling and
verifying the mechanism using CSP and PAT. In this paper, we choosed the process alge-
bra CSP and model checking tool PAT to analyze and verify the reliability and security of
Kafka messaging mechanism.

7. Conclusion and Future Work

In this paper, we adopted the process algebra CSP to model Kafka messaging mecha-
nism, and utilized the model checker PAT to verify five properties, including Deadlock
Freedom, Acknowledgement Mechanism, Parallelism, Sequentiality and Fault Tolerance.
The results of verification show that all properties are valid, which means the pattern of

Formalization and Verification of Kafka... 303

the distributed messaging system can guarantee the correctness and reliability of com-
munications. In order to further analyze the security of Kafka messaging mechanism, we
added the intruder model and the Kerberos model. By comparing the results of Kafka
messaging mechanism with or without the secure protocol Kerberos, we can conclude
that the protocol Kerberos can effectively prevent the camouflage attack of the intruder,
but it can not resist attacks to intercept data, so there are still some security problems.

In the future work, we will put forward a preliminary improvement method from the
theoretical aspect to solve these security problems, including digital signature and key
encryption, so as to further improve the security of Kafka in the process of messaging
transmission.

Acknowledgments. This work was partially supported by the National Natural Science Founda-
tion of China (Grant Nos. 62032024, 61872145), the “Digital Silk Road” Shanghai International
Joint Lab of Trustworthy Intelligent Software (Grant No. 22510750100), and the Dean’s Fund of
Shanghai Key Laboratory of Trustworthy Computing (East China Normal University).

References

1. Rabbitmq., https://www.rabbitmq.com/tutorials/amqp-concepts.html
2. Adams, C.: Kerberos authentication protocol. In: van Tilborg, H.C.A., Jajodia, S. (eds.) En-

cyclopedia of Cryptography and Security, 2nd Ed, pp. 674–675. Springer (2011), https:
//doi.org/10.1007/978-1-4419-5906-5_81

3. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes.
J. ACM 31(3), 560–599 (1984), https://doi.org/10.1145/828.833

4. Clarke, E.M., Henzinger, T.A., Veith, H.: Introduction to model checking. In: Clarke, E.M.,
Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 1–26. Springer
(2018), https://doi.org/10.1007/978-3-319-10575-8_1

5. Dobbelaere, P., Esmaili, K.S.: Kafka versus rabbitmq: A comparative study of two industry
reference publish/subscribe implementations: Industry paper. In: Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, DEBS 2017, Barcelona,
Spain, June 19-23, 2017. pp. 227–238. ACM (2017), https://doi.org/10.1145/
3093742.3093908

6. Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of publish/subscribe.
ACM Comput. Surv. 35(2), 114–131 (2003), https://doi.org/10.1145/857076.
857078

7. Fei, Y., Zhu, H.: Modeling and verifying NDN access control using CSP. In: Sun, J., Sun, M.
(eds.) Formal Methods and Software Engineering - 20th International Conference on Formal
Engineering Methods, ICFEM 2018, Gold Coast, QLD, Australia, November 12-16, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 11232, pp. 143–159. Springer (2018),
https://doi.org/10.1007/978-3-030-02450-5_9

8. Hesse, G., Matthies, C., Uflacker, M.: How fast can we insert? an empirical performance
evaluation of apache kafka. In: 26th IEEE International Conference on Parallel and Dis-
tributed Systems, ICPADS 2020, Hong Kong, December 2-4, 2020. pp. 641–648. IEEE (2020),
https://doi.org/10.1109/ICPADS51040.2020.00089

9. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978),
https://doi.org/10.1145/359576.359585

10. Lee, V.Y., Liu, Y., Zhang, X., Phua, C., Sim, K., Zhu, J., Biswas, J., Dong, J.S., Mokhtari,
M.: ACARP: auto correct activity recognition rules using process analysis toolkit (PAT). In:
Donnelly, M.P., Paggetti, C., Nugent, C.D., Mokhtari, M. (eds.) Impact Analysis of Solutions

https://www.rabbitmq.com/tutorials/amqp-concepts. html
https://doi.org/10.1007/978-1-4419-5906-5_81
https://doi.org/10.1007/978-1-4419-5906-5_81
https://doi.org/10.1145/828.833
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1007/978-3-030-02450-5_9
https://doi.org/10.1109/ICPADS51040.2020.00089
https://doi.org/10.1145/359576.359585

304 Junya Xu et al.

for Chronic Disease Prevention and Management - 10th International Conference on Smart
Homes and Health Telematics, ICOST 2012, Artiminio, Italy, June 12-15, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7251, pp. 182–189. Springer (2012), https://
doi.org/10.1007/978-3-642-30779-9_23

11. Liu, A., Zhu, H., Popovic, M., Xiang, S., Zhang, L.: Formal analysis and verification of the
PSTM architecture using CSP. J. Syst. Softw. 165, 110559 (2020), https://doi.org/
10.1016/j.jss.2020.110559

12. Lowe, G., Roscoe, A.W.: Using CSP to detect errors in the TMN protocol. IEEE Trans. Soft-
ware Eng. 23(10), 659–669 (1997), https://doi.org/10.1109/32.637148

13. PAT: Process analysis toolkit., http://pat.comp.nus.edu.sg/
14. Prabhu, C., Gandhi, R.V., Jain, A.K., Lalka, V.S., Thottempudi, S.G., Rao, P.P.: A novel ap-

proach to extend KM models with object knowledge model (OKM) and kafka for big data and
semantic web with greater semantics. In: Barolli, L., Hussain, F.K., Ikeda, M. (eds.) Complex,
Intelligent, and Software Intensive Systems - Proceedings of the 13th International Conference
on Complex, Intelligent, and Software Intensive Systems, CISIS 2019, Sydney, NSW, Aus-
tralia, 3-5 July 2019. Advances in Intelligent Systems and Computing, vol. 993, pp. 544–554.
Springer (2019), https://doi.org/10.1007/978-3-030-22354-0_48

15. Rooney, S., Urbanetz, P., Giblin, C., Bauer, D., Froese, F., Garcés-Erice, L., Tomic, S.: Kafka:
the database inverted, but not garbled or compromised. In: Baru, C., Huan, J., Khan, L., Hu,
X., Ak, R., Tian, Y., Barga, R.S., Zaniolo, C., Lee, K., Ye, Y.F. (eds.) 2019 IEEE International
Conference on Big Data (Big Data), Los Angeles, CA, USA, December 9-12, 2019. pp. 3874–
3880. IEEE (2019), https://doi.org/10.1109/BigData47090.2019.9005583

16. Sharvari T, S.N.K.: A study on modern messaging systems- kafka, rabbitmq and NATS stream-
ing. CoRR abs/1912.03715 (2019), http://arxiv.org/abs/1912.03715

17. Si, Y., Sun, J., Liu, Y., Dong, J.S., Pang, J., Zhang, S.J., Yang, X.: Model checking with fairness
assumptions using PAT. Frontiers Comput. Sci. 8(1), 1–16 (2014), https://doi.org/10.
1007/s11704-013-3091-5

18. Skeirik, S., Bobba, R.B., Meseguer, J.: Formal analysis of fault-tolerant group key management
using zookeeper. In: 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, CCGrid 2013, Delft, Netherlands, May 13-16, 2013. pp. 636–641. IEEE Computer
Society (2013), https://doi.org/10.1109/CCGrid.2013.98

19. Sun, D., Zhu, H., Fei, Y., Xiao, L., Lu, G., Yin, J.: Formalization and verification of TESAC
using CSP. Int. J. Softw. Eng. Knowl. Eng. 29(11&12), 1741–1760 (2019), https://doi.
org/10.1142/S0218194019400199

20. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: Introducing a process analysis
toolkit. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verifi-
cation and Validation, Third International Symposium, ISoLA 2008, Porto Sani, Greece, Octo-
ber 13-15, 2008. Proceedings. Communications in Computer and Information Science, vol. 17,
pp. 307–322. Springer (2008), https://doi.org/10.1007/978-3-540-88479-8_
22

21. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, 21st International Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5643, pp. 709–714. Springer (2009), https://doi.org/10.1007/
978-3-642-02658-4_59

22. Tbatou, Z., Asimi, A., Asimi, Y., Sadqi, Y., Guezzaz, A.: A new mutuel kerberos
authentication protocol for distributed systems. Int. J. Netw. Secur. 19(6), 889–
898 (2017), http://ijns.jalaxy.com.tw/contents/ijns-v19-n6/
ijns-2017-v19-n6-p889-898.pdf

23. Thampibal, L., Vatanawood, W.: Formalizing railway network using hierarchical timed
coloured petri nets. In: ICIT 2019 - The 7th International Conference on Information Tech-

https://doi.org/10.1007/978-3-642-30779-9_23
https://doi.org/10.1007/978-3-642-30779-9_23
https://doi.org/10.1016/j.jss.2020.110559
https://doi.org/10.1016/j.jss.2020.110559
https://doi.org/10.1109/32.637148
http://pat.comp.nus.edu.sg/
https://doi.org/10.1007/978-3-030-22354-0_48
https://doi.org/10.1109/BigData47090.2019.9005583
http://arxiv.org/abs/1912.03715
https://doi.org/10.1007/s11704-013-3091-5
https://doi.org/10.1007/s11704-013-3091-5
https://doi.org/10.1109/CCGrid.2013.98
https://doi.org/10.1142/S0218194019400199
https://doi.org/10.1142/S0218194019400199
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1007/978-3-642-02658-4_59
http://ijns.jalaxy.com.tw/contents/ijns-v19-n6/ijns-2017-v19-n6-p889-898.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v19-n6/ijns-2017-v19-n6-p889-898.pdf

Formalization and Verification of Kafka... 305

nology: IoT and Smart City, Shanghai, China, December 20-23, 2019. pp. 338–343. ACM
(2019), https://doi.org/10.1145/3377170.3377221

24. Treat, T.: Benchmarking nats streaming and apache kafka., https://dzone.com/
articles/benchmarking-nats-streaming-and-apachekafka

25. Vucnik, M., Svigelj, A., Kandus, G., Mohorcic, M.: Secure hybrid publish-subscribe mes-
saging architecture. In: Begusic, D., Rozic, N., Radic, J., Saric, M. (eds.) 2019 International
Conference on Software, Telecommunications and Computer Networks, SoftCOM 2019, Split,
Croatia, September 19-21, 2019. pp. 1–5. IEEE (2019), https://doi.org/10.23919/
SOFTCOM.2019.8903868

26. Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede, N.,
Rao, J., Kreps, J., Stein, J.: Building a replicated logging system with apache kafka.
Proc. VLDB Endow. 8(12), 1654–1655 (2015), http://www.vldb.org/pvldb/vol8/
p1654-wang.pdf

27. Wang, H., Zhu, H., Xiao, L., Fei, Y.: Formalization and verification of the openflow bundle
mechanism using CSP. Int. J. Softw. Eng. Knowl. Eng. 28(11-12), 1657–1677 (2018), https:
//doi.org/10.1142/S0218194018400223

28. Wu, H.: Research proposal: Reliability evaluation of the apache kafka streaming system. In:
Wolter, K., Schieferdecker, I., Gallina, B., Cukier, M., Natella, R., Ivaki, N.R., Laranjeiro, N.
(eds.) IEEE International Symposium on Software Reliability Engineering Workshops, ISSRE
Workshops 2019, Berlin, Germany, October 27-30, 2019. pp. 112–113. IEEE (2019), https:
//doi.org/10.1109/ISSREW.2019.00055

29. Wu, H., Shang, Z., Wolter, K.: Performance prediction for the apache kafka messaging system.
In: Xiao, Z., Yang, L.T., Balaji, P., Li, T., Li, K., Zomaya, A.Y. (eds.) 21st IEEE Interna-
tional Conference on High Performance Computing and Communications; 17th IEEE Inter-
national Conference on Smart City; 5th IEEE International Conference on Data Science and
Systems, HPCC/SmartCity/DSS 2019, Zhangjiajie, China, August 10-12, 2019. pp. 154–161.
IEEE (2019), https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00036

30. Wu, H., Shang, Z., Wolter, K.: TRAK: A testing tool for studying the reliability of data delivery
in apache kafka. In: Wolter, K., Schieferdecker, I., Gallina, B., Cukier, M., Natella, R., Ivaki,
N.R., Laranjeiro, N. (eds.) IEEE International Symposium on Software Reliability Engineering
Workshops, ISSRE Workshops 2019, Berlin, Germany, October 27-30, 2019. pp. 394–397.
IEEE (2019), https://doi.org/10.1109/ISSREW.2019.00101

Junya Xu obtained her master degree in formal methods from East China Normal Univer-
sity, Shanghai, in 2021. Her research interests include process algebra and its applications,
program analysis and verification.

Jiaqi Yin is currently an assistant professor in Northwestern Polytechnical University,
Xi’an, China. He earned his Ph.D. degree in software engineering from East China Nor-
mal University, Shanghai, in 2022. His research interests contain formal methods. edge
computing, and process algebra.

Huibiao Zhu is currently a professor in East China Normal University, Shanghai. He
earned his Ph.D. degree in formal methods from London South Bank University, London,
in 2005. During these years, he has studied various semantics and their linking theories
for Verilog, SystemC, web services and probability system. He was the Chinese PI of the
Sino-Danish Basic Research Center IDEA4CPS.

https://doi.org/10.1145/3377170.3377221
https://dzone.com/articles/benchmarking-nats-streaming-and-apachekafka
https://dzone.com/articles/benchmarking-nats-streaming-and-apachekafka
https://doi.org/10.23919/SOFTCOM.2019.8903868
https://doi.org/10.23919/SOFTCOM.2019.8903868
http://www.vldb.org/pvldb/vol8/p1654-wang.pdf
http://www.vldb.org/pvldb/vol8/p1654-wang.pdf
https://doi.org/10.1142/S0218194018400223
https://doi.org/10.1142/S0218194018400223
https://doi.org/10.1109/ISSREW.2019.00055
https://doi.org/10.1109/ISSREW.2019.00055
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00036
https://doi.org/10.1109/ISSREW.2019.00101

306 Junya Xu et al.

Lili Xiao is currently a lecturer in Donghua University, Shanghai. She earned her Ph.D.
degree in software engineering from East China Normal University, Shanghai, in 2022.
Her research interests include process algebra and its applications, program analysis and
verification, and weak memory.

Received: July 07, 2021; Accepted: May 11, 2022.

	Introduction
	Background
	Kafka messaging system
	CSP
	PAT

	Modeling
	Sets, Messages and Channels
	 Overall Modeling
	ZooKeeper
	Producer
	LPartition
	FPartition
	GroupCoordinator
	Consumer

	Architecture Verification
	Deadlock Freedom
	Acknowledgement Mechanism
	 Parallelism
	Sequentiality
	Fault Tolerance
	Verification and Results

	Security Verification
	Intruder
	Updated Model
	Updated Producer
	Updated Broker
	Updated Consumer

	Verification Results of Model with Intruder
	Kerberos
	Kerberos Model

	Updated Model Based on Kerberos
	Updated Producer based on Kerberos
	Updated Broker based on Kerberos
	Updated Consumer Based on Kerberos
	Updated Intruder
	Overall Model based on Kerberos

	Verification Results of Model based on Kerberos

	Related Work
	Conclusion and Future Work

