Computer Science and Information Systems 19(2):935-955 https://doi.org/10.2298/CSI1S211220019Z

A Consortium Blockchain-Based Information
Management System For Unmanned Vehicle Logistics

Manjie Zhai', Dezhi Han'>*, Chin-Chen Chang2, and Zhijie Sun!

1 College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
dzhan@shmtu.edu.cn
2 The Department of Information Engineering and Computer Science, Feng Chia University,
Taichung, Taiwan, 000400, China

Abstract. Unmanned vehicle (UDV) delivery technology can meet the special needs
of users and realize efficient and flexible distribution of logistics orders. However,
there are risks of order data leakage and tampering in the intelligent logistics distri-
bution environment. To solve this problem, this paper designs and implements a sys-
tem based on the Hyperledger Fabric blockchain platform. Based on the blockchain
technology, the system adopts a distributed architecture to establish a secure and
trustworthy logistics data management platform to achieve the integrity and trace-
ability of data in the logistics process. The data dual-chain storage strategy is used
to ensure the efficiency of data queries. Furthermore, four smart contracts including
order management contract (OMC), access control management contract (ACC),
access control policy management contract (ACPC), and environmental data man-
agement contract (EDC) are designed in combination with the attribute-based ac-
cess control strategy. By triggering the smart contract, the controllable access of
order data can be realized. Finally, two groups of experiments are designed to test
the performance of the system. Experimental results show that the proposed sys-
tem can maintain high throughput in a large-scale request environment under the
premise of ensuring data security.

Keywords: Blockchain, Logistics, Attribute-based access control, Hyperledger Fab-
ric, Smart contract.

1. Introduction

With the rapid development of the Internet of things (IoT), the market scale of the logis-
tics industry is gradually expanding. Compared to traditional delivery methods, unmanned
vehicle (UDV) delivery can meet the delivery needs of many specific scenarios[26]. For
example, during the epidemic period, UDV can realize the non-contact distribution of
living materials and medicines, reducing the risk of contact infection. In addition, UDV
can also be used for street mail distribution, extreme weather distribution, and other sce-
narios. However, the existing intelligent logistics platform lacks a complete and reliable
credit guarantee system, and problems such as product counterfeiting, loss, and package
loss continue to occur[39],[22]],[18]]. The logistics business is composed of many partic-
ipants, involving a wide area and a long time span. It is difficult for core institutions to
meet the information management and controllable access in the IoT environment. Logis-
tics information is facing the risk of leakage and tampering, and information security is
becoming more and more prominent[27],[7]],[15]],[[19].

936 Manjie Zhai et al.

Blockchain is a distributed data storage and management technology based on a public-
key encryption mechanism. The blocks are linked by a hash algorithm as a chain to ensure
the integrity and traceability of data, which provides conditions for optimizing logistics
management and information traceability[1]. Each distributed node of the blockchain re-
alizes data communication through p2p network and consensus algorithm to ensure data
consistency between nodes and secure mutual trust sharing of information[11]],[24]]. As
an open-source consortium chain platform, Hyperledger Fabric inherits the characteris-
tics of the blockchain and also provides a more efficient consensus mechanism, higher
throughput, and support for multiple channels[[13]],[29],[17]. Access control technology
is an important means to protect resources and has been widely used in various industries.
The traditional access control technology belongs to centralized access control, which
has problems such as single-point failure and poor scalability. Traditional access control
technology does not meet the access requirements of logistics platform information distri-
bution and mobility[30],[16],[23]. Attribute-based access control (ABAC) is an extension
of role-based access control(RBAC). The algorithm extracts the attributes of the user, re-
source, permission, and environment respectively and flexibly combines these attributes.
Finally, the management of permissions is transformed into the management of attributes,
which can solve the problem of fine-grained access control that is difficult to be solved
by traditional access control and the problem of agent dynamic authorization access in a
large-scale environment[8]],[31],[20]. ABAC can effectively solve the controllable access
of the information in the logistics process, and has a wide range of application scenarios.

To solve the above-mentioned drawbacks, this paper designs a blockchain-based UDV
logistics information management system, which mainly focuses on the security and pri-
vacy protection of users’ data, access control, in the logistics platform. The main contri-
butions of this paper are summarized as follows:

1. We combine Hyperledger Fabric with a distributed architecture to establish a secure
and trustworthy logistics data management system to implement the integrity and
traceability of data in the logistics.

2. We propose a data storage strategy with dual chains that divides data into order data
and real-time environment data, improving the efficiency of data queries.

3. Combined with the ABAC access control algorithm, this paper designs four smart
contracts, including the order management contract (OMC), access control manage-
ment contract (ACC), access control policy management contract (ACPC), and envi-
ronmental data management contract (EDC). Among them, the OMC manages order
information, the ACC manages user access requests, the ACPC manages access poli-
cies set by administrators, and the EDC manages environmental data. The ABAC
access control policy is deployed on blockchain using a smart contract, and the effec-
tive management of logistics data is achieved by triggering a smart contract to ensure
controlled access to logistics data.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 introduces the overall design of the system in detail. Section 4 provides the
detailed experiment process. Section 5 provides the safety analysis. Finally, Section 6
summarizes the paper.

A Consortium Blockchain-Based Information Management System... 937

2. Related Work

2.1. Hyperledger Fabric

Hyperledger Fabric is an open-source distributed ledger platform for enterprise appli-
cations [3[[,[2], using modular structures to provide extensible components. The Fabric
includes four types of nodes, namely CA node, Client node, Peer node, and Order node.
Client nodes are used to interact with Peers and implement operations such as adding,
deleting, and modifying blockchain networks. CA nodes can generate or cancel member
identity certificates, providing unified management for the digital certificates of member
nodes. Peer nodes are used to store blockchain ledger and chaincode and the application
program updates the ledger and checks the chaincode by connecting Peer nodes. The Or-
der node will receive the transactions sent by the Peer node and sort them according to
certain rules, and finally package the transactions in a certain order into blocks.
Chaincode: Chaincode is the code deployed on Fabric network nodes to operate and
manage the data in the distributed ledger, and is called to implement the smart contract[6]].
Channel: Channel in Fabric isolate blockchain data from different organizations, each
channel has a proprietary account, and organizational nodes in different channels cannot
access directly. Each Peer node in the network needs to be identified by the administrator
to join the channel and each communication party must be authenticated and authorized
to trade on the channel. This mechanism effectively ensures the security of transaction
and improves the utilization of data storage space and parallel processing efficiency[37].

2.2. Attribute-based access control model

Access control technology implements authorized access to resources according to pre-
defined access policies and prevents unauthorized information disclosure by controlling
the access rights of the subject to the object[38]. Access strategy is the set of attributes
required for specific operations on data resources. The binary group can be expressed as
Eq. ().

ABACPolicy < (AttrSet, Rule). (1

where AttrSet represents the attribute set of the strategy and can be represented as a set of
quaternions, as shown in Eq. (2).

AttrSet = (AS, AO, AE, AP). 2)

AS represents the attribute of the subject, including the identity, role, location, cer-
tificate, etc. AO represents the resource attributes, including the identity, location, de-
partment, type, etc. AE represents the attribute of the environment, which is used to judge
whether the policy is satisfied the request. AP represents the attribute of permission, which
means the operation of the subject on the object, such as write, modify, delete, etc. The
Rule represents a set of rules that can be expressed as Rule = {ruley, rules, ..., rule,},
n > 1, rule, denotes the nth rule. Rule can be expressed as a set of quaternions as Eq.
(3) and Eq. (4).

Rule = Result = F(.). 3)

F(Attr(S;), Attr(0y), Attr(E;), Attr(P;)) — {Permit, Deny}. ()

938 Manjie Zhai et al.

Eq. (4) indicates that the subject with the authorization attribute S; performs an ac-
cess action with the attribute value P; to the object O; in the context of the environment
attribute F;.

2.3. Elliptic curve digital signature method

The elliptic curve digital signature algorithm is based on the elliptic curve algorithm and
signature algorithm, which is mainly used to create digital signatures for data. It has the
characteristics of identifiability and unforgeability, ensuring that the authenticity of the
data is verified without destroying the security of the data [34],[28]. The elliptic curve
digital signature method is constructed based on Eq. (5).

y? = (2% + a x x + b) mod p. 5)

The parameters of the elliptic curve are (a, b, p, n, G), where a and b are the param-
eters of the curve equation, p is the base of the modular operation, n is the number of
points on the curve, the parameter G represents the selected reference starting point that
can be any point on the curve, and the key pair is (SK, PK), where SK is the private
key and PK is the public key.

Signature phase:

. Generate a random number k, which satisfies the condition: 1 < k <n — 1.

. Compute p = k x G, the abscissa of p is R.

. Compute » = R mod n. if 7 = 0, return to Step 1.

. Calculate the hash H(m) of message m and convert the obtained value into a large
integer z.

. Calculate s using s = k~1(2 + SK x r) mod p . if s = 0, return to Step 1.

. (r, s) is the signature of the message m.

LN =

AN D

Verification phase:

. Calculate H(m) and convert it to integer Z.

. Calculate w, where w = s~ mod n.

. Calculate u; = (z X w) mod n, ug = (r X w) mod n.

. Calculate X = (21, y1) = w1G + wePK. If X = 0, the verification is wrong;
otherwise, convert the abscissa of X to R and calculate v = R mod n.

5. If v = r, the verification passes.

LN =

3. System overall design

This paper proposed a UDV logistics information management system based on the al-
liance chain, solving the security and privacy protection issues of data in the logistics
platform and ensuring the controllable access of logistics data. This section introduces
the overall design of the system. Tab.[T]lists the key symbols used in this paper. Fig.[T]is a
framework diagram of the system model. The infrastructure layer is the Fabric underlying
module. The data storage layer includes order data storage module and real-time envi-
ronmental data storage module. The smart contract layer includes four smart contracts
and the corresponding state database key-value pair storage. The user interaction layer in-
cludes the UDV registration and management module, order allocation module, real-time
navigation, and ABAC module.

A Consortium Blockchain-Based Information Management System... 939

Table 1. Key symbol description.

Notations Description

Cert; Certificate of entity

PK; Public key of user;

SK; Private key of user;

Info; Identity information of entity;
TimeStamp; Timestamp of entity;

Sign(.) Signature algorithm

ABACPolicy Attribute-based access control policy
OMC Order management contract

ACC Access control management contract
ACPC Access control policy management contract
EDC Environmental data management contract
[8)5)% Unmanned vehicle

CA Authority

Dockerlmage Docker image

Config(.) Config file of the node

Start(.) Start of the node

Install(.) Install of the chaincode

3.1. Entity description

1. UDV: It is the transportation mode for delivering goods. UDV should register its
identity information with CA and obtain order distribution qualification before distri-
bution.

2. User: There are two types of users including data requester and order owner.

3. CA: As the system administrator, CA is responsible for system initialization and en-
tity authentication[4]],[35]]. Any entity that wants to join the blockchain should register
its identity information and obtain PK and SK, and only entities certified by CA can
perform operations such as uploading and querying data.

4. LC: The LC reasonably allocates logistics orders to UDV according to OrderDis-
tribute() in OMC.

5. Sensor: The Sensor is an important configuration on the UDV, which can sense ve-
hicle position change, navigate the route, improve communication reliability, and en-
sure low latency interaction of measurement information.

3.2. Data storage

This section introduces the double-chain storage strategy in detail. Logistics data is di-
vided into order data and real-time environment data. Order data refers to the information
of receiving and delivering users and commodity-related information in the logistics, and
the fields included are shown in Tab. |2} On the blockchain, the order number of the or-
der data is taken as the key value, the order creation time, the sender’s and receiver’s
information, the order information, and other fields as the value of the map after JSON
serialization.

Environmental data refers to real-time data such as road conditions collected by sen-
sor equipment. When the UDV encounters a failure, the surrounding road condition status
and the information of the nearby UDV can be obtained by querying the environmental

Real-time

Navigation ABAC

I Call smart contract , Query data

940 Manjie Zhai et al.
User Interaction
UbVv Order
Registration Allocation
Smart Contract
L omc | | acec |

| acc | | Epc |

I Application interface

Data Storage

Order Data Storage ‘

Real-time Environmental
Data Storage

I Supervision, Execution

Infrastructure

| P2p || Multi-channel

,C

onsensus | l Distributed storage

Fig. 1. System architecture diagram.

Table 2. Order data field description.

Notations

Description

Orderld
OrderTime
SenderAddress
SenderPhone
ReceiverName
ReceiverAddress
ReceiverPhone
ReceiverReput
OrderState
Private

Urgent

Order number
Order create time
Sender address
Sender telephone
Receiver name
Receiver Address
Receiver telephone
Receiver reputation
Order state

Order private
Order urgency

data information to prepare for the order handover[12]. The data contained in the envi-
ronmental information is shown in Tab. Bl Environmental data includes the IOT module
and the message queue module. The IoT module mainly through sensor devices to collect
environmental data such as vehicle speed, road condition status, and nearby UDV infor-
mation. To reduce the error of the data, the original data collected 30 times per second are
taken as a group, and its average value is stored in the environmental data link. The smart
contract saves the data by calling the relevant interface. If the data can be successfully
written into the ledger, the corresponding message will be dequeued. otherwise, the data
will be temporarily stored in the queue for the next data uplink. The environmental data

uplink process is shown in Fig.[2]

A Consortium Blockchain-Based Information Management System... 941

Table 3. Environment data field description.

Notations Description

Totld Internet of things device number
VehDataTime Vehicle data acquisition time
VehDataAddress Vehicle data acquisition address
VehSpeed Vehicle speed

RoadState Road condition status

NeighUdvNum Number of nearby UDV
NeighUdvState Status of nearby UDV
NeighUdvSpeed Speed of nearby UDV

IoT Message
Devices Deque

P o

A 4
Message YES uccessfully o
Queue chain

Fig. 2. Environment data uplink process.

3.3. Smart Contract

OMC. OMC is to manage the order data according to the user’s request, including the
request situation of order addition, order cancellation, order information change, and order
handover. The methods included in the OMC are as follows.

AddOrder(): When a user request to add an order, CheckOrder() in the OMC is trig-
gered to check the rationality of the order request. If the order request is reasonable, the
order will be released and the order information will be added to the status database,
and the order operation record will be written to the blockchain. The pseudocode of Ad-
dOrder() is shown in Algorithm 1, where the Orderld is stored as the key, and OrderTime,
SenderAddress, SenderPhone and other attributes are stored as value in the blockchain.

QueryOrder(): It realizes the function of querying the details of order data according
to Orderld.

UpdateOrder(): In some special cases, the information needs to be modified after
the user places an order, which can be processed according to the order status. If the
order is not issued, UpdateOrder() can be called to complete the information modification
operation; otherwise, it cannot be modified.

DeleteOrder(): when the user sends a request to delete an order, CheckOrder () is first
triggered to check the rationality of the order information, and then QueryOrder() is called
to check the order status. If the order is not issued, DeleteOrder() is called to delete the
relevant information in the order data chain. Otherwise, the wireless sensor device should
send the withdrawal or cancellation command to the UDV in time, and change the order
status information to undelivered.

CheckOrder(): 1t is used to check the reasonableness of key field information when
the users submit order requests.

942 Manjie Zhai et al.

Algorithm 1: OMC.AddOrder()

Input: Request(AddOrder)
Output: Success or Error
APIstubChaincodeStub < Invoke();
if CheckOrder(.) == False then
‘ return Error(Illeagleorder);
end
Id < sha256(Userld, Orderld);
ans « APIstub.PutState(Id);
if ans # null then
‘ return Success ;
end
return Error;

I IR Y. T T TOR SR

=
=)

Algorithm 2: OMC.DeleteOrder()

Input: Request(DeleteOrder)
Output: DeleteResult or Error
APIstubChaincodeStub + Invoke();
if CheckOrder(.) == False then
‘ return Error;
end
ans == QueryOrder(Orderld);
if ans == Nolssue then
| DeleteOrder(Orderld);
end
Revoke(OrderlId);

IR 7 I VR SR

Checkudvinfo(): It is used to verify the identity and status information of UDV apply-
ing for distribution qualification.

OrderDistribute(): After the UDV is qualified for order distribution, the LC will dis-
tribute the order reasonably, then update the order status in time and store it in the order
chain.

OrderCharge(): Before the order is delivered, the shipper and the user will negotiate
the charging criteria. If the goods are lost, damaged, or the order is delivered over time
during the delivery process, the compensation should be paid by the agreed compensation
criteria. After the user successfully obtains the goods, OrderCharge() will be called to
complete the payment operation.

ACPC. The ACPC is to provide management functions for the established attribute-based
access control strategy. Combining the characteristics of logistics data and the attribute-
based access control model, this paper defines the attribute characteristics as follows:

P ={AS, AO, AP, AE},

AS = {Userld, Role, PK, UserGroup},

AO = {Orderld, Singer, SignOrderData},

AP = {OrderPermission},

AE = {CreateTime, EndTime, Address, CurrentAccess}.

A Consortium Blockchain-Based Information Management System... 943

AS mainly refers to the attribute of users who access data resources, including Userld,
Role, PK, and UserGroup, where Userld is the unique identification of user information.

AO mainly refers to the order data stored in the order chain, including Orderld, Singer,
and the signature of order data SignOrderData.

AP includes the order data access permission attribute OrderPermission.

AE refers to the environmental attribute of the order requester, including CreateTime,
EndTime, Address, and CurrentAccess.

Administrator formulates access policies based on user, resource, operation, and en-
vironment attributes, as shown in Eq. (6).

f(AS, AO, AP, AE) — ABAC Policy 6)

Add the policy to the SDB by calling AddPolicy() in the ACPC. VerifyPolicy() is
used to verify whether the access policy formulated by the administrator is a legal policy,
QueryPolicy() supports querying policies through AS or AO features, and UpdatePolicy()
is invoked to update the operation records on the blockchain. When the specified access
policy exceeds the specified period, DeletePolicy() is called to delete.

Algorithm 3: ACC.CheckAccess()

Input: ABACRequest
Output: Success or Error
(AuS, AuO, A E) < GetAttrs(ABAC Request);
P = (P, P, ..., Pp) < ACPC.QueryPolicy(A.S, A.O);
if P == Null then
‘ return Error(”This is an illeagle policy”),
end
for Pin (P, P, ..., P,) do
<..., APP7 ApE) «— P;
if Value(ApP) == deny then
‘ continue;
end
ans < QueryOrder() ;
end
if ans # Null then
‘ return Success(”OK”);
end
return Error(”UnAccess”);

e X N S s W N -

L <
AN R W N = S

ACC. ACC is used to verify whether the user’s data access request meets the access
control policy formulated by the administrator, including the following methods.

Auth(): The main function is to use the user public key to verify the authenticity of user
identity. When the user sends data access requests, the user will use the ACC’s public key
to encrypt the data in the request, and then sign the request with his own private key. After
receiving the request, ACC calls the Auth() method and uses public key to verify user’s
identity, and then uses its own private key to decrypt. The successful decryption means
that the user’s access request is reasonable and the data can be successfully accessed.

944 Manjie Zhai et al.

GetAttrs(): After verifying the user’s identity, parse the attribute fields contained in
the user request by calling GetArtrs(). The request contains subject attributes and objects
attributes {AS, AO}.

CheckAccess(): First, get the attribute {AS, AO} through GetAttrs(), and then call
QueryPolicy() of the ACPC to query the corresponding attribute access control policy
according to AS and AO. If the query result is null, there is no policy to support the re-
quest. Otherwise, one or more access policies will be obtained, and then judge whether
the attribute value AE in the request matches the AE in the access policy and whether the
value of OrderPermission in the AP is 1. If all attributes match the policy, the verifica-
tion passes. Finally, the related functions in the OMC are invoked to complete the access
to the order resources, update, and delete operations. Otherwise, return the request fails.
Algorithm 3 is the pseudocode of CheckAccess().

EDC. The EDC includes the environmental data uplink AddEnvData() and GetEnvData()
to obtain environmental data.

AddEnvData() is similar to AddOrder() in Algorithm 1. The AddEnvData() method
implements the interface for inserting data, adds environmental data to the state database,
and updates the operation record to the environmental data chain.

The main function of GetEnvData() is to obtain environment data and query the cor-
responding environment data from the database based on the IoT ID.

3.4. Workflow

This section details the system workflow, as shown in Fig.[3] including five stages, entity
registration, the user placing an order, granting UDV order delivery qualifications, order
allocation, delivery, and user request.

Environmental data chain

e I blockn | h{ H block2 | -‘ block1 |
A
D ~~~~~~~ > IV
User order Grant UDV order ' -1 eor i
- ! User issues an
distribution = ! ABAC request
. N qualification aM: :))
Entity registration e ﬁ]
' = >
aﬂ User
A
. UDV
User P — P — UDV l

Entity registration

cA [Entity registration | blockn H }»a| block2 |—-| block1 |

» Task flow
< Data flow

Order data chain

Fig. 3. Environment data uplink process.

Entity registration. The entity requiring authentication sends identity information to CA
through the secure channel. CA encrypts the received entity identity information with PK

A Consortium Blockchain-Based Information Management System... 945

and then issues a certificate to the entity. As shown in Eq. (7), Info; is the entity iden-
tity, Signc a is the CA’s signature for the entity, and TimeStamp; is the corresponding
timestamp.

CA — Certi{ PK;, Info;, Signca, TimeStamp;} @)

User Order. Users order according to their own needs, and the system will create a
transaction order according to the order time, recipient address, and contact information.

OMC(AddOrder()) — {Ledger, SDB} (8)

Grant UDV order distribution qualification. After registration, UDV needs to obtain
the order delivery qualification granted by CA. Firstly, verify the identity of the UDV
through Auth() in the ACC, and then the UDV sends a distribution request to CA. Once
receiving the request, CA checks UdvCert, UdvState, Distance by calling CheckUdvInfo()
in the OMC, the UDV distribution qualification can be granted after passing the verifica-
tion. The process is shown in Algorithm 4.

Algorithm 4: Grant UDV order delivery qualification

Input: Request(Delivery)
Output: Success or Error
if Auth(Udv) == False then
‘ return Error(” UnAuthorized”);
end
ans < CheckUdvInfo(Udvld, UdvCert, UdvState, Distance);
if ans # Null then
‘ return Error(” UnAuthDelivery”);
end
return Success(”OK”);

® N U R W N =

Order Distribution. LC calls OrderDistribute() in the OMC, and refer to OrderTime,
UdvCert, and UdvState to allocate orders to UDV and prepare for the delivery task rea-
sonably. After the UDV finishes loading, it starts to distribute the goods.

OrderDistribute(Order1d, OrderTime, UdvCert, UdvState) — Udv (9)

During the delivery process, the sensor hardware device configured on the UDV will
collect environmental data in real-time, and upload the data to the environmental data
chain by calling AddEnvData() in the EDC.

EDC(AddEnvData()) — {Ledger, SDB} (10)

User request. Users can query order information in real-time according to their own
needs, which ensures that they have a dynamic understanding of the entire order distribu-
tion process. When the goods arrive at the agreed place, the sensor will send the current
location information to the blockchain node nearest to the UDV and notify the user that

946 Manjie Zhai et al.

the order has been delivered[21]. When the pick-up user arrives at the destination, the
order can be successfully obtained after being verified as a legitimate user.

1, Permit

ACC(Request{ AS, AO, AP}) — {O, Deny (11)

The user initiates a request to access the order data. Once receiving the request, the
blockchain triggers the smart contract and calls Auth() in the ACC to verify the authentic-
ity of the user’s identity.

Request{ AS, AO, AP} — BlockChain (12)

ACPC(Auth(AS, AO, AP, PK;)) — Entrpted_ ABAC Policy (13)

If the verification passes, QueryPolicy() in the ACPC will be invoked to query the
ACC based on the subject and object attributes. If the result is not empty, one or more
access policies are obtained. Otherwise, there is no policy to support the request.

Decrypte(Entrpted_ ABAC Policy, SK;) — (ABAC Policy, OK) (14)

one or more policy, OK =1

ACPC(QueryPolicy(AS, AO)) — {null, OK — 0

(15)

If all attributes match the policy, the relevant methods in the OMC or EDC are invoked
to complete the operation of accessing, updating and deleting logistics data.

add/delete/query/update
/ / /

OMC OrderData (16)

EDC "™ EnvData (17)

4. Experiment

The experiment was completed on a single computer. The CPU model of the computer is
17-6700 and the memory size is 8G. The software environment required for the experiment
is shown in Tab. 4 The experimental steps include configuration fabric network, system
initialization and startup steps, chaincode installation, system function test, and system
throughput test. The functional test mainly tests a series of operations on the order data
chain, such as user querying order information, modifying order information, etc. For the
environment data, AddEnvData() and QueryEnvData() is only tested because the amount
of the environment data is large and the query is only used when the order is handed over
in the case of the failure of the UDV.

Two groups of experiments were conducted. The first group tested the throughput of
four smart contracts when the numbers of concurrent requests were 10, 50, 100, 200, 300,
400, 500, 600, 700, 800, 900, and 1000. The second group of experiments tested the time
spent on four smart contracts with 10-1000 concurrent requests, respectively.

A Consortium Blockchain-Based Information Management System... 947

Table 4. Environment data field description.

Software and System Version

oS Ubuntu 16.04
Hyperledger Fabric ~ v1.4.3
Docker v18.09.7
Docker-compose v1.8.0

Node v12.18.3
Golang v1.14.6

Git v2.74

Table 5. Environment data field description.

Environmental Parameters Value

Couchdb 4
CA 2
Orderer 1
Peer 4
Fabric-tools 1

1

Fabric-iot/chaincode

4.1. System Construction

Tab. [§] is the composition of experimental environment nodes. The experimental steps
include system environment initialization, system startup, chaincode install, and update.

System initialize: Firstly, the binary tools provided by the Hyperledger Fabric are
used to generate certificates and key pairs for Order and Peer nodes of different organi-
zations. Secondly, move the node’s certificate and key pair to the file directory mounted
on the docker image of the CA node. When the CA container is started, other nodes can
authenticate their identities with the signature.

CA — {Certpeer, Certpeer, Certchannel, PK;, SK;} (18)

Build(Certi, PK;, SKi) — DockerImage (19)

System startup: Use the configtxgen tool provided by Hyperledger Fabric to generate
the genesis block [25] and configure the channel. Write the configuration information of
nodes and channels into transactions to ensure that the identity information of each sec-
tion in the system can be traced and tampered with. Blockchain starts nodes based on the
docker container and Hyperledger. Each node has an independent environment, communi-
cates with each other through port calls, and executes the blockchain to the startup script,
to quickly realize a series of processes such as creating channels and joining channels.

configtxgen
—

Config(Cert;, PK;, SK;) Transaction (20)

Start(Docker, Fabric) 1% Channel 21

Chaincode install and update: After the system starts successfully, chaincode starts
to install. Since the client’s image has attached the directory of chaincode, chaincode
can be compiled directly in the client’s image. The quick installation of chaincode is

948 Manjie Zhai et al.

realized by executing the script install.sh, and the quick update of chaincode is realized
by executing the script upgrade.sh. Once the chaincode is successfully installed, the order
storage, user access and strategy formulation process are tested.

Install(Chaincode) — Lt Pransaction (22)

4.2. Function testing

Order stored procedure. First, add the order data to the blockchain by calling Ad-
dOrder(), and then call OrderDistribute() to allocate the order stored in the blockchain
reasonably. Fig. []is the order stored procedure.

v j@zmj-virtual-machine: ~/gopath/src/ com/fabric-zmj/client/nodejs - Terminal - +
File Edit View Terminal Tabs Help

zmj@zmj -virtual-machine:~/gopath/src/github.com/fabric-zmj/client/nodejs$ node ./invoke
.js omc AddOrde '{"urderld":100010001,"0rderT1me :"2021-2-12", "senderAddress":
i","senderPhone 183276927873 "receiverName": "zmj lecelverAddless" "shanghai

iverPhone":"18790568765", recemerPeput orderState":"on delivery","private":8,
"urgent":10 userld",'20190119")

home/zm]/gopath/src/glthub com/f bric-zmj/client/nodejs/wallet
{"orderId": 100010001 "orderTil 21-2-12", "senderAddress"”: "shanghai","s
183276927873", "receiverName receiverAddress”:"shanghai”,"receiverp|
":"18790568765", "receiverPeput"”:"good", "orderState":"on delivery","private":8,"
nt":10, "userId":"20190119"}
Transaction has been submit, result is: 99cc472318d897dfd1f784979bf2a7a604fac84a47d05d8|

eb1631e2c2c2e6060

(a) Order data uplink
- zmjezmj-virtual-machine: ~/gopath/src/github.com/fabric-zmj/client/nodejs - Terminal - +
File View Terminal Tabs Help

j-virtual-machine:~/gopatt / ub. /fabric-zmj/client/nodejs$ node ./invoke)
js omc OrderDistribute 99cc472318d897dfd1f784 2a7a604fac84ad7de5d8eb1631e2¢2c 22606
0
Wallet path / s t /fabric-zmj/client/nodejs/wallet
¢ OrderDist u 7 bf2a7a604fz a47d05dBeb1631e2c2c2e6660

(b) Order allocation
Fig. 4. Order storage process.

¥ 2mj@zmj-virtual-machine: ~/gopath/src/github.com/fabric-zmj/client/nodejs - Terminal -

File Edit View Terminal T. Help

C {"A {"u 2 ' e":"req

Z12j0CAQYIKo IzJODAO D\ng\prJOm-H\S 2 % TsfONP3AM

geR8aqBqZjhRS qEdlg g "},"A0": {"orderId
signOrderData” f8 bOEOOOOO%e UUle

role”:"requster

< 717"(,-.‘1[NT(,'ONP3A|"F’
iqB(]Z hRSdp‘((}R"QF’H(] 1"},"A0": {"orderId
gnOrderData”™: " 178be UUYJUU%@BBOO“lrEfrJU 8431088207 I7:>Ul~ldmfb1b3 ‘93360@1”” OADJBP
51ce664c9b8247d09d19c98ddabadbf40642a184e5bbddb9735a0d412b8
d30b3a233d6e533 56d839dc84c457a1887821153f7d5226bc f4d
a90fc43d31d912c8e3 32feB046109bd2a60d19aeb3459604499

Transaction has been submit, result is: valide

Fig. 5. Order storage process.

User access process. Fig. [5|shows calling CheckAccess() to access order data.

A Consortium Blockchain-Based Information Management System... 949

Access control policy development process. The access control policy is shown in
Fig. [6] The administrator formulates relevant access policies based on Userld and Or-
derld and adds the access policies to the blockchain network through AddPolicy().

4.3. Throughput testing

Throughput is an important index to evaluate system performance that is affected by
software and hardware device, block size, and consensus algorithm. In the blockchain,
throughput refers to the number of transactions that can be processed per unit time.

Transactions concurrency

TPS = (23)

Average response time

To test the system performance, the throughput of four smart contracts with 10, 50,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 concurrent requests are tested in the
first group of experiments. To avoid the impact of uncertain factors such as network down-
time, under different concurrent requests, ten groups of throughput data with relatively
stable network status are selected respectively and the average value is taken as the final
throughput. The test results are shown in Fig.

- zmj@zmj-virtual-machine: ~/gopath/src/github.com/fabric-zmj/client/nodejs - Terminal - +

80000096e8800ff1c8fd10d8431088267!
19c98ddaBa9b40642a184e5bbddb9735
9¢c0a56d839dc84c457. 2175317
3d31d912c8e31e6d568bbb7b73732f
11 970b65
ddress”
Wallet path: /hom

acpc AddP

70b6507100
:“shanghai", "currentAcc
tion has been submit, result is cc472318d897dfd1f784979bf2a7a

(a) Add policy
zmj@zmj-virtual-machine: ~/gopath/src/github.com/fabric-zmj/client/nodejs - Terminal ~

File Edit View Terminal Tabs Help

lient/nodejs$
47d05d8eb163
ejs/wall

72318d89
Transaction has been submit, result is:

(b) Delete policy

Fig. 6. Access control policy development process.

In the second group of experiments, the same method was used to test the average
time spent by the four smart contracts in the case of 10-1000 requests. The test results are
shown in Fig. [§]

Fig.[7| shows that when the OMC is executed, the throughput of DeleteOrder() is the
highest and that of UpdateOrder() is the lowest as the number of transactions increases.
The throughput of OrderDistribute() finally stabilized at 175-180. Since both OrderDis-
tribute() and AddOrder() contain a read operation and a write operation, the throughput

950 Manjie Zhai et al.

is almost equal. While QueryOrder() contains only one read operation, its throughput is
higher than OrderDistribute() and AddOrder() is stable in the range of 200-205.

: (a) OMC o (b) ACPC

250 250 —
P N S A
< 2000 |7

e ——

e R S
¥

200

150- 1501 o=

Throughput
Throughpu

100 100 |

50 50

0 200 400 600 800 1000 0 200 400 600 800 1000
Number of transactions

() ACC 200{ (@ EDC .
B P -
15 /—o/“ e e
5 ‘\ 5 1504]
E | E
¥ 100 Ej
H | R
g | g
50 ‘ 50
|
b

0 200 400 600 800 1000 0 200 400 600 800 1000

Number of transactions "
Number of transactions

Fig.7. Access control policy development process.

When the ACPC is executed, the throughput of DeletePolicy() is the highest and Up-
datePolicy() is the lowest as the number of transactions increases. Since DeletePolicy()
does not generate transactions and can directly delete existing transactions in the database,
the throughput is high and finally stabilizes at 260-265 as the number of transactions in-
creases. QueryPolicy() contains only one read operation, its throughput is high and finally
stabilizes at 240-245. AddPolicy() contains one read operation and one write operation
and its throughput is finally stable at 180-185. Compared with AddPolicy(), UpdatePol-
icy() contains one read operation and two write operations, its throughput is lower than
180 and stable at 150-155.

When the ACC is executed, the throughput of CheckAccess() is finally stabilized at
175-180. Since CheckAccess() calls QueryPolicy() in the ACPC and CheckAccess() in-
cludes a read operation and a write operation, so its throughput is lower than QueryPol-
icy() in the ACPC.

When the EDC is executed, the throughput of AddEnvData() is finally stabilized at
170-175. GetEnvData() calls QueryPolicy() in the ACPC, and it only includes one read
operation with its throughput finally stabilized at 185-190, which is higher than AddEnv-

Data() but lower than QueryPolicy().

Fig.[8]shows the average time spent by ACPC, OMC and EDC in the case of 10-1000
requests. As shown in Fig. [§[a), as the number of transactions increases, the time spent
continues to increase. In general, the time spent by each method is as follows:

DeletePolicy() < QueryPolicy() < AddPolicy() < UpdatePolicy()

The time spent by each method in Fig. [§[b) is as follows:

DeleteOrder() < QueryOrder() < AddOrder() =~ OrderDistribute() < UpdateOrder()

In Fig. @c), AddEnvData() takes more time than the GetEnvData(). After analysis,
software and hardware devices, the number of nodes, block size, and consensus algorithm
will affect the reading and writing speed of the blockchain. Writing operation usually

A Consortium Blockchain-Based Information Management System... 951

== QueryPolicy
== Addpolicy

== UpdatePolicy
= DeletePolicy

cost time /second

100 200 300 400 500 600 700 800 900 1000

(a) the time costs of ACPC

== QueryOrder

. AddOrder

== UpdateOrder
== DeleteOrder
== OrderDistribute

cost time /second

100 200 300 400 500 600 700 800 900 1000

number of transactions

(b) the time costs of OMC

== AddEnvData
" GetEnvData

cost time /second

100 200 300 400 500 600 700 800 900 1000

number of transactions

(c) the time costs of EDC

Fig. 8. Access control policy development process.

involves creating new blocks, generating new transactions, etc., which takes more time.
Experiments show that the read operation takes less time than the write operation. The
system throughput increases as the number of requests increases, and the throughput tends
to be stable when the throughput reaches a certain value. With the further increase in the
number of customer requests, there is no significant decline in throughput.

The experimental results are in line with expectations. The system can maintain high
throughput in a large-scale request environment, realize dynamic fine-grained access con-
trol of logistics information, and meet the operation requirements of the actual logistics
platform for data information.

5. Safety analysis

Entity authentication: Assuming that a malicious entity attempts to impersonate a legit-
imate user since each legitimate user obtains the unique certificate issued by CA, the
system can verify the user’s identity according to the user certificate [32],[33]. If the user
certificate is not disclosed, the malicious entity cannot obtain any valid data information
through counterfeiting. Therefore, entity authentication can effectively confirm the iden-
tity of the entity and ensure that the order data cannot be leaked.

952 Manjie Zhai et al.

Data integrity: All order records in the system are stored after being signed by us-
ing the principle of asymmetric cryptography. The data requester verifies the correct-
ness of the data source after obtaining the order data. Since all records are stored on the
blockchain, the decentralized environment provided by the blockchain can ensure that
they will not be tampered with by any malicious entity[10]],[5]. Therefore, data integrity
can be guaranteed.

Data access security: When the data requester sends a data access request, the data
can be accessed only when its attributes meet the access policy[36], [9]]. Therefore, it can
ensure that only authorized users can obtain order data, realizing controllable access to
order data and the security of order data.

Information traceability: Suppose the blockchain is BC' = bey, bea, b3, ..., bey,
where be; (1 < @ < n) is the ith block, tx;; represents the jth record in the ith block,
and tx;;;, represents the information of order % corresponding to the jth transaction in
the ith block. According to the order information k, the order record can be obtained
through a query on the order data chain to further obtain specific information such as
order number([[14]. Since the block header contains timestamp proof, the corresponding
order record information can be queried through the order number, and the earliest or-
der creation record can be traced according to the timestamp order. To sum up, the order
information in this system can be tracked and queried.

6. Conclusions and future work

Based on the Hyperledger Fabric platform, this paper designs and implements the UDV
logistics information management system based on the alliance chain, which effectively
solves the problems of lack of trust, data leakage, and controllable access. Using the ad-
vantages of blockchain technology, such as decentralization, traceability, and non-tampering,
ABAC is deployed on the blockchain by designing smart contracts to ensure data in-
tegrity, traceability, and controllability. At the same time, the dual-chain storage strategy
is designed to alleviate the pressure of the main chain and ensure the efficiency of data
queries. Finally, the experimental results prove that the scheme can meet the operation
requirements of data information in the actual logistics platform, realize the dynamic
fine-grained access control of logistics information, and ensure the security of data. In
summary, the system is effective and feasible for the storage of logistics data and access
control management. Future work will try to improve the following two aspects:

1. Consider using more physical equipment to test the reliability and throughput of the
system.
2. Consider the reputation of UDV and the LC in the process of logistics distribution.

Acknowledgments. This work was supported by the National Natural Science Foundation of China
under Grant 61672338 and Grant 61873160.

References
1. Ahmad, R.W., Hasan, H., Jayaraman, R., Salah, K., Omar, M.: Blockchain applications and ar-

chitectures for port operations and logistics management. Research in Transportation Business
& Management p. 100620 (2021)

10.

11.

12.

14.

15.

17.

18.

19.

20.

21.

A Consortium Blockchain-Based Information Management System... 953

. Baliga, A., Solanki, N., Verekar, S., Pednekar, A., Kamat, P., Chatterjee, S.: Performance char-

acterization of hyperledger fabric. In: 2018 Crypto Valley conference on blockchain technology
(CVCBT). pp. 65-74. IEEE (2018)

. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on hyperledger fabric with

secure multiparty computation. IBM Journal of Research and Development 63(2/3), 1-8 (2019)

. Cui, M., Han, D., Wang, J.: An efficient and safe road condition monitoring authentication

scheme based on fog computing. IEEE Internet of Things Journal 6(5), 9076-9084 (2019)

. Cui, M., Han, D., Wang, J., Li, K.C., Chang, C.C.: Arfv: an efficient shared data auditing

scheme supporting revocation for fog-assisted vehicular ad-hoc networks. IEEE Transactions
on Vehicular Technology 69(12), 15815-15827 (2020)

. Dai, W.,, Wang, Q., Wang, Z., Lin, X., Zou, D., Jin, H.: Trustzone-based secure lightweight

wallet for hyperledger fabric. Journal of Parallel and Distributed Computing 149, 66-75 (2021)

. Gu, Q., Fan, T., Pan, F,, Zhang, C.: A vehicle-uav operation scheme for instant delivery. Com-

puters and Industrial Engineering 149, 106809 (2020)

. Han, D., Pan, N., Li, K.C.: A traceable and revocable ciphertext-policy attribute-based en-

cryption scheme based on privacy protection. IEEE Transactions on Dependable and Secure
Computing PP(99), 1-14 (2020)

. Han, D., Zhu, Y., Li, D., Liang, W., Souri, A., Li, K.C.: A blockchain-based auditable access

control system for private data in service-centric iot environments. IEEE Transactions on In-
dustrial Informatics 18(5), 3530-3540 (2022)

Hang, L., Kim, D.H.: Design and implementation of an integrated iot blockchain platform for
sensing data integrity. Sensors 19(10), 2228 (2019)

Huang, J., Kong, L., Chen, G., Wu, M.Y., Liu, X., Zeng, P.: Towards secure industrial iot:
Blockchain system with credit-based consensus mechanism. IEEE Transactions on Industrial
Informatics 15(6), 3680-3689 (2019)

Huang, K., Wen, M., Park, J., Sung, Y., Cho, K.: Enhanced image preprocessing method for an
autonomous vehicle agent system. Computer Science and Information Systems 18(2), 461-479
(2021)

. Islam, M.A., Madria, S.: A permissioned blockchain based access control system for iot. In:

2019 IEEE International Conference on Blockchain (Blockchain). pp. 469-476. IEEE (2019)
Kamble, S.S., Gunasekaran, A., Sharma, R.: Modeling the blockchain enabled traceability
in agriculture supply chain. International Journal of Information Management 52, 101967—
101978 (2020)

Kuru, K., Ansell, D., Khan, W., Yetgin, H.: Analysis and optimization of unmanned aerial ve-
hicle swarms in logistics: An intelligent delivery platform. Ieee Access 7, 15804-15831 (2019)

. Li, D., Han, D., Crespi, N., Minerva, R., Sun, Z.: Fabric-scf: A blockchain-based secure storage

and access control scheme for supply chain finance (2021)

Li, D., Han, D., Liu, H.: Fabric-chain chain: A blockchain-based electronic document system
for supply chain finance. In: Zheng, Z., Dai, H.N., Fu, X., Chen, B. (eds.) Blockchain and
Trustworthy Systems. pp. 601-608. Springer Singapore, Singapore (2020)

Li, D., Han, D., Zheng, Z., Weng, T.H., Li, H., Liu, H., Arcangelo: Moocschain: A blockchain-
based secure storage and sharing scheme for moocs learning. Computer Standards Interfaces
81, 103597 (2022)

Li, H., Han, D., Tang, M.: A privacy-preserving storage scheme for logistics data with assis-
tance of blockchain. IEEE Internet of Things Journal (2021)

Li, J., Chen, X., Chow, S.S., Huang, Q., Wong, D.S., Liu, Z.: Multi-authority fine-grained ac-
cess control with accountability and its application in cloud. Journal of Network and Computer
Applications 112, 89-96 (2018)

Liang, W., Xie, S., Cai, J., Xu, J., Hu, Y., Xu, Y., Qiu, M.: Deep neural network security col-
laborative filtering scheme for service recommendation in intelligent cyber-physical systems.
IEEE Internet of Things Journal pp. 1-1 (2021)

954 Manjie Zhai et al.

22. Liu, H., Han, D, Li, D.: Behavior analysis and blockchain based trust management in vanets.
Journal of Parallel and Distributed Computing (2) (2021)

23. Liu, H.,, Han, D., Li, D.: Fabric-iot: A blockchain-based access control system in iot. IEEE
Access 8, 18207-18218 (2020)

24. Mohanty, S.N., Ramya, K., Rani, S.S., Gupta, D., Shankar, K., Lakshmanaprabu, S., Khanna,
A.: An efficient lightweight integrated blockchain (elib) model for iot security and privacy.
Future Generation Computer Systems 102, 1027-1037 (2020)

25. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review
pp- 260-268 (2008)

26. Neghabadi, P.D., Samuel, K.E., Espinouse, M.L.: Systematic literature review on city logistics:
overview, classification and analysis. International Journal of Production Research 57(3-4),
865-887 (2018)

27. Ni, H,, Deng, X., Gong, B., Wang, P.: Design of regional logistics system based on unmanned
aerial vehicle. In: 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DD-
CLS). pp. 1045-1051. IEEE (2018)

28. Nyame, G., Qin, Z., Obour Agyekum, K.O.B., Sifah, E.B.: An ecdsa approach to access control
in knowledge management systems using blockchain. Information 11(2), 111 (2020)

29. Outchakoucht, A., Hamza, E., Leroy, J.P.: Dynamic access control policy based on blockchain
and machine learning for the internet of things. Int. J. Adv. Comput. Sci. Appl 8(7), 417-424
(2017)

30. Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., Fang, B.: A survey on access control in the age of
internet of things. IEEE Internet of Things Journal 7(6), 4682—4696 (2020)

31. Rahman, M.U., Guidi, B., Baiardi, F.: Blockchain-based access control management for de-
centralized online social networks. Journal of Parallel and Distributed Computing 144, 41-54
(2020)

32. Shen, M., Liu, H., Zhu, L., Xu, K., Yu, H., Du, X., Guizani, M.: Blockchain-assisted secure
device authentication for cross-domain industrial iot. IEEE Journal on Selected Areas in Com-
munications 38(5), 942-954 (2020)

33. Tian, Q., Han, D., Li, K.C., Liu, X., Duan, L., Castiglione, A.: An intrusion detection approach
based on improved deep belief network. Applied Intelligence 50(10), 3162-3178 (oct 2020)

34. Xiao, T., Han, D., He, J., Li, K.C., de Mello, R.F.: Multi-keyword ranked search based on
mapping set matching in cloud ciphertext storage system. Connection Science 33(1), 95-112
(2021)

35. Xu, Z., Liang, W,, Li, K.C., Xu, J., Zomaya, A.Y., Zhang, J.: A time-sensitive token-based
anonymous authentication and dynamic group key agreement scheme for industry 5.0. IEEE
Transactions on Industrial Informatics pp. 1-1 (2021)

36. Yu, Y, Li, Y, Tian, J., Liu, J.: Blockchain-based solutions to security and privacy issues in the
internet of things. IEEE Wireless Communications 25(6), 12—-18 (2018)

37. Zhang, Y., Sun, W, Xie, C.: Blockchain in smart city development—the knowledge governance
framework in dynamic alliance. In: International Conference on Smart City and Intelligent
Building. pp. 137-152. Springer (2018)

38. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access control for
the internet of things. IEEE Internet of Things Journal 6(2), 1594-1605 (2018)

39. Zrakova, D., Demjanoviovd, M., Kubina, M.: Online reputation in the transport and logistics
field. Transportation Research Procedia 40, 1231-1237 (2019)

Manjie Zhai is currently pursuing the M.S.degree with the School of Information En-
gineering, Shanghai Maritime University, Pudong, China. Her current research interests
include blockchain and internet of things security.

A Consortium Blockchain-Based Information Management System... 955

Dezhi Han received the B.S. degree in applied physics from the Hefei University of Tech-
nology, Hefei, China, in 1990, and the M.S. and Ph.D. degrees in computing science from
the Huazhong University of Science and Technology, Wuhan, China, in 2001 and 2005,
respectively. He is currently a Professor with the Department of Computer, Shanghai Mar-
itime University, Pudong, China, in 2010. His current research interests include cloud and
outsourcing security, blockchain, wireless communication security, network, and infor-
mation security.

Chin-Chen Chang received the Ph.D. degree in computer engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 1982, and the B.E. and M.E. degrees in ap-
plied mathematics, computer and decision sciences from National Tsinghua University,
Hsinchu, Taiwan, in 1977 and 1979, respectively. He was with National Chung Cheng
University, Minxiong, Taiwan. Currently, he is a Chair Professor with the Department of
Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan,
since 2005. His current research interests include database design, computer cryptogra-
phy, image compression, and data structures.

Zhijie Sun is currently pursuing the M.S.degree with the School of Information Engineer-
ing, Shanghai Maritime University, Pudong, China. His current research interests include

blockchain and internet of things security.

Received: December 20, 2021; Accepted: March 15, 2022.

	Introduction
	Related Work
	Hyperledger Fabric
	Attribute-based access control model
	Elliptic curve digital signature method

	System overall design
	Entity description
	Data storage
	Smart Contract
	OMC.
	ACPC.
	ACC.
	EDC.

	Workflow
	Entity registration.
	User Order.
	Grant UDV order distribution qualification.
	Order Distribution.
	User request.

	Experiment
	System Construction
	Function testing
	Order stored procedure.
	User access process.
	Access control policy development process.

	Throughput testing

	Safety analysis
	Conclusions and future work

