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Abstract. Skyline queries were recently expanded to group decision making to
meet complex real-life needs encountered in many modern application domains that
does not only require analyzing individual points but also groups of points. Group
skyline aims at retrieving groups that are not dominated by any other group of the
same size in the sense of a group-dominance relationship. It may often happens
that this kind of dominance leads to only a small number of non-dominated groups
which could be insufficient for the decision maker. In this paper, we propose to ex-
tend group skyline dominance by making it more demanding so that several groups
leave incomparable. Then, the original group skyline will be enlarged by some in-
teresting groups that are not much dominated by any other group. The key element
of this relaxation is a particular fuzzy preference relation, named ”much preferred”,
conveniently chosen. Furthermore, algorithms to compute the relaxed group sky-
line are proposed. Finally, a set of experiments are conducted on real, synthetic and
generated data. Such experiments show that our proposal can really improve the
decision process and satisfy user queries, insure reliability and decision quality.

Keywords: Data analysis, Group skyline queries, Relaxation, Fuzzy preferences,
Decision making.

1. Introduction

Nowadays, multi-criteria analysis and decision making become more and more complex
due to conflicting criteria and query complexity. Skyline operator [3], known as Maxima
in computational geometry or Pareto in the business management field, manages this com-
plexity using Pareto dominance. It extracts interesting objects from a dataset by respecting
user preferences. It is particularly very successful in the database field, it has undergone
an exponential interest due to the benefit that can be derived from it, even in real contexts.
Skyline queries return then the most interesting points based on Pareto dominance rela-
tionship defined as follows: let a and b be two points (or database tuples) with the same
number of attributes (also called dimensions), a dominates b, noted: (a ≺ b), if a is as
good as b in all dimensions and better than b in at least one dimension. If neither a ≺ b
and nor b ≺ a, then a and b are incomparable.
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Many propositions and research works were published to study the skyline semantics
and optimize its computation. Efficient algorithms were proposed to retrieve objects that
present the optimal combination of the dataset characteristics [3,5,10,16,24,26,30,31].
Recently, the skyline definition turns out to be poor to deal with new complex real-world
decision applications to answer different queries that require choosing a group of objects
rather than individual objects of a dataset. Let us consider an example where a user wants
to get the best Volleyball teams from a set of players, the traditional skyline returns the
best players but not the best combinations to create a team that can not be dominated
by any other existing team generated from the set of players. Another similar example
consists of choosing a group of experts to review and evaluate papers based on the experts
collective strength on multiple desired skills. This leads to the concept of Group Skyline
3 [14,38], noted G-SKY, which is very important and useful in many other domains like:
groups recommendation, investments selection, detection of fire/crime (most dangerous
places), etc. This novel concept has created new issues to the skyline community, for
instance, generating groups and returning the appropriate skyline groups became the most
challenging problems. Some solutions to these issues have been proposed in the literature
[32,33]. However, querying a d-dimensional dataset using group skyline queries may lead
to two particular scenarios: (i) a large number of skyline groups returned, which could
be less informative for decision makers, (ii) a small number of skyline groups returned,
which could be insufficient for decision makers. To solve the first problem (i), various
approaches [15,29,40,43] are proposed to refine the group skyline, therefore reducing
its size, but none of the existing work has addressed the problem (ii) to relax the group
skyline in order to increase the number of group skyline results and thus satisfy better the
decision makers needs.

Consider the following problem of finding the skyline l-groups (where l indicates the
number of elements in each group from an n-tuple dataset): a decision maker (the trainer)
wants to get the 5 best groups of 3 players by maximizing points and the number of blocks,
when we run his/her query the system returns 2 groups of 3 Volleyball players each.
Unfortunately, this answer does not satisfy the decision maker, he/she needs 5 teams of the
best Beach-volleyball players but the traditional group skyline definition can return only
2 groups. It is the principal issue addressed in this paper. The solution advocated aims at
enlarging the size of the group skyline by applying an appropriate relaxation process. This
process consists of retrieving non-skyline groups by making more demanding the group-
dominance relationship. To the best of our knowledge this is the first time the problem of
group skyline relaxation is addressed.

Taking as starting point the study about the traditional skyline relaxation discussed in
[2], we propose an extended group dominance relationship using a particular fuzzy prefer-
ence relation, called Much Preferred (MP). The proposed approach allows increasing the
group skyline with (non-skyline) groups that are only dominated to some extent by other
groups in the sense of the extended group dominance introduced. The nature of the rela-
tion MP makes it more demanding the dominance between groups of the target dataset.
In this context, a group still belong to the group skyline unless it is much dominated, in
the spirit of the MP relation, by another skyline group. By this way, many groups are
considered as incomparable and then as elements of the new relaxed group skyline (noted
RG-SKY). Note that using the traditional group skyline definition such groups are pruned

3 Named also combinatorial or compositional skyline
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from the skyline groups. Furthermore, two algorithms (naive and optimized versions) with
different cases to compute RG-SKY efficiently are provided. We also develop a set of ex-
periments on real, synthetic and generated data to study and analyze the relevance and
effectiveness of our proposal.

The remainder of the paper is organized as follows. In Section 2, we provide a nec-
essary background and the problem description. In Section 3, we present a comparative
study relying on a literature survey of related work. In Section 4, we define the RG-SKY
concept and provide its properties w.r.t. both semantics and behavior. Algorithms for RG-
SKY computation are also discussed. In Section 6, we evaluate the approach with different
cases and discuss the results. Finally, Section 7 concludes by discussing the implications
of this work in optimizing decision-making by increasing user satisfaction.

2. Background and Problem Description

This section presents a brief overview about the traditional skyline, group skyline and no-
tions of fuzzy set theory used in this work. Then, it provides a description of the problem
of interest. Table 2 provides the symbols with their meanings used in the rest of the paper.

Table 1. Symbols and their meanings
Symbol Meaning

D=(D1, D2, . . . , Dd) a set of d-dimensional data points
d The number of dimensions of the set D
Ai The attribute Ai

Di The domain of Ai

Q A point of D
gi = (Qi

1, ..., Q
i
l) A group of l points of D

G = (g1, g2, ..., gl) The set of groups of size l of D
F An aggregation function

MP Much preferred relation
SKY The set of traditional skyline points

G-SKY The group skyline (set of skyline groups)
Rest The set of non skyline groups

RG-SKY The relaxed group skyline
2.1. Background

Traditional Skyline Queries Let D = (D1, D2, . . . , Dd) be a set of d-dimensional data
points (that corresponds to a set of database tuples). We define a relationR(A1, A2, ..., Ad)
in D and we assume the existence of a total order relation on each domain Di.

The traditional skyline query is based on Pareto dominance relationship defined as
follows. Let a and b be two different points in D, a dominates (in Pareto sense) b, denoted
by a ≺ b, if for all i, a[i] ≤ b[i], and for at least one i, a[i] < b[i], where a[i] (Resp. b[i])
is the value of the point a (Resp. b) for the attribute Ai and 1 ≤ i ≤ d. Formally,

a ≺ b⇔ ∀i ∈ {1, ..., d} : a[i] ≤ b[i] and ∃j ∈ {1, ..., d} : a[j] < b[j] (1)

Without loss of generality, we consider in this definition the smallest value, the better.
The skyline of D, denoted SKY(D), is a set of points that are not dominated (in Pareto
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sense) by any other point from D. Formally,

SKY (D) = {a ∈ D | ∄b ∈ D : b ≺ a} (2)

Fig. 1. The hotels conference Skyline points

The SQL4 skyline query format is an SQL extension that incorporates a new clause
SKYLINE where user preferences are specified [11]. The proposed SQL skyline syntax
based on Borzsony [3] writes as follows:
“SELECT * FROM ... WHERE ... SKYLINE ... ORDER BY . . . ”

Example 1. Consider the example of a conference PhD student participant who wants to
reserve a hotel room (see in Figure 1 the set of hotels). She/He wants the hotel to be
close to the conference place and also to pay a reasonable price. The corresponding SQL
skyline query writes:
“SELECT Hotels, Distance, Price FROM Hotels SKYLINE OF Price MIN, Distance
MIN”
where MIN specifies that the two attributes should be minimized. Figure 1 shows the
skyline points circled in red (i.e., SKY = {h6, h2, h4, h7}) that answer the user’s query
to get the best hotels that satisfy the students criteria. ■

Group Skyline Queries Despite the success of the traditional skyline, which focuses on
top-1 solutions, it is inadequate when optimal groups are searched rather than individual
points. For this reason, the skyline community proposed to extend the skyline definition
to the combinatorial context to deal with group skyline instead of individual Skyline.

This new type of skyline queries extension relies on a dominance relationship between
groups, also called combinatorial skyline queries. Group skyline returns groups that are
not dominated by any other group in the Dataset. The dominance relationship between
groups can be formulated in two different ways as follows:

– The first formulation relies on Pareto dominance and an aggregate function conve-
niently chosen. The dominance between groups is named G-Skyline.

4 SQL stands for Structured Query Language· SQL allows us to access and manipulate databases
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– The second semantics introduces a particular generalized dominance relation applied
on permutations of groups to be compared. This type of dominance is named G-
Dominance.

This leads thus to the two following formal definitions [43] (where g and g′ are two groups
with the same size):

Definition 1. (G-Skyline). Let F be an aggregate function and g = {Q1, Q2, ..., Ql}
(resp. g’ = {Q′

1, Q
′
2, ..., Q

′
l}) be a group represented by a point Q (resp. Q’) with Q

= F(Q1, Q2, ..., Ql) (resp. Q’ = F(Q′
1, Q

′
2, ..., Q

′
l)). For two distinct groups g and g’, g

dominates g’ (denoted g ≺gs g’) if Q dominates Q’ (Q ≺ Q’) in Pareto sense.

Definition 2. (G-Dominance). Let us consider the two previous groups g and g’, g G-
dominates g’ (denoted g ≺gd g’), if two permutations of l points can be found for g and
g’, g = {Qu1, Qu2, ..., Qul} and g’ = {Q′

v1, Q
′
v2, ..., Q

′
vl}, such that Qui ⪯ Q′

vi
5 for all

i (1 ≤ i ≤ l) and Qui ≺ Q′
vi for at least one i.

The group skyline of a dataset D, denoted G-Sky(D), is a set of groups that are not
dominated by any other group of D in the sense of definition 1 or 2. Formally, we write:

G− SKY (D) = {g ∈ G | ∄g′ ∈ G : g′ ⋉ g} (3)

where ⋉ stands for the relation ≺gs or ≺gd.

Table 2. Players data
Players points rebounds
p1 3 3
p2 0 4
p3 4 1
p4 2 3
p5 2 2
p6 2 1

Example 2. Let us consider an example consisting of team players selection. Assume that
we have six players p1,...,p6 shown in table 2 and we need team players formed by two
players. In table 3, we generate all the possible groups of two players. The manager likes
to extract the best teams based on the scored points and rebounds attributes of the players
(i.e., the greatest value, the better).

– Based on the Definition 1 and MAX aggregation function on each attribute, the
values w.r.t. points and rebounds of each player of the generated teams are given
in Column 3 of table 3. For instance, g1 has two players p1 and p2, the values of
g1 = (max(3, 0),max(3, 4)) = (3, 4). Now, applying the Pareto dominance on the
generated teams, one can check that the group skyline contains only the team g6.

5 Qj ⪯ Q′
j means that Qj ≺ Q′

j or Qj ∼ Q′
j where ∼ stands for the indifference relation (i.e., equally

preferable). The indifference relation reduces to equality if each domain Di is endowed with a total order.
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Table 3. Skyline Teams (using definition 1)
Groups Players MAX (points,rebounds) Group skyline
g1 p1(3,3) - p2(0,4) G1(3,4) ✗

g2 p1(3,3) - p3(4,1) G2(4,3) ✗

g3 p1(3,3) - p4(2,3) G3(3,3) ✗

g4 p1(3,3) - p5(2,2) G4(3,3) ✗

g5 p1(3,3) - p6(2,1) G5(3,3) ✗

g6 p2(0,4) - p3(4,1) G6(4,4) ✓

g7 p2(0,4) - p4(2,3) G7(2,4) ✗

g8 p2(0,4) - p5(2,2) G8(2,4) ✗

g9 p2(0,4) - p6(2,1) G9(2,4) ✗

g10 p3(4,1) - p4(2,3) G10(4,3) ✗

g11 p3(4,1) - p5(2,2) G11(4,2) ✗

g12 p3(4,1) - p6(2,1) G12(4,1) ✗

g13 p4(2,3) - p5(2,2) G13(2,3) ✗

g14 p4(2,3) - p6(2,1) G14(2,3) ✗

g15 p5(2,2) - p6(2,1) G15(2,2) ✗

✓ Yes ✗ No

– Based on Definition 2, let us consider the two groups g1 ={p1(3,3), p2(0,4)} and g7
={p2(0,4), p4(2,3)}. Since here the greatest value, the better, one can check that g1
g-dominates g7. Indeed, one can find a permutation for g1 given by {p2(0,4), p1(3,3)}
such that p2(0,4) ⪰ p2 (0,4) and p1(3,3) ≻ p4(2,3) (where ⪰ and ≻ are respectively
the preferred-or-equal relation and Pareto dominance relation based on the order
relations ≥ and >). Therefore, g7 is not a skyline group. The same process leads us
to a set of skyline group {g1, g2, g3, g6}, these are the only skyline groups as no other
group with 2 points can g-dominate g1, g2, g3 and g6.

Based on the experimental evaluation done in [41], it has been proved that it is more
interesting to consider Definition 1 because monotone function definition is a subset of
the permutation definition and generally it returns less information (i.e., a small number of
skyline groups) compared to Definition 2. In the rest of the paper, we make use of the Def-
inition 1 when computing the group skyline. ■

Fuzzy Set Theory: A refresher The first article in fuzzy set theory written by Zadeh
in 1965 [36] shows the intention of the author to generalize the classical notion of a set
and a proposition to accommodate fuzziness to represent classes or sets of objects with
all-defined boundaries. These sets allow us to describe gradual transitions between total
membership and absolute rejection. Typical examples of these fuzzy classes are those
described using adjectives or adverbs of the natural language, such as not cheap, young
and tall. Formally, a fuzzy set F on the universe X is described by a membership function
µF : X→ [0, 1], where µF (x) represents the degree of membership of x in F.

Using this definition, if µF (x)=0 then the element x /∈ F, if µF (x) = 1 then x ∈ F, these
elements represent the core of F denoted by CORE(F) = {x ∈ F | µF (x) = 1}. When 0 <
µF (x) < 1, it became a partial membership, these elements form the support of F denoted
by SUPP(F) = {x ∈ F | µF (x)> 0}. The complement of F, denoted F , is defined by µF (x)
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= 1 - µF (x). More µF (x) is close to the value 1, more x belongs to F. Therefore, given x,
y ∈ F, we say that x is preferred to y iff µF (x) > µF (y). If µF (x) = µF (y), then x and y
have the same preference.

In practice, F can be represented by a trapezoid membership function (t.m.f) (α, β, φ,
ψ), where [β, φ] is the core and ]α,ψ[ is its support (see Figure 2). This kind of mem-
bership functions in addition to its simple representation (only a quadruplet of values is
need), leads to uncomplicated computational operations as well.

Fig. 2. Trapezoidal membership function

2.2. Problem description

Let Q be a user skyline query and D be the target dataset. Assume the user wants to findK
groups of l elements for decision purposes. Let G-SKY(D) be the group skyline computed
and | G-SKY(D) | be its size.

One can easily observe that if | G-SKY(D) | < K, the user is not then able to make
the desired decision due the insufficient skyline groups returned. The problem of interest
is then how to enlarge the size of G-SKY(D) in order to obtain a relaxed variant, called
RG-SKY(D), with more groups (i.e., G-SKY(D) ⊆ RG-SKY(D)). We call this problem
the group skyline relaxation problem.

3. Related work

We review here the main research works related to group skyline both from the computa-
tion and semantics point of view. We also provide a comprehensive comparison of those
works w.r.t. to a set of criteria conveniently chosen.

The brute method to get G-SKY is to enumerate all the groups, and then run the query
based on the group dominance relationship. The brute force method computes the ag-
gregate tuple for each group, then uses any traditional skyline algorithm to find the group
skyline. This method is significantly time consuming and the storage cost can be exponen-
tial due to the huge intermediate input for the traditional skyline tuple algorithm. In [38]
some alternatives to this naive method are proposed. The existing group skyline propo-
sitions focus on the (i) problem using one of the definitions presented in Section 2 on
stream or static data, e.g,. the papers [15,29,32,33,37,40,43] combine the advantages of
group skyline and top-k queries. Another work [19] presents a structure that represents the
points in a directed skyline graph and captures all the dominance relationship among the
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points based on the notion of skyline layers. Some papers [8,12,17] focus on stream data
to compute G-SKY continuously, where they invoke the problem of computing G-SKY
when a new point p arrives dynamically. The underlying idea is to store dominance infor-
mation that could be reused in another search space pruning. In [14,18], authors generate
candidate groups in a progressive manner and update the resulting group skyline dynam-
ically. Some other papers [6,7,13,34,35,39,41,42,44] focus on optimizing experimental
performance of the group skyline algorithm by using Parallelization and other methods.
Based on our previous survey papers [21,23], we summarize and compare the above ex-
isting works in Table 4 (where (i) D.type (Data type): stands for stream or static data, (ii)
Perf (Performance): means that the work focuses on the execution time rather than the
quality of the responses, (iii) Def (Definition): indicates which definition 1 or 2 used to
compute the group skyline, (iv) Ref (Refinement): means that the work is endowed with
a refining process to reduce the skyline groups set returned and (v) Rel (Relaxation):
means that the work tries to get more skyline groups by relaxing the definition of the
traditional skyline groups).

As it can be seen, none of the previous work deals with the silence problem (Namely,
the set of answers is empty or insufficient to decision making) in the group skyline con-
text compared to the traditional skyline where we can cite the two papers [2,20] that use
respectively the kNN definition and a fuzzy preference relation to relax the skyline result.

Table 4. Group Skyline Related Work comparison
Related Work D.type Perf. Def. Ref. Rel.

Efficient computation of combinatorial skyline queries [6] Static ✓ 1 ✓ ✗

An Efficient Algorithm to Compute Compositional Skyline[7] Static ✓ None ✓ ✗

Finding Group-Based Skyline over a Data Stream in the Sensor Network[8] Stream ✓ 2 ✓ ✗

Efficient processing of skyline group queries over a data stream[12] Stream ✓ 2 ✓ ✗

Combination skyline queries[13] Static ✓ 1 ✓ ✗

Group skyline computation[14] Static ✓ 2 ✓ ✗

Incremental evaluation of top-k combinatorial metric skyline query[15] Static ✓ None ✓ ✗

Progressive approaches for Pareto optimal groups computation[17] Stream ✓ None ✓ ✗

Discovering Group Skylines with Constraints by Early Candidate Pruning[18] Static ✓ 1 ✓ ✗

Finding pareto optimal groups: Group-based skyline[19] Static ✓ 1 ✓ ✗

Top-k combinatorial skyline queries[29] Static ✓ 1 ✓ ✗

Identifying Most Preferential Skyline Product Combinations[32] Static ✓ None ✓ ✗

Identifying most preferential skyline product combinations under price pro-
motion[33]

Static ✓ None ✓ ✗

Efficient Contour Computation of Group-based Skyline[34] Static ✓ 2 ✓ ✗

Fast algorithms for pareto optimal group-based skyline[35] Static ✓ 2 ✓ ✗

Finding k-Dominant G-Skyline Groups on High Dimensional Data[37] Static ✓ None ✓ ✗

On skyline groups[38] Static ✓ 2 ✓ ✗

Finding optimal skyline product combinations under price promotion [39] Static ✓ None ✓ ✗

Top-k Dominating Queries on Skyline Groups[40] Static ✓ 1,2 ✓ ✗

Computing skyline groups: an experimental evaluation[41] Static ✓ 1,2 ✓ ✗

Computing Skyline Groups: An Experimental Evaluation [42] Static ✓ 1,2 ✓ ✗

Top-k Skyline Groups Queries[43] Static ✓ 1 ✓ ✗

Parallelization of group-based skyline computation for multi-core proces-
sors[44]

Static ✓ 2 ✓ ✗

✓ Yes ✗ No
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4. Group skyline relaxation approach

We discuss here our fuzzy approach to relax the group skyline. The idea is to extend
the group dominance (given in Definition 1) by making it more demanding. The relaxed
group Skyline obtained, RG-SKY, is no longer a flat set but a discriminated set where
each of its elements is associated with a degree.

The main idea consists of computing the extent to which a group, discarded by the
G-Skyline dominance relationship (denoted ≺gs, see Definition 1), may belong to the
relaxed group skyline. To this end, and as it will be illustrated further, we associate with
each skyline attribute Ai (i ∈ {1, · · · , d}) a pair of parameters (γi1, γi2) where γi1 and
γi2 respectively denote the bounds of the relaxation zone allowed to the attribute Ai. A
vector of pairs of parameters, denoted γ, is then defined as

γ = ((γ11, γ12), · · · , (γd1, γd2)).

It is worthy to note that γ, called a relaxation parameter vector, is a user-defined6. It
defines the set of values w.r.t each attribute that user can tolerate despite they are ruled
out when applying the dominance ≺gs.

4.1. Fuzzy group dominance

RG-SKY, the relaxed group skyline of G-SKY, relies on a particular dominance relation-
ship (inspired from the work [2]) that allows enlarging the group skyline with the most
interesting groups among those ruled out when computing G-SKY using Definition 1.
This dominance relationship makes use of the fuzzy relation “Much Preferred (MPG)” to
compare two groups g and g’. So, g is an element of RG-SKY if there is no group g’ ∈
G such that g’ is much preferred to g (denoted MPG(g’,g)) in all group skyline attributes.
Formally, we write:

g ∈ RG− SKY ⇔ ∄g′ ∈ G,MPG(g
′, g) (4)

Note that g’ is much preferred to g in the sense ofMPG if and only if g’ is much preferred
to g w.r.t. to all group skyline dimension i in {1, ..., d}. Formally, we write:

MPG(g
′, g)⇔ ∀i ∈ {1, ..., d},MPGi

(g′(i), g(i)) (5)

where MPGi
is a defined on the domain Di of the attribute Ai, g(i) = F (Q1[i], ..., Ql[i])

(resp. g′(i) = F (Q′
1[i], ..., Q

′
l[i]) andF is an aggregate function. Recall that (g′(i), g(i)) ∈

MPGi
means that µMPGi

(g′(i), g(i)) > 0 (or MPGi
(g′(i), g(i)) > 0 for short). In a sim-

ilar way, (g′, g) ∈MPG means also µMPG(g
′, g) > 0 (or MPG(g

′, g) > 0 for short).

Note that MPGi
(g′(i), g(i)) expresses the extent to which the value g′(i) is much

preferred to the value g(i). SinceMPGi
is of a gradual nature, each element g of RG-SKY

is associated with a degree (∈[ 0,1]) expressing the extent to which g belongs to RG-SKY.
Now in fuzzy set terms, one can write equation (4) as follows (where the quantifiers ∀ and
∃ are modeled by the min and max operators respectively):

6 The user predefine the values or the degree of tolerance of each dimension in a form of a vector of relaxation.
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µRG−SKY (g) = 1− max
g′∈G−{g}

min
i

µMPGi
(g′(i), g(i)) = min

g′∈G−{g}
max

i
(1−µMPGi

(g′(i), g(i)))

(6)
The semantics of the fuzzy relation MPGi

can be expressed by the following formulas
(7) (see also figure 3).

µ
MP

(γi1,γi2)

Gi

(g′(i), g(i)) =


0 if g′(i)− g(i) ≤ γi1
1 if g′(i)− g(i) ≥ γi2
(g′(i)−g(i))−γi1

γi2−γi1
elsewhere

(7)

Fig. 3. Membership function of MP
(γi1,γi2)
Gi

relation

For instance, if g′(i) − g(i) ≥ γi2 then g′(i) is completely much preferred to g(i).
One can also see that if g′(i)− g(i) > γi1, g′(i) is not only preferred but much preferred
to g(i) to some extent. In terms of t.m.f., the fuzzy set associated with MPGi

writes
(γi1, γi2,∞,∞), and denoted MP

(γi1,γi2)
Gi

. It is easy to check that MP
(0,0)
Gi

corresponds
to the crisp preference relation expressed by means of the regular relation ”greater than”.

Now, let RG SKY (γ) be the relaxed group skyline computed on the basis of the
relaxation vector γ = ((γ11, γ12), · · · , (γd1, γd2)) in the case of d skyline attributes.
One can easily check that the group skyline G − SKY = RG SKY (0) with 0 =
((0, 0), · · · , (0, 0)).

One can also check that the following monotonicity property holds.

Proposition 1. Let γ and γ′ be two relaxation parameter vectors. Then, the following
propriety holds:

γ′ ≤ γ ⇒ RG− SKY (γ′) ⊆ RG− SKY (γ)

Proof. (Sketch) Let γ = ((γ11, γ12), · · · , (γd1, γd2)) and γ′ = ((γ′11, γ
′
12), · · · , (γ′d1,

γ′d2)) two relaxation parameter vectors. γ′ ≤ γ ⇒ ∀i ∈ {1, ..., d} γ′i1 ≤ γi1 and γ′i2 ≤
γi2. This implies that ∀i ∈ {1, ..., d}MP

(γi1,γi2)
Gi

⊆ MP
(γ′

i1,γ
′
i2)

Gi
. Based on (6), one can

deduce that RG− SKY (γ′) ⊆ RG− SKY (γ) holds.

Lemma 1. Let γ = ((0, γ12), · · · , (0, γd2)), γ′ = ((γ′11, γ
′
12), · · · , (γ′d1, γ′d2)) and ∀ i ∈

{1, ..., d} γi2 < γ′i2, the following result holds as well:
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RG− SKY (0) ⊆ RG− SKY (γ) ⊆ RG− SKY (γ′)

Table 5. Hotels conference example
Hotels Price (Euro) Distance (Km)
h1 50 10
h2 100 6
h3 150 5
h4 40 11

Example 3. (Continued) To illustrate the interest of the RG-SKY set, let us consider a
simple example of 4 hotels with close values as depicted in Table 5. Assume the user
wants to retrieve the K = 3 best groups of hotels by minimizing the two dimensions price
and the distance, to get the closest hotels and the cheapest.

To this end, we proceed as follows:

1. Generate the skyline points: It is easy to check SKY = { h1, h2, h3, h4} because they
are incomparable.

2. Generate the groups of size 3 using the binomial coefficient7 and apply the MIN
aggregation function (Fmin):
g1 = {h2, h3, h4}, Fmin(g1)=<min(100,150,40), min(6,5,11)>=<40, 5>
g2 = {h1, h3, h4}, Fmin(g2)=<min(50,150,40), min(10,5,11)>=<40, 5>
g3 = {h1, h2, h4}, Fmin(g3)=<min(50,100,40), min(10,6,11)>=<40, 6>
g4 = {h1, h2, h3}, Fmin(g4)=<min(50,100,150), min(10,6,5)>=<50, 5>

3. By applying Definition 1, one can check that the group skyline is
G-SKY = {g1, g2}.
Unfortunately, the user receives only 2 skyline groups even if all tuples are skyline
points while (s)he needs 3 groups to make a decision. To satisfy the user’s needs, we
call then the RG-SKY method.

RG-SKY method:
Let us first assume that the relaxation vector γ = ((0.5, 1), (0.5, 1)), i.e. (0.5, 1) both for
the skyline attributes ”Price” and ”Distance”. According to equation (7), one can check
that the fuzzy relation MPGPrice

can write:

µ
MP

(0.5,1)
GPrice

(v, u) =


0 If v − u ≤ 0.5
1 If v − u ≥ 1
v−u−0.5
1−0.5

Otherwise
(8)

The fuzzy relation MPGDistance
can also be written in a similar way.

Let us now compute the fuzzy set RG-SKY using equation (6) (where i = 1 and i = 2
denote the attributes Price and Distance respectively):

µRG−SKY (g3) = 1− max
g′∈{g1,g2,g4}

min
i∈{1,2}

µMPGi
(g′(i), g3(i))

µRG−SKY (g3) = 1 - max[min(µMPG1
(g1(1), g3(1)),µMPG2

(g1(2), g3(2))),min(µMPG1
(g2(1),

g3(1)), µMPG2
(g2(1), g3(2))),min(µMPG1

(g4(1), g3(1)), µMPG2
(g4(2), g3(2)))]

7 The binomial coefficient is noted C(n, k) and reads choose k among n and is defined by the formula
C(n, k) = n!/(k!(n− k)!) with n! stands for the factorial of n.
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µRG−SKY (g3) = 1 - max[min(0, 0), min(0, 0), min(1, 0)] = 1 - 0 = 1

In a similar way, we obtain µRG−SKY (g4) = 1. Then,
RG-SKY = {1/g1, 1/g2, 1/g3, 1/g4}.

One can observe that RG-SKY contains the G-SKY elements (i.e., g1 and g2 with a de-
gree equals 1) and some new groups that were not in G-SKY with a degree equals 1 (i.e.,
g3 and g4). RG-SKY is more larger than G-SKY and can satisfy the initial user query by
returning for instance the groups g1, g2 and g3.
Now, if RG-SKY contains more than K groups, the K best groups are returned. In case of
ties, the user can establish a rank-order on the basis of the preferences w.r.t. the skyline
attributes (in our case, the Price and Distance attributes). As for the case where RG-SKY
contains less than K groups, one can revise the relaxation vector and re-execute the RG-
SKY method. ■

4.2. Some basic properties

We establish here a set of desirable properties that are of interest for computation pur-
pose. Some of them are the fuzzy counterparts of group skyline proprieties introduced in
[14]. Let γ = ((γ11, γ12), · · · , (γd1, γd2)) and γ′ = ((γ′11, γ

′
12), · · · , (γ′d1, γ′d2)) be two

relaxation parameter vectors (where MP γ
G(g, g

′)
> 0 means (g, g′) ∈MP γ

G ):

Proposition 2. (Min-Asymmetry) Let g and g’ be two groups of G,

If (g, g′) ∈MP γ
G then (g′, g) /∈MP γ

G .

Proof. Proposition 2 can also be written in the form: IfMP γ
G(g, g

′) > 0 thenMP γ
G(g

′, g)
= 0. Now, due to the asymmetry property of the fuzzy preferences [28], one can write:
min(MP

(γi1,γi2)
Gi

(g(i), g′(i)),MP
(γi1,γi2)
Gi

(g′(i), g(i))) = 0, ∀i ∈ {1, ..., d}. Namely, if

MP
(γi1,γi2)
Gi

(g(i), g′(i)) > 0 then MP
(γi1,γi2)
Gi

(g′(i), g(i)) = 0.

Proposition 3. (Min-Transitivity) Let g, g’ and g” be three groups of G,

If (g, g′) ∈MP γ
G and (g′, g”) ∈MP γ′

G then (g, g”) ∈MP γ+γ′

G .

Proof. Proposition 3 can writes also in the form: IfMP γ
G(g, g

′) > 0 andMP γ′

G (g′, g”) >

0 thenMP γ+γ′

G (g, g”) > 0. Now, due to the transitivity property of the fuzzy preferences
[28] and to the fuzzy addition formula [9], one can write:
min(MP

(γi1,γi2)
Gi

(g(i), g′(i)),MP
(γ′

i1,γ
′
i2)

Gi
(g′(i), g”(i))) ≤MP

(γi1+γ′
i1,γi2+γ′

i2)
Gi

(g(i),
g”(i)), ∀i ∈ {1, ..., d}.

Proposition 4. If g ⊂ SKY(D) then g ∈ RG-SKY(D) does not always hold.

Proof. To show that this Proposition is not always true, it suffices to exhibit a counterex-
ample. Consider a 2-dimensional (points, rebounds) dataset of 4 players: p1 = (0,4), p2
= (1,2), p3 = (2,1), and p4 = (4, 0). It is easy to see that SKY = {p1, p2, p3, p4}. Let
g = {p1, p4} (⊂ SKY). One can check that g /∈ RG-SKY for γ = ((0, 1), (0, 1)).
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Proposition 5. (The converse of Proposition 4) If g ∈ RG-SKY(D) then g⊂ SKY(D) does
not always hold.

Proof. Let us also find a counterexample. Consider a 2-dimensional (points, rebounds)
dataset of 3 players: p1 = (0, 2), p2 = (1, 0), and p3 = (2,1), we have SKY={p3} and
G-SKY={{p1, p3}} (i.e. contains 1 group of 2 points). For γ = ((0, 1), (0, 1)), one can
check that {p2, p3} ∈ RG− SKY while {p2, p3} ̸⊂ SKY .

Table 6. Comparison of the general Skyline algorithms
Name Indexed Limits and issues
Index [30] ✓ - Does not support user-defined preferences (the order of the returned points is fixed and

depends on the distribution of the data values)
Bitmap [30] ✓ - The memory consumption limit due to the conversion of points to Bitmap structure

- Bitmap also handles inefficiently updates because it implies the recalculation of all the bit
vectors t - Does not work on several dimensions (expensive)
- Does not allow the user to express preferences
- Mandatory to code all the point values

NN [16,31] ✓ - Performance problem, in case, we have a single element, the algorithm continue the di-
vision to 4 regions whereas the program can check in advance the number of the existing
points
- It is not efficient if the data is not mass

BBS [25,27,31] ✓ - Does not work when dimensions exceed 5
BNL [3,31] ✗ - Requires a lot of iterations before the final skyline is calculated (it analyzes all the data)

- It has a limit on the size of the window, the complexity of the algorithm depends on this
size
- A non-negligible comparison time is necessary
- The skyline points are not defined progressively (they change)

D&C [3] ✗ - The skyline points are not defined progressively
- Problem if the data is so small (the process becomes useless), it is more efficient when
dealing with a large amount of data
- The algorithm scans the entire database

SFS [5] ✗ - Scans all data
- The necessity to define a good monotonous function

LESS [10] ✗ - Elimination-filter (EF) mechanism can become full
- All the data must be scanned at least once

5. RG-SKY computation

RG-SKY computation is expected to be a part of a Decision Support System (DSS) [22].
Here, we provide (i) a diagram which gives an overview of how the RG-SKY approach
works and (ii) the two proposed algorithms for computing the RG-SKY set.

5.1. RG-SKY diagram

Figure 4 provides an overview of the RG-SKY approach and illustrates the chronology of
its steps in a comprehensive way. Two cases can be distinguished:

– Case 1: User request satisfaction - Relaxation unneeded
In this case, the decision maker sends a request with a set of conflicting conditions
to the DSS system (that integrates the RG-SKY computation process), the traditional
G-SKY computation returns a satisfactory answer and the RG-SKY process is then
not triggered.
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Fig. 4. Sequence diagram of the general RG-SKY approach
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– Case 2: User request dissatisfaction - Relaxation needed
The traditional G-SKY computation returns an unsatisfactory answer. Before starting
the relaxation process, the system first gets the relaxation parameter vector from the
user. The system also executes some pre-processing and some pruning techniques to
speed-up the RG-SKY computation. For instance, the following optimization strate-
gies are implemented:

• Sorting groups by their number of skyline points: this allows creating an hi-
erarchy of the groups that helps intelligently to scan the research space.

• Pruning techniques: they are based on the previous established propositions and
properties.

The RG-SKY computed represents a fuzzy set in the sense that each group is associ-
ated with a degree (expressing to what extent is not ”much dominated” by any other
group). If RG-SKY contains more K groups, the top-K groups are returned to the
user and then the process stops. Otherwise, we revise the relaxation parameter vector
(making it more permissive) and we re-compute the RG-SKY.

RG-SKY naive algorithm This subsection presents the first algorithm (Algorithm 1)
proposed to implement the RG-SKY approach. It does not use any optimization technique
to reduce the research space.

Algorithm 1: RG-SKY naive algorithm
Result: Relaxed Group Skyline
Input : G-SKY: Skyline groups, G: Groups, K: integer, γ: relaxation Vector
Output: RG-SKY

1 RG-SKY← G-SKY // The first step is the generation of G-SKY
2 GetRestGroups(G-SKY,G);
3 SortbySkyPoints(G-REST); // pre-treatment phase
4 DeleteZeroSkyGroups(G-REST); // pruning phase
5 j←− 1;
6 while (G-REST.length ≤ k) do
7 // level: denotes the number of skyline points of the current group
8 for(i=0;i<N;i++){
9 Compile µMP (level[j].get(i),γ); // g’∈Rest, µMP i(g’i,gi)

10 j++;
11 end
12 + Return RG-SKY

RG-SKY Salsa algorithm This algorithm is an improved version of the naive algorithm
where we avoid analyzing all the groups generated to extract the skyline groups. This
choice relies on the comparative study conducted on a set of well-known skyline algo-
rithms, as explained below.
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Algorithm 2: RG-SKY SALSA algorithm
Input : G-SKY: Group Skyline, G: Groups, k: integer, γ: relaxation Vector, F:

A monotone sorting function
Output: RG-SKY: Relaxed Group Skyline

1 RG-SKY← G-SKY
2 GetRestGroups(G-SKY,G); // G-Rest
3 SortbySkyPoints(G-Rest);
4 DeleteZeroSkyGroups(G-REST);
5 RG-SKY←− G-SKY; stop←− false; pstop←− undefined;
6 Sort G-REST according to F; // F(G-REST);
7 while (¬ pstop and G-REST ̸= ∅ ) do
8 G←− get next group from G-REST;
9 G-REST←− G-REST\{G}

10 if ¬MP(G,G-SKY) then RG-SKY←− RG-SKY ∪ {G}, update pstop then
11 if pstop > G-SKY then
12 stop := true;
13 end
14 Return RG-SKY;

To integrate the RG-SKY approach in our Decision Support System Model proposed
in [22], knowing that group skyline query processing results in an expensive procedure, it
is then important to choose the best adaptive skyline algorithm for our context. The choice
of SaLSa (Sorting and Limit skyline algorithm) is justified by the fact that it overcomes
the main limitations found in the other general skyline algorithms, as summarized in Table
6. In this comparative study, we have considered only the well-known algorithms in the
skyline field. For a complete overview on skyline algorithms, see for instance [24,26].

SaLSa algorithm used in the traditional skyline query extraction, is an improvement
of SFS and LESS (see Table 6). It strives to avoid scanning the entire sorted dataset
as opposed to the previous propositions, it is the first algorithm that exploits the values
of a monotonic notation (limitation) function to sort the data set to read and compare.
SaLSa differs from the other generic algorithms because it consistently limits the number
of points read and the dominance tests. The design of SaLSa is based on two key con-
cepts: First, a sorting step of the input data and, second, suitably choose a sorting function
that does not privilege any attribute over the others (the function does not influence the
correctness of SaLSa but only its performance). For these reasons, we adapt the Salsa
algorithm to the group skyline problem and to optimize also the relaxation process of the
RG-SKY approach. During the filter phase, the algorithm reads and examines the rest of
the groups. Each time a new group is read, it is compared to the current skyline group
list. If a group dominates the current group, it is ignored, otherwise it is inserted to the
relaxed skyline groups list (as a final relaxed group skyline) and the algorithm checks its
termination trigger (Pstop). If the current threshold Pstop is less than or equal to the fmin
value of the point, the algorithm ends and returns the entire skyline RG-SKY group list.
This termination condition ensures that no data groups examined later should be part of
the RG-SKY list, thereby the algorithm avoids analyzing the entire rest of the dataset.
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There are many limiting functions in the literature, but the optimal function that can
limit any input relation more than others do, is the Minimum Coordinate Function (MCF)
comparing to Sum and Val presented in [1] (MCF is noted MinC, first it sorts groups
considering the minimum coordinate value of the current group and simultaneously Sum
function of group elements is calculated and used in case of ties).

Table 7. Set of parameters (where N stands for the number of input groups)

Parameter Values default
value

Groups [N ]

NBA={500}, HOUSE={5911},
WEATHER={4438},

Correlated={10,50,100,500,2000-3612281},
Anti-correlated={2700},

Independent={1500}

10
50
100
500

1000
Dataset distribution schema Correlated, Independent, Anticorrelated Correlated

Number of group dimensions
[l]

2, 3, 4, 5 2

Relaxation vector
[(γ1, γ2)]

γ1∈ [0, 1],γ2∈ [0, 1] (0, 1)

6. Experimental study

Table 8. Specifications of real datasets
Dataset Cardinality Dimensionality
NBA 17,264 8

House 127,931 6
Weather 566,268 15

This section presents the experimental study carried out. It validates the effectiveness
and the relevance of the RG-SKY approach to relax small group skylines and also mea-
sures some performance related to the computational time.

6.1. Experimental environment

The algorithms are tested on a Dell Inc Machine, System Model: Precision T1650 and run
in a Windows 10 Education 64-bit (10.0, Build 16299) environment, using a 3.4GHz In-
tel(R) Core(TM) i7-3770 CPU @ 3.40GHz(8 CPUs) with a main memory of 8GB RAM,
in sequential mode (1 thread) and a 500 GB of disk. Dataset benchmark is generated using
the method described in [3] following three conventional distribution schema (correlated,
anti-correlated and independent) and also ”randataset”. The approach was developed in
Eclipse Modeling Tools Version: Oxygen.3 Release (4.7.3), using Java.v9 language.

6.2. Experimental tests

The tests can be classified into two main parts: Real Data (NBA, HOUSE, WEATHER)
and Synthetic data where we change the data type and size, the groups and tuples dimen-
sions and finally generate data for the purpose of the relaxation parameter vector tests
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Fig. 5. Summary of the different experiments



A Fuzzy Group Skyline Relaxation... 905

(The choice a very low values can motivate our approach and prove the utility of get-
ting results even if the user-defined values are small). Existing skyline researchers [14,38]
use the data generator proposed in [3] with standard parameters so that results can be
directly compared. As our work targets the same kind of data, we propose to follow the
same methodology to evaluate our proposal. The data generator in Borzsonyi et al. (2001)
generates database tuples (or points) with varying numbers of dimensions (or attributes).
Tuples are generated using one of the following three value distributions: – correlated
(corr): tuples, which are good in one dimension, tend to be good in other dimensions, too;
– anti-correlated (anti): tuples, which are good in one dimension, are bad in at least one
other dimension; –independent (indep): tuples are generated using a uniform distribution.
We also include three real datasets (see Table 8 for the specification of those datasets)
that are commonly used to evaluate skyline algorithms [4]: NBA (statistics of basketball
players during regular seasons), HOUSE (money spent in one year by an American fam-
ily for six different types of expenditures) and WEATHER (average monthly precipitation
totals and elevation at over half a million sensor locations). Finally, a last test is done on
generated real data using Skyline generator (randdataset). We summarize our input values
(constant/variable) in table 7 and our experimental tests in figure 5. Note that in all our
experiments, we make use of the aggregation function ”MIN”. Since this function returns
less skyline groups than other functions such MAX and SUM (as shown in reference
[38]). This behavior of the ”MIN” function is more interesting for the relaxation purpose.

6.3. Experimental results

Case 1: Real Data
Figure 6 shows the number of relaxed skyline groups in a different data type and the
execution time of the RG-SKY approach using the adapted aggregation function RG-
SKY provides more groups comparing to the set G-SKY. One can observe that for the
three datasets (NBA, WEATHER, HOUSE) G-SKY contains only one group.

The execution time depicted in Figure 6 and resulting from Algorithm 1 is not similar
for the three datasets due to their different correlations and sizes, while this time is similar
for the (correlated) NBA dataset.

After this first execution, we propose an optimized algorithm (Algorithm 2) that leads
to 97.20% improvement of the naive version (i.e., Algorithm 1) in terms of execution
time. This why for all the next experiments, Algoritm 2 is used.
Case 2: Synthetic Data (Correlated)

– Date type variation Figure 7 shows the execution time and the returned number of
relaxed skyline groups in different data types: correlated, anti-correlated and inde-
pendent data. As can be seen, the set G-SKY always contains one group for the three
datasets compared to RG-Sky which returns more than one group, except for corre-
lated data that returns the same number of skyline groups.
On the other hand, one can observe that independent and anti-correlated data are time
consuming compared to the correlated data. We note also that our RG-SKY Salsa
algorithm (Algorithm 2) is equal or less time consuming compared to the existing
G-SKY naive algorithm (Except for anti-correlated data).
This is why we decide to continue our experiments only on correlated data.
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Fig. 6. Real data execution time and the number of relaxed skyline groups returned

Fig. 7. Synthetic data execution time and the number of relaxed skyline groups in
different data types
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Fig. 8. Synthetic correlated data with different dataset size

– Data size variation
Figure 8 shows that the RG-SKY approach is very efficient. We obtain more skyline
groups with almost similar time consumption when the input groups do not exceed
500 groups.

– Group dimension variation
In this part, we focus and vary the group dimensions (i.e., the parameter l) instead of
the number of input groups (i.e. N ).
The figure 9 shows that the RG-SKY approach time execution is acceptable when
the number of elements (i.e. l) in the group does not exceed 4. For instance, for 100
tuples, if l=3 then the time execution for group generation: G-SKY computation and
RG-SKY calculus are respectively 4754 (ms), 7 (ms), 19 (ms). While for l=5, we
obtain 3612281 (ms), 3022 (ms), 242000 (ms) respectively.
Case 3: Generated Data
• Different relaxation vector values

For the last test, we generate groups using normalized data values in order to
analyze the impact of the relaxation vector values on the RG-SKY approach. Due
to data normalization, we use the same much preferred relationMPGi (γ1,γ2) for
all the skyline attributes i.
Figure 10 shows two cases for the MPGi

(γ1,γ2) relation:
1. Case 1: γ1 is fixed (γ1=0) and γ2 varies to increase the relaxation zone,

the obtained result shows that the size of the relaxed group skyline increases
when γ2 is larger but the execution time remains acceptable.

2. Case 2: γ1 and γ2 are both changing, the obtained result shows that the size
of the relaxed group skyline increases similarly as the first case. One can
observe that the execution time can be considered as reasonable w.r.t the
numbers of the relaxed generated skyline groups.
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Fig. 9. Synthetic correlated data with a dynamic values of K-group (dimensions) and
N-group (Number of groups)
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Fig. 10. Execution time and the returned groups with Generated data and different γ1
and γ2 values

7. Conclusion

In this paper, we addressed a new problem in the skyline community, that is, the problem
of small group skylines. An approach for relaxing this kind of skyline, called RG-SKY,
is discussed. It allows enlarging the group skyline at hand with interesting groups in a
controlled way, and thus makes the decision easier. Moreover, to better meet the needs
and expectations of the decision makers, the RG-SKY approach offers them the choice
of the appropriate relaxation thanks to the different input parameters. The key concept of
this approach is a particular fuzzy relation named much preferred whose semantics is user-
defined. In addition, two algorithms to compute the relaxed group skyline are proposed,
the first is a naive version of the RG-SKY method and the second is an optimized version
using the Salsa algorithm which is used for the first time to extract groups instead of
individual points in the relaxation context. The experimental study shows that the RG-
SKY approach is a good alternative in terms of execution time, number of the relaxed
skyline groups and user satisfaction.

As for future work, we plan to optimize the performance by taking the group genera-
tion part into consideration by eliminating groups using hierarchy methods based on the
number of skyline points per group. We plan also to explore the parallel computation for
the progressive relaxation generation of group skyline to optimize the time consumption
of the approach, Finally, we try to generate the relaxation vector automatically taking into
account the user attribute preferences.
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