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Abstract. Network function virtualization (NFV) is one of the key technology en-
ablers for actualizing 5G networks. With NFV, virtual network functions (VNFs)
are linked together as a service function chain (SFC), which provides network func-
tionality for the customer on demand. However, how to efficiently find a suitable
placement for VNFs regarding the given objectives is an extremely difficult issue.
The existing approaches assume that the SFC has a simple and asymmetrical pattern
that is unsuitable to modeling a real system. We address this limitation by studying
a VNF placement optimization problem with symmetrical SFCs that can support
both symmetric and asymmetric traffic flows. This NP-hard problem is formulated
as a mixed-integer linear programming (MILP) model. An iterative greedy-based
heuristic is proposed to overcome the complexity of the MILP model. Extensive
simulation results show that the proposed heuristic can obtain a near-optimal solu-
tion compared to MILP for a small-scale network, and at the same time, is superior
to a traditional heuristic for a large-scale network.

Keywords: Network function virtualization, multi-objective, VNF placement opti-
mization, symmetric, heuristic.

1. Introduction

Network function virtualization (NFV) [1] has emerged as a new network paradigm that
can overcome the limitations of traditional networks. NFV is a key emerging technology
in multi-access edge computing (MEC) realizing the Internet-of-Things (IoT) and 5G
networks [2]. Virtual customer premises equipment (vCPE) [3], which is the most popular
use case of NFV, can provide a flexible platform where multiple network services (e.g., a
firewall, router, dynamic host configuration protocol (DHCP), network address translation
(NAT), and load balancing) are virtualized as virtual network functions (VNFs) and run
on a common hardware platform. Through vCPE, service providers can rapidly develop
new services and avoid all manual processes.

A network service usually consists of various VNFs based on the customer require-
ments. An ordered sequence of VNFs is formed through a service function chain (SFC)
[4,5]. Some challenges having a significant impact on NFV include the efficient deploy-
ment of an SFC while ensuring that the service level agreements are satisfied and wisely
allocating network resources. This is known as the VNF placement (VNF-P) problem,
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which is the focus of this study. As mentioned earlier, an ordered sequence of VNFs is
formed as a service function chain (SFC). Given a set of requested SFCs, the goal of
VNF-P is to place the VNFs on suitable physical nodes in the network with regard to the
given objectives while satisfying constraints related to the nodes, edge capacities, and la-
tency bound [8,9,13,14,15,19,20]. A good placement solution may considerably enhance
network resource usage efficiency and lower CAPital EXpenditures and OPerating EX-
penses (CAPEX/OPEX), resulting in increasing profitability for cloud service providers.
Given different service requests by different users, the VNF placement challenge concerns
how to deploy a sequence of SFCs, each of which contains numerous VNFs, into cloud
available resources. Several open-source NFV platforms, including OpenStack Tacker3,
Open Source MANO (OSM)4, Open Platform for NFV (OPNFV) 5, and Open Network
Automation Platform (ONAP)6, have also concentrated on this problem.

In practice, SFC may be asymmetric or symmetric, depending on the requirement
of the service providers. A symmetrical SFC can process a given two-way flow, i.e., a
request flow (e.g., from a client to a server of the network service) and a response flow
(e.g., from a server of the network service to a client)[4]. The existing studies on traffic
symmetry for SFC are limited [6]. A hybrid SFC has attributes of both symmetric and
asymmetric SFCs; that is, some VNFs require symmetric traffic, whereas other VNFs
do not require response traffic or are independent of the corresponding request traffic
[5]. However, conventional approaches assume that network services have a relatively
simple and asymmetric paradigm, which is unsuitable to the modeling of real systems.
Common VNFs, such as a deep packet inspection (DPI) or firewall are required to process
symmetric traffic flows because of the consistent state of the flow [4,7]. In addition, to
reduce wasted resources and minimize the number of deployed VNFs, the VNF instances
can be reused across several SFCs in the network [19,20].

Based on the above observations, we propose a VNF-P model for SFCs that can sup-
port both symmetric and asymmetric traffic flows. This model is formulated as a mixed-
integer linear programming (MILP) model with an objective function that simultaneously
minimizes the number of deployed VNF instances, the total required data rates, and the
total latency. In the model, the VNF instances can also be shared across several SFCs to
reduce the number of deployed VNF instances. A heuristic based on the iterative greedy
algorithm is presented to solve the problem in large-scale networks owing to the com-
plexity of MILP. The simulation results show that the proposed heuristic can obtain a
near-optimal solution compared to the MILP for a small-scale network and is also supe-
rior to its counterpart for a large-scale network.

The remainder of this paper is organized as follows. Section 2 overviews previous
related studies. Section 3 describes the problem formulation and its model. Section 4
presents an iterative greedy-based heuristic method for solving the problem. Section 5
shows the simulation settings and numerical results. Finally, section 6 provides some
concluding remarks.

3 https://docs.openstack.org/tacker
4 https://osm.etsi.org/
5 https://www.opnfv.org/
6 https://www.onap.org/
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2. Related work

Since the concept of NFV was introduced in 2012 [11], the VNF-P began to draw atten-
tion as the building block of SFCs. SFC placement usually consists of two-step process:
first, the resource allocation problem; second, the traffic steering problem. The VNF-P
problems have been widely studied in recent years. In the majority of survey works, the
VNF-P problems have been formulated as an integer programming (ILP, MIP or MILP)
model. Then, heuristic placement algorithms have been proposed [12]. Furthermore, we
see that the goal of SFC placement is the objective function of the optimization problem.
Here are frequently used goals:

– Quality of Service (QoS) parameters: QoS parameters include energy consumption,
service latency, availability, etc. These parameters can help the service provider to
know the quality of a network service which provided to users.

– Cost and Revenue: The network cost represents the deploying cost or operating cost
of VNF on the nodes. Meanwhile, the revenue is the net value earned by serving
traffic needs, optimized under capacity constraints.

Fig. 1. Related works to VNF-P

Figure 1 shows three common optimization goals used for VNF placement optimiza-
tion problem such as QoS parameters, cost and revenue and edge cloud. In this section,
we categorize the related studies based on these goals.

– For the QoS parameters: if the deployment VNFs are not done properly in a com-
pute resource-sharing environment like cloud computing, QoS will have a substantial
impact on overall cloud service performance. A QoS-aware VNF placement strategy
would significantly minimize traffic transmission across the whole data center, and
therefore congestion and data transfer time. There are three common parameters in
QoS-aware:
• Energy-aware: It aims to minimize the power consumptions, which is achieved

through policies from Service level agreements (SLAs).
• Latency-aware: It aims to minimize network latency, VNF migration delay, etc.
• Availability-aware: It aims to maximize the availability of VNFs.

– For the Cost and Revenue: This is the basic and fundamental resource allocation
problem in NFV [10]. The main purpose of this problem is to minimize the total
network cost, traffic volume in network.
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– For the edge cloud: The concept of Mobile Edge Computing (MEC) brings the com-
puting resource closer to end-users. Applying NFV to MEC will help reducing the
service time latency for end-users as well as helping service providers to get more
benefit from lower expenditures and higher efficiency [10].

Firstly, QoS can significantly impact the overall performance of cloud services if the
VNF-P is not studied well. We categorized it into three common sub-category optimiza-
tion goals, including Energy-Aware, Latency-Aware, and Availability-Aware.

For the energy-ware, in [19], the authors proposed a Monte Carlo Tree Search (MCTS)
based method that shares VNFs among the tenants to minimize the energy consumption
of the servers in the VNF-P model. Abdelaal et al. [37] proposed a novel approach for
VNF placement called VNFRP (Virtual network functions and their replica placement).
They formulated the VNF placement problem as an integer linear programming problem
to optimize energy consumption and SFC placement cost. Furthermore, they proposed a
heuristic-based algorithm to solve the proposed problem. The simulation showed when
the number of replicas is increased, VNFRP may dramatically enhance load balancing by
up to 80%. Zeng et al. [39] proposed a VNF placement and routing technique to optimize
network delay and energy consumption. The technique combines a classic genetic algo-
rithm with a simplex approach with strong local search capabilities, avoiding the problem
that traditional genetic algorithms are prone to falling into the local optimum solution.
The results showed that the suggested technique is capable of reducing network latency
efficiency while also reducing network energy usage.

For the latency-aware, the authors [21] formulated the VNF placement problem as an
ILP model and proposed a hidden Markov Chain-based heuristic for placing the VNFs to
optimize the cost and delay. Agarwal et al. [22] formulated the VNF placement and CPU
allocation as a convex optimization problem. Then, they proposed a method, which was
based on the MaxZ placement heuristic, to optimize VNF placement and CPU allocation
decisions.

For the availability-aware, Zhao and Dán [23] formulated the VNF placement as an
ILP. Then they split it into a master problem and a sub-problem. They assumed that there
are U failure scenarios, and each failure scenario i has a probability pi. The master prob-
lem and sub-problem have been solved iteratively by using Generalized Benders Decom-
position (GBD). In each iteration, they produced an upper bound and lower bound for
the objective value of the original problem. The iteration process stops when these bound
values meet the termination condition. The study [24] solved the end-to-end delay and
service chaining availability for VNF placement using an ILP and heuristic solution.

Secondly, we surveyed the literature about cost-aware resource allocation in VNF-P.
This is the basic and fundamental resource allocation problem in NFV [10]. The authors
[13] found the number of essential VNFs and allocate them to minimize the total net-
work cost and the resource fragmentation. The authors [13] presented an integer linear
programming (ILP) model and a dynamic programming-based heuristic for the VNF-P
problem. In [14], the VNF-P model was proposed using mixed-integer linear program-
ming (MILP), which considers standard and fast path VNF forwarding methods with two
different optimization goals, including traffic engineering and NFVI cost minimization.
In [15], the target of the VNF-P model was to minimize the overall traffic volume in the
network, whereas some VNFs can change the traversing traffic volume, e.g., a WAN op-
timizer can compress the traffic before sending it to the next hop, resulting in a change
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in traffic volume. Pham et al. [16] proposed an algorithm based on the sampling Markov
approximation for optimizing the operation and network traffic cost. Tomasasilli et al.
[17] proposed two logarithmic factor approximation algorithms to optimize the deploy-
ment cost. The first algorithm was based on LP rounding, while the second algorithm was
based on greedy algorithm. The authors in [20] analyzed the resource consumption on the
servers and links. Their model allows different SFCs to share a single VNF if these SFCs
demand the same VNF.

Thirdly, we also reviewed some works related to VNF-P in Edge cloud environment.
Cziva et al. [25] formulated the VNF placement problem to minimize the total latency
of all users to their VNFs. The authors [7] also applied the Optimal Stopping Theory to
detect when to re-evaluate the optimal problem using two parameters: migration cost and
path delay. Song et al. [26] put the study on the VNF placement for 5G edge computing
using users’ mobility. First, [26] proposed a user grouping model based on geographic in-
formation of user context and then defined (and calculated the optimal number of) clusters
to minimize the delay of network services from one end to the other. Next, a graph parti-
tioning algorithm that assigns VNFs to clusters was presented to minimize the movement
between the user and clusters while optimizing the loss of users’ data rate due to VNF
migration. Tao et al. [38] formulated VNF placement problem to optimize both latency
and energy consumption at the edge. A cost-minimizing optimization strategy is used to
ensure the latency and energy consumption parameters. To overcome this challenge, they
created a graph of edge systems and users. The placement of the VNFs is determined
by the edge systems based on cost and user requirements. The findings demonstrate that
the proposed VPE technique minimizes the cost of edge systems while maintaining the
quality of the mobile user experience.

For a broader scope of resource allocation in NFV and its details, refer to previous
comprehensive surveys [2,8,9,10].

The existing studies assumed that the SFC is asymmetric, which only considers a
unidirectional traffic flow. Some Service Functions (SFs) need bidirectional flow, which
means they required both forward and backward directions. For example, common VNFs
such as deep packet inspection (DPI) or firewall are required to process symmetric traffic
flows because of the consistent state of the flow. Thus, this is the limitation of the existing
studies on VNF placement optimization problem due to it is not suitable to model real
system. Thus, the existing studies on traffic symmetry are still limited.

There are few existing works that study symmetry SFC. Bifulco et al. [18] works
on scalability and traffic steering for legacy mobile networks. Their proposal mentioned
symmetry SFC, where the upstream and downstream traffics are the forward traffic and
the backward traffic, respectively. The symmetry was achieved by using Network Address
Translation (NAT). Their study took into account the overall symmetry of the chain, re-
gardless of whether it is symmetric or asymmetric. Hantouti and Benamar [6] discuses
benefits of using partially SFCs and introduce a new method for calculating the reverse
route of symmetric SFCs. The result of the proposed method showed that it could help
lower the state of forwarding and, as a result, the traffic delay. Therefore, the studies [6]
and [18] do not focus on VNF placement for symmetric SFC. Thus, they are not presented
in Figure 1.

By addressing mentioned limitations, this work studies the VNF placement optimiza-
tion problem that can support both symmetric (unidirectional) and asymmetric (bidirec-
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tional) traffic flows, which is suitable for modeling real systems. Our contribution is to
formulate symmetric-enabled VNF placement optimization problem in order to minimize
the number of deployed VNF instances, data required rate of SFCs, and total latency.
Considering symmetry traffic for SFCs also helps save the number of deployed VNF in-
stances because the VNF instances can be shared across several service functions. Thus,
it is necessary to study on the VNF placement optimization for symmetrical SFC.

3. Symmetric-enabled VNF Placement Problem

In this section, the system model and problem formulation are presented. Table 1 shows
the notations used in this paper.

3.1. System Model

NFV-enabled Network A directed graph is used to describe an NFV-enabled network,
namely, G = (N,E), where N denotes the sets of nodes and E denotes the sets of edges.
We represent the CPU and memory capacities of each network node n ∈ N as ncpu and
nmem, respectively. A data rate capacity associated with each network edge e ∈ E is
represented as edr. Each network edge e has a latency elat.

Service function chain (SFC) A service function chain is specified by S = (IS , PS).
Here, i ∈ IS denotes a VNF instance of an SFC. A VNF instance can be implemented
in a virtual machine (VM) or container running over the network infrastructure. In such a
case, a specific amount of resources, such as the CPU and memory, are required. Hence,
icpu, imem represent the CPU and memory resource consumption for a VNF instance
i, respectively. The CPU and memory consumption for the VNFs can have a uniform
distribution or other specific distribution depending on the service providers. The directed
path between two instances defined in an SFC is denoted by p ∈ PS , which connects
exactly a head instance phead of p to a tail instance ptail of p. In addition, pMlat denotes
the maximum latency that can be tolerated for path p.

In this study, an SFC can process both asymmetric and symmetric traffic flows, which
require different types of VNF instances.

Type of VNF instances The four types of VNF instances considered are as follows.

(i) A source instance isrc represents a client. Therefore, it is fixed at a specific location
and does not consume any CPU or memory resources. The source instance is given
an outgoing data rate fdr

S of a flow fS ∈ Fn, where Fn is a union of all flows of SFCs
at node n and Fn ⊂ F , where F is a union of all flows.

(ii) A symmetrical instance isym can process the symmetric traffic flows, i.e., the request
(rq.) flow from a client to a server and response (rsp.) flow from a server to a client.
The existing studies on the VNF-P problem assume that the SFCs only have one
type of VNF instance, which processes only the asymmetric traffic flows. However, a
VNF instance may be symmetrical or asymmetrical depending on the network service
requirements. Many common VNFs such as a deep packet inspection (DPI), firewall,
and L4-L7 load balancer often require a symmetric traffic flow processing feature to
ensure that the flow state is consistent[4,7].
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Table 1. Notations Used in the Paper
Notation Description
Parameters
G = (N,E) A directed graph including a set of

nodes N and a set of edges E.
ncpu, nmem > 0 CPU and memory capacities of node

n ∈ N , respectively.
elat, edr > 0 Latency and data rate capacity of edge

e ∈ E, respectively.
S = (IS , PS) SFC including a set of instances i ∈ IS

and a set of paths p ∈ PS .
phead, ptail Head and tail instances of path p.
pMlat > 0 Maximum latency of p that can be tol-

erated.
icpu, imem > 0 CPU and memory requirements of an

instance.
isrc, isym, iasym,
idst

Role of instances, including source,
symmetrical, asymmetrical, and desti-
nation instances.

rrqi , rrspi Request and response data rate scaling
of an instance i.

Fn A collection of all flows corresponding
to all SFCs at node n.

F A union of all flows, i.e., Fn ⊂ F .
fS ∈ Fn A flow from a source instance of an

SFC S at node n. Each fS has a data
rate value of fdr

S .
0 ≤ w1, w2, w3 ≤
1, w1+w2+w3 = 1

Weighting factors of objectives.

Auxiliary variables
ingressfS ,rq

i,n ,
ingressfS ,rsp

i,n ≥ 0

Incoming data rate of request and re-
sponse flows fS of instance i placed at
node n.

egressfS ,rq
i,n ,

egressfS ,rsp
i,n ≥ 0

Outgoing data rate of request and re-
sponse flows fS of instance i placed at
node n.

rrqi data rate scaling of instance i for re-
quest flow

rrspi data rate scaling of instance i for re-
sponse flow

Decision variables
yi,n ∈ {0, 1} 1 if an instance i is placed at node n.
zp,en1,n2

∈ {0, 1} 1 if an edge e is used for sending traffic
of path p that has phead placed at n1

and ptail placed at n2.
drp,en1,n2

≥ 0 Required data rate at an edge e using
the path p for sending traffic when the
path p has phead placed at n1 and ptail
placed at n2.
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(iii) An asymmetrical instance iasym only processes either a request or a response flow.
Therefore, it has only incoming/outgoing data rates of either a request or response
flow.

(iv) A destination instance idst redirects the traffic flow from an incoming request to an
outgoing response. Therefore, it has the incoming data rates of the request flow and
outgoing data rates of the response flow. In this paper, the destination can be the server
of a network service or content caching server, which can be flexibly deployed in the
network.

Each VNF instance has the incoming request/response flows and the outgoing re-
quest/response flows based on the type. We define four data rate values of a VNF in-
stance i placed at node n of a flow fS , i.e., incoming request data rate ingressfS ,rq

i,n ,
outgoing request data rate egressfS ,rq

i,n , incoming response data rate ingressfS ,rsp
i,n , and

outgoing response data rate egressfS ,rsp
i,n . The required data rate at an edge of a flow

may be changed when the flow passes a VNF instance [15]. For example, the WAN
optimizer VNF compresses the traffic before sending it to the next hop, resulting in a
traffic savings of up to 80% [27], the video optimizer VNF can decrease the data rate
by up to 50% owing to a video trans-rating procedure [28], or the content filtering VNF
can reduce the required data rate by blocking the video streaming during working hours
[29]. Therefore, we define the data rate scaling of instance i for the request and response

flows, i.e., rrqi =
egress

fS,rq

i,n

ingress
fS,rq

i,n

and rrspi =
egress

fS,rsp

i,n

ingress
fS,rsp

i,n

, respectively. Figure 2 shows four

types of VNF instances with their flows and data rates. Figure 3 illustrates a sample of a
symmetric-enabled SFC.

Fig. 2. Four types of VNF instances with their flows and data rates
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Fig. 3. A sample of symmetric-enabled SFC

Shared VNF The model also adapts the concept of the sharing and reuse of VNFs
[19,20], which allows the different SFCs to use the same VNF instances with the same
identifier in their flows. The VNF reuse strategy can improve the resource utilization of
the servers and reduce the number of VNF instances deployed. A VNF instance can have
the request and/or response flows for every SFC using that instance. This means there are
sets of incoming and outgoing data rates corresponding to each SFC at a shared instance.
All instances except for the source instance can be shared.

Figure 4 shows an example of symmetrical SFCs placed in the Abilene network and
sharing an instance in which the source instance of SFC 1 is fixed at node 7, and the
source instance of SFC 2 is fixed at node 2. The sample SFC consists of a source instance
(Client - CLT), a firewall instance (FW), a server instance (SVR), and a content filtering
instance (CF).

3.2. Problem Formulation

The objective of the VNF-P problem is to find the optimal location of VNF instances of
symmetric-enabled SFCs in the network such that the number of VNF instances required,
the data rate of the SFCs required, and the total latency caused by the SFCs are simultane-
ously minimized while satisfying the constraints related to the node and edge capacities,
as well as the latency bounds for each SFC.

Variable Declaration The VNF-P problem is formulated as a mixed-integer linear pro-
gramming (MILP) [30] model. The decision variables of the model are detailed as follows.

(i) The binary variable yi,n represents a placement of the instance i at node n.
(ii) The binary variable zp,en1,n2

represents whether an edge e is used for sending traffic of
path p, which has a head instance phead placed at node n1 and a tail instance ptail
placed at node n2.

(iii) The continuous variable drp,en1,n2
represents a required data rate of path p at an edge

e if that edge is used for sending traffic of path p, which has a head instance phead
placed at node n1 and a tail instance ptail placed at node n2.

In addition, the continuous variables ingressfS ,rq
i,n , ingressfS ,rsp

i,n , egressfS ,rq
i,n , and

egressfS ,rsp
i,n , which are auxiliary variables, are data rate values of an incoming/outgoing

request/response corresponding to flows fS of an instance i placed at node n, respectively.
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A sample of symmetric-enabled SFC.

A sample SFC placed in the network.

Two sample SFCs sharing an instance.

Fig. 4. An example of symmetric-enabled SFCs placed in the network
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Objective Function and Constraints The optimization objective is to simultaneously
minimize the number of VNF instances placed across the network (obj1), the total re-
quired data rate (obj2), and the total latency (obj3). The problem can be formulated fol-
lowing the MILP model.

minimize
w1 · obj1(x) + w2 · obj2(x) + w3 · obj3(x)
subject to (1)− (15)

where

(i) x = (yi,n, dr
p,e
n1,n2

, zp,en1,n2
), which is a decision vector in a feasible set. The feasible

set is defined by the following constraints.
(ii) obj1(x) =

∑
i∈IS ,n∈N yi,n. This function defines the total number of VNF instances

deployed in the network.
(iii) obj2(x) =

∑
p∈PS ,n1,n2∈N,e∈E drp,en1,n2

. This function defines the total data rate re-
quired by all SFCs in the network.

(iv) obj3(x) =
∑

p∈PS ,n1,n2∈N,e∈E(z
p,e
n1,n2

· elat). This function defines the total latency
of all SFCs in the network.

(v) w1, w2, and w3 are the weighting factors in which 0 ≤ w1, w2, w3 ≤ 1, and w1 +
w2 + w3 = 1, and are used to assign the importance of the functions based on the
specific requirement of the service providers.

The following constraints are considered in the model. Constraints (1) and (2) are
the mapping consistency rules for the source instance. In (1), every source instance is
placed in a predefined node. The outgoing data rate of every source instance equals the
predetermined data rate of the flow exiting from that instance, as shown in (2).

∀S, ∀i ∈ IS , if i is isrc,∃!n ∈ N : yi,n = 1 (1)

∀S, ∀i ∈ IS ,∀n ∈ N, if yi,n = 1, if i is isrc,

∃!fS ∈ Fn : egressfS ,rq
i,n = fdr

S

(2)

Constraints (3), (4), and (5) express the data rate rules of an instance i when placed at
node n. In (3), if an instance is isym or iasym, for a request flow, the outgoing data rate
of that instance equals the rrqi scaling rate of the incoming data of that instance. In (4), if
an instance is isym or iasym, for a response flow, the outgoing data rate of that instance
equals the rrspi scaling rate of the incoming data of that instance. In (5), if an instance is
idst, the outgoing data rate of the response flow of that instance equals the rrqi scaling rate
of the incoming data of the request flow of that instance.

∀S,∀i ∈ IS ,∀n ∈ N, ∀fS ∈ F, if yi,n = 1,

if i is isym or iasym : egressfS ,rq
i,n = rrqi · ingressfS ,rq

i,n

(3)

∀S,∀i ∈ IS ,∀n ∈ N, ∀fS ∈ F, if yi,n = 1,

if i is isym or iasym : egressfS ,rsp
i,n = rrspi · ingressfS ,rsp

i,n

(4)
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∀S, ∀i ∈ IS ,∀n ∈ N, ∀fS ∈ F, if yi,n = 1,

if i is idst : egress
fS ,rsp
i,n = rrqi · ingressfS ,rq

i,n

(5)

Constraints (6) and (7) show the data rate rules of the head and tail instances of path
p. The incoming data rate of tail instance ptail of path p equals the outgoing data rate of a
head instance phead of that path correlated with the request and response flow fS .

∀S, ∀p ∈ PS ,∀n1, n2 ∈ N, ∀fS ∈ F,

if yphead,n1
= yptail,n2

= 1 : egressfS ,rq
phead,n1

= ingressfS ,rq
ptail,n2

(6)

∀S, ∀p ∈ PS ,∀n1, n2 ∈ N, ∀fS ∈ F,

if yphead,n1
= yptail,n2

= 1 : egressfS ,rsp
phead,n1

= ingressfS ,rsp
ptail,n2

(7)

Constraint (8) expresses the flow conservation in which the flow must leave an egress
of an instance if the flow passes through it. The required data rate at every edge along a
path p equals the outgoing data rate of a head instance of that path over all flows.

∀S, ∀p ∈ PS ,∀n, n1, n2 ∈ N, if yphead,n1
= yptail,n2

= 1 :∑
nn′∈E

drp,nn
′

n1,n2
−

∑
n′n∈E

drp,n
′n

n1,n2
=

∑
fS

egressfS ,rq
phead,n1

if n = n1 ̸= n2, fS is request.∑
fS

egressfS ,rsp
phead,n1

if n = n1 ̸= n2, fS is response.
0 otherwise

(8)

Constraint (9) ensures the consistency of the variables zp,en1,n2
and drp,en1,n2

. If a path
p uses an edge e for sending traffic, a required data rate of that path exists at that edge.
Otherwise, it does not.

∀S, ∀p ∈ PS ,∀n1, n2 ∈ N, ∀e ∈ E :

zp,en1,n2
=

{
1 if drp,en1,n2

> 0

0 otherwise

(9)

Constraint (10) prevents a loop in the path. It states that a path p should only use one
direction of an edge if that edge is used for sending traffic.

∀S,∀p ∈ PS ,∀n1, n2 ∈ N, ∀nn′ ∈ E,

if n′n ∈ E : zp,n
′n

n1,n2
+ zp,nn

′

n1,n2
≤ 1

(10)

Constraint (11) guarantees that the total latency of the edges used by a path p cannot
surpass the maximum latency of that path.

∀S,∀p ∈ PS ,∀n1, n2 ∈ N :
∑
e∈E

(zp,en1,n2
· elat) ≤ pMlat (11)



Optimized Placement of Symmetrical Service... 815

Constraint (12) ensures that a request flow and the corresponding response flow must
go through the same symmetrical instance isym.

∀S,∀i ∈ IS ,∀n ∈ N,∀fS ∈ F, if i is isym :

if ingressfS ,rq
i,n + egress

fS ,rq
i,n > 0 :

ingress
fS ,rsp
i,n + egress

fS ,rsp
i,n > 0

if ingressfS ,rq
i,n + egress

fS ,rq
i,n = 0 :

ingress
fS ,rsp
i,n + egress

fS ,rsp
i,n = 0

(12)

Constraints (13), (14), and (15) are capacity constraints. In (13), the required data rates
at an edge cannot exceed the data rate capacity of that edge. The node resource capacity
constraints are shown in (14) and (15).

∀S, ∀e ∈ E :
∑

p∈PS ,n1,n2∈N

drp,en1,n2
≤ edr (13)

∀S,∀n ∈ N :
∑
i∈IS

(icpu · yi,n) ≤ ncpu (14)

∀S, ∀n ∈ N :
∑
i∈IS

(imem · yi,n) ≤ nmem (15)

Model Complexity With the help of optimization solvers (e.g., Gurobi [32], CPLEX
[33]), the optimal solution can be achieved using a combinatorial search (e.g., Branch-
and-Bound algorithm [34]). However, the VNF-P problem has been proven to be NP-hard
[8,13]. This means that the time complexity increases exponentially with the network size.
Therefore, it becomes a challenge to obtain an optimal solution when a network is large.

4. Proposed Heuristic-based Placement Method

Because the VNF placement problem is an NP-hard problem, which means that there is
no algorithm that will always efficiently produce the exactly correct answer on all in-
puts. To address the NP-hard complexity of the problem, we propose a heuristic to solve
it. The benefits of the proposed Heuristic-based Placement method is to find a feasible
(not optimal) solution that is good enough to quickly solve and achieve optimization
placement goals. The heuristic includes three steps. First, the edges in the network are
weighted based on the latency and data rate capacity. Second, an initial solution is given
by a greedy algorithm based on the calculated weight of the edges. Finally, an iterative
greedy algorithm improves the initial solution using a random placement process.

4.1. Heuristic-based placement process

Every edge e is assigned a weight ew = 1
edr

+ elat and all pairs with the shortest (least-
weight) paths in the network are found using the Floyd-Warshall algorithm [31] concur-
rently in which an edge with a higher data rate capacity and lower latency has a lower
weight compared to the other edges.
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A greedy algorithm aims to select a node for placing a new VNF instance if that node
has sufficient capacity available and has the least-weight path from the current node of
the VNF instances. The greedy algorithm is illustrated in Algorithm 1. The instances are
processed following the sequence of the flow in both directions in the SFC. The source
instance is placed to a predefined node. Each instance i has a path p that connects the
prior instance to it. The algorithm finds prospective nodes for deploying the instance i
corresponding to p. A node is a prospective node if it satisfies the node, edge capacity,
and latency constraints. To support shared instances, a node can be a prospective node if
it has deployed instances that are the same type as the considered instance i, and satisfies
the edge capacity and latency constraints. If there is no prospective node, the algorithm
returns an infeasible solution. Otherwise, the algorithm creates or reuses (if exists) the
instance i at a prospective node that has the least-weight path from the location of the
prior instance. It should be noted that if the request flow passes an instance isym, the
corresponding response flow must return exactly to that instance.

Algorithm 1 Greedy algorithm pseudocode

Input: Weighted G = (N,E); ∀S; irand = null.
Output: Placement Solution Sol.

1: for all S do
2: Place isrc at a predefined location.
3: for all other i in IS in both directions of flow fS do
4: Get path p coming to instance i in flow fS .
5: if fS is in response direction & i is isym then
6: Map p to least-weight path connected node of isym.
7: else
8: Find prospective nodes that satisfy node, edge capacities, and latency constraints.
9: if perspectives nodes do not exist then

10: Return infeasible solution.
11: end if
12: Select a prospective node that has the least-weight path from the location of the prior

instance.
13: Create or reuse (if exists) instance i on the selected node and map p to the correspond-

ing least-weight path.
14: Update node and edges capacities.
15: end if
16: end for
17: end for
18: return Solution Sol

The solution of the greedy algorithm may be local optimal because the greedy algo-
rithm simply chooses the minimum-weight path with the corresponding end node to place
a new VNF instance. An iterative greedy algorithm is proposed to avoid the local opti-
mality of the greedy algorithm, as shown in Algorithm 2. Given the initial solution by
the greedy algorithm and predefined maximum number of iterations, the iterative greedy
algorithm arbitrarily chooses an instance in the current solution and places it to a differ-
ent location. For every iteration, the algorithm creates a new solution, which has a new
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objective value calculated using the objective function. The algorithm then compares two
objective values of the two solutions, chooses the solution with the least objective value,
and assigns it as the best solution. This process is repeated with the current best solution
until the maximum number of iterations is reached. The algorithm will return the solution
with the lowest objective value.

Algorithm 2 Iterative greedy algorithm pseudocode

Input: Weighted G = (N,E); ∀S; Sol; n iter.
Output: Best solution Solbest

1: Solbest ← Sol
2: iter ← 0
3: while iter < n iter do
4: iter ← iter + 1
5: Select a random instance irand from Solbest except the source instances.
6: Solnew ← run greedy algorithm but assign irand at a different node.
7: objbest ← calculate the objective value of Solbest
8: objnew ← calculate the objective value of Solnew

9: if objnew < objbest then
10: Solbest ← Solnew

11: end if
12: end while
13: return Solbest

4.2. Complexity Analysis

The time complexity of the placement process is a combination of the phases, including
finding all pairs of shortest paths using the Floyd-Warshall algorithm and repeating the
greedy algorithm in the number of iterations. The Floyd–Warshall algorithm takes O(N3)
[31]. An efficient implementation of the greedy algorithm is used to compute the place-
ment of an instance, taking O(N logN). For an SFC, it takes O(IN logN), where I is
the maximum number of instances needed to be considered in both flow directions. There-
fore, for K number of SFCs, the greedy algorithm takes O(KIN logN). By contrast, the
iterative greedy algorithm repeats the greedy algorithm in the number of iterations M .
Therefore, it takes O(MKIN logN). Hence, the overall running time of the heuristic-
based placement process is O(N3 +MKIN logN).

5. Performance Evaluation

In this section, extensive simulations conducted to verify the proposed model and algo-
rithms are described.

5.1. Simulation Settings

The algorithms under evaluation are the proposed MILP (denoted as MILP), the proposed
heuristic algorithm using 20 iterations (as described in section Conclusion, and denoted
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as proposed heuristic), and the first-fit heuristic algorithm (a baseline algorithm, denoted
as firstfit heuristic), which takes each instance in turn and places it into the first node that
can accommodate it. Gurobi optimizer 8.1 [32] using a Branch-and-Bound algorithm [34]
is used to solve the MILP model. Python 3 programming language was used to develop
the simulation and algorithms. All computations were conducted on a PC supplied with
an Intel Xeon CPU E3-1230 V2 @ 3.30 GHz, 16 GB RAM, running Windows 10 x64
OS.

The SFC used for the evaluation is a content-filtering service, as illustrated in Fig. 5. It
consists of a (Client - CLT), a firewall instance (FW), a server instance (SVR), and a con-
tent filtering instance (CF). First, CLT sends requests to FW. The FW is responsible for
analyzing inbound and outbound network traffic and chooses whether to allow or prohibit
certain types of traffic based on a set of predefined rules. It also supports symmetry traffic
flows, which means it always receives and responds to requests from CLT. If the request
is valid, the FW forwards the request to SVR to process. After processing the request of
CLT, the SVR sends the response to CF. The CF blocks content that contains harmful in-
formation, such as pornographic content, etc. Finally, it sends back the response to FW to
return to CLT. We assume that the CPU and memory consumption of each VNF instance
obey a uniform distribution of (2,4). The data rate scaling equals 1 for all instances except
for the CF instance, which has a data rate scaling rrspi of 0.5. The maximum latency that
can be tolerated for each path pMlat is 20 ms. Every SFC has a required outgoing data
rate of fdr

S = 1 (Gbps) from its source instance for all simulations.

Fig. 5. Symmetric-enabled content filtering SFC used for the evaluation

The simulations were conducted on the Abilene network, which is an ISP backbone
network, and the Geant network, which is a research backbone network. Both networks
were taken from the Internet topology zoo dataset [35]. In these networks, the edge latency
elat in milliseconds is estimated as the propagation latency calculated from the geograph-
ical distances between nodes [36]. Table 2 shows the details of the networks used and
their setups.

The inputs of the experiment are the network, SFC and number of SFCs need to be de-
ployed. We evaluate the ouput of proposed heuristic-based placement method with other
methods by four objectives: Number of deployed VNFs instances, Total required data
rate measured in giga bytes per second (Gbps), Total latency measured in second (s) and
Computational time measured in second (s).

Table 3 shows the four settings of the weighting factors. Using the balance setting
of the weighting factor, we first look at the effect of the symmetric feature of the SFCs
in the proposed model as compared to a conventional model. Then, the optimal results
achieved using the MILP of the proposed model with the four different settings of the
weighting factors are examined. The number of SFCs increases from 1 to 5 owing to the
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Table 2. Network topologies used for simulations
Network |N | |E| edr

(Gbps)
ncpu

(Unit)
nmem

(GB)
Abilene 11 28 10 4 8
Geant 40 122 20 4 8

Table 3. Weighting factor settings
Scenarios w1 w2 w3

MILP-Balance 1/3 1/3 1/3
MILP-VNF 1 0 0
MILP-Dr 0 1 0

exponential computational time of the MILP. Using a balanced setting of the weighting
factors, the MILP is then compared with the proposed heuristic and the first-fit heuristic.
The proposed heuristic is then compared with the first-fit heuristic in the large-scale Geant
network with the number of SFCs varying from 1 to 20. Every SFC has a different source
instance location from the others.

5.2. Simulation Results

Conventional model versus proposed model One disadvantage of the conventional
model, which does not support the symmetric feature of the VNF instances, is that it
cannot ensure a consistent flow state. By contrast, if the model does not support symmet-
rical VNF instances, the given SFC should be separated into sub-SFCs, i.e., (i) CLT →
FW → SV R, (ii) SV R → CF → FW , and (iii) FW → CLT . The additional in-
stances need to be deployed to process these SFCs instead of the one-time process of the
proposed model. This can lead to an increase in the number of deployed VNF instances re-
quired, which increases the node’s resource consumption and server energy consumption.
The simulation was conducted on the Abilene network. The results of the conventional
and proposed models differ significantly only in the number of VNF instances deployed.
The latency and data rate results are the same because the two models achieve the same
optimal placement of the VNF instances. As shown in Fig. 6, the gap between the objec-
tive value and the number of VNF instances required between the two models increases
with the number of SFCs.

Effect of the weighting factors Figure 7 illustrates the effect of different weighting fac-
tors on the MILP performance. MILP-VNF maintains the lowest number of deployed
VNF instances by sharing all deployed VNF instances except for the source instances.
However, it must sacrifice the data rate and latency objectives because the flow must go
further to reach the shared instances. By contrast, MILP-Dr and MILP-Lat deploy numer-
ous instances within the node capacities to reduce the data rate and latency, respectively.
MILP-Balance tries to minimize all three objectives simultaneously because these three
objectives have equal weighting factors. The results show that MILP-Balance can archive
the optimal required data rate and total latency of MILP-Dr and MILP-Lat, where the
number of deployed VNF instances is not overly high compared to MILP-VNF.
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Results of MILP and heuristics in the Abilene network From Fig. 8, it can be seen
that the proposed heuristic outperforms the first-fit heuristic and achieves a near-optimal
objective value compared to MILP with an average optimality gap of 9.7%. The details
of each objective are shown in Fig. 9. The first-fit heuristic has the lowest number of de-
ployed VNF instances among the different algorithms because it chooses the first node
that can accommodate the VNF instance and reuse that instance in other SFCs. However,
the first-fit heuristic must sacrifice the latency and data rates required because the distance
between VNF instances is greater than that in the solution to the other algorithms. It also
shows that the proposed heuristic can simultaneously minimize all objectives and effec-
tively avoid being trapped in the local optimality compared to the first-fit heuristic. In
terms of the computational time, as a simple algorithm, the first-fit heuristic outperforms
the other algorithms. However, the proposed heuristic with 20 repetitions only takes ap-
proximately 1 s to solve the problem with five SFCs, whereas the MILP takes 10.5 h.
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Fig. 8. Objective value of the algorithms in Abilene network

Results of heuristics in the Geant network With the increase in the size of the net-
work and number of SFCs, the MILP cannot obtain the solution within an acceptable
time. Therefore, we only compare the performance of the proposed heuristic and first-
fit heuristic in the Geant network. The objective value given by the proposed heuristic
is again always lower than the objective value given by the first-fit heuristic, as shown
in Fig. 10. The gap between two objective values of the algorithms under evaluation in-
creases when increasing the number of SFCs. Figure 11 shows the details of all objectives.
The first-fit heuristic uses the same shared VNF instances and therefore keeps the number
of VNF instances required as low as possible. However, the latency and data rate required
by the first-fit heuristic are too high compared to that of the proposed heuristic. It should
be noted that the first-fit heuristic cannot produce a solution because it violates the data
rate capacity constraint when the number of SFCs is 20. The proposed heuristic undoubt-
edly has a higher computational time compared to the first-fit heuristic. However, it only
takes under a minute (i.e., 42 s) when placing 20 SFCs at one time. However, with the
quality of the solution determined by the proposed heuristic, this can be acceptable when
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Fig. 9. Performance comparison in Abilene network

running on a large network. The computational time of this heuristic can be reduced if we
choose a suitable number of iterations and implement it using high-performance servers.
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Fig. 10. Objective value of the iterative greedy algorithm and the greedy algorithm in
Geant network

6. Conclusion

Conventional approaches assume that network services have a relatively simple and asym-
metric paradigm, which is unsuitable to the modeling of real systems. Common VNFs,
such as a deep packet inspection (DPI) or firewall are required to process symmetric traf-
fic flows because of the consistent state of the flow [4,7]. The impact of this study is that
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Fig. 11. Performance comparison in Geant network

it focused on the VNF placement problem with reusable VNF instances for symmetric-
enabled SFC, which can process both asymmetric and symmetric traffic flows. The sym-
metric features of SFC can not only ensure the consistency of the flow state but also
reduce the number of deployed instances. This NP-hard problem was formulated using
a multi-objective MILP model, which minimizes number of VNF instances, data rate of
SFCs, and total latency. Owing to the complexity of the MILP model, an iterative greedy-
based heuristic was proposed to solve the problem in large-scale networks. The benefits
of the proposed Heuristic-based Placement method is to find a feasible (not optimal) solu-
tion that is good enough to quickly solve and achieve optimization placement goals. The
extensive simulation results showed that the proposed heuristic can gain the near-optimal
solution (under a 10% optimality gap) within a shorter time period compared to the MILP
approach for a small-sized network. The performance of the proposed heuristic was also
superior to the baseline first-fit heuristic for a large-sized network.

For future works, we plan to formulate the optimization problem for more real-world
scenarios. We will conduct more experiments on other common networks used in VNF
placement optimization problem such as AAR, JGN2plus, etc., which can be found in
[35]. Also, due to the development of artificial intelligence, especially with Deep Rein-
forcement Learning (DRL) in solving VNF-P problem, the authors will apply this tech-
nique to solve the optimization problems.
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