
Computer Science and Information Systems 19(2):763–781 https://doi.org/10.2298/CSIS210820004S

A Neuroevolutionary Method for Knowledge Space

Construction

Milan Segedinac1, Nemanja Milićević
2
, Milan Čeliković

1
and Goran Savić

1

1 Faculty of Technical Sciences, Trg D. Obradovića 6,

21000 Novi Sad, Serbia

{milansegedinac, milancel, savicg}@uns.ac.rs
2 SmartCat, Danila Kiša 3V/14,21000 Novi Sad, Serbia

nemanja.milicevic@smartcat.io

Abstract. In this paper we propose a novel method for the construction of

knowledge spaces based on neuroevolution. The main advantage of the proposed

approach is that it is more suitable for constructing large knowledge spaces than

other traditional data-driven methods. The core idea of the method is that if

knowledge states are considered as neurons in a neural network, the optimal

topology of such a neural network is also the optimal knowledge space. To apply

the neuroevolutionary method, a set of analogies between knowledge spaces and

neural networks was established and described in this paper. This approach is

evaluated in comparison with the minimized and corrected inductive item tree

analysis, de facto standard algorithm for the data-driven knowledge space

construction, and the comparison confirms the assumptions.

Keywords: Genetic algorithms, Knowledge Space Theory, Neural networks,

Educational technology,

1. Introduction

Knowledge Space Theory (KST) gives a theoretical framework for assessing the quality

of student’s knowledge by representing their knowledge state instead of just quantifying

it by giving a numerical grade that would represent the amount of knowledge.

Identifying the precise knowledge state is of a key importance since it can direct the

forthcoming learning process and suggest which units of knowledge a student should

study next.

One of the most important issues in KST [1] is the construction of knowledge spaces,

the mathematical models of the structure of students’ knowledge [2]. There are two

classes of methods that serve this purpose: theory-driven and data-driven. In theory-

driven methods, the knowledge space construction is based on the experts’ theoretical

knowledge about the domain. On the other hand, data-driven methods construct

knowledge spaces by analysing students’ tests results. Such methods do not require any

theoretical assumptions about the domain problems, the relationships among them, nor

about the skills that the problems assume. Even though theory-driven techniques are

highly useful, they are time consuming and highly labour intensive. To avoid this

764 Milan Segedinac et al.

disadvantage, the method that we propose in this paper belongs to the family of data-

driven knowledge space construction algorithms.

Real educational settings often deal with large and highly interconnected domains [2].

Such domains typically call for large knowledge spaces for representing students’

knowledge states. Constructing knowledge spaces for large domains with numerous

interconnected problems is a great challenge for data-driven algorithms. The number of

potential knowledge spaces grows exponentially as the number of problems in the

domain increases. The complexity of this problem is the main motivation for examining

the possible alternative methods for knowledge space construction conducted in this

research.

The rapid development in the field of Deep Learning in the past decade has called for

efficient methods for solving complex optimization problems and has led to the

development of new and powerful optimization algorithms. These algorithms can be

applied to other fields if analogies between the models in the new fields of application

and the originally intended Deep Learning models can be established. The hypothesis of

this paper is that, since data-driven knowledge space construction can be observed as a

combinatorial optimization problem, optimization techniques developed for the Deep

Learning purposes can be directly applied to knowledge space construction as well, if

analogies between the original field of application and KST are identified. In that way,

we propose a novel method that it is convenient in constructing large knowledge spaces.

The method uses a set of analogies between knowledge spaces and neural networks that

we establish. The result of this paper is a neuroevolutionary, data-driven method for

constructing knowledge spaces.

As such, this method will be useful for both educators and researchers: it will allow

educators to utilize KST in teaching subjects with large and complex domains; it will

also help educational researchers to study the way students learn such subjects; and the

set of analogies between knowledge spaces and neural networks will contribute further

development of the field of knowledge space theory by applying other Deep Learning

techniques.

The paper consists of 5 sections. Section 2 gives an overview of the related work and

the theoretical framework utilized in this paper, namely the Knowledge Space Theory,

Neuroevolution, and the NEAT algorithm. In Section 3 we give the description of our

method. The evaluation of our method for the knowledge space construction against the

most commonly used knowledge space construction algorithm is given in Section 4. The

paper concludes with suggestions for future improvement of the proposed method.

2. Related Work

KST [3], [4] is a subfield of mathematical psychology that was initially used mostly for

the adaptive assessment of students’ knowledge. KST starts from the premise that a

domain can be defined as a potentially large but essentially discrete set of units of

knowledge, i.e. the problems that students should master. A student that can solve all the

problems from a domain is considered to have completely mastered the domain. Most

often, a student can solve some, but not all of the problems from the domain. That set of

the problems that a student is able to solve is termed as the knowledge state.

A Neuroevolutionary Method for Knowledge Space Construction 765

The set of all possible knowledge states can be very large. For a domain that consists

of 30 problems, there are potentially 2
30

 = 1,073,741,824 knowledge states. But, luckily,

in practice most of them are not feasible. For example, a student that cannot find the first

derivative of a function will not be able to solve the problem of finding the function

minima. In this example, all knowledge sates that would include the latter problem, but

would not include the former one would be implausible. Following KST terminology we

say that the latter problem surmises the former one.

A knowledge structure consists of a domain together with all feasible knowledge

states with requirement that the empty set (representing the student who has just started

learning and has not mastered any problem yet) and the domain itself (representing the

student who has mastered all the problems from the domain) are feasible knowledge

states.

A knowledge structure in which a union of every pair of knowledge states is also a

knowledge state (that is closed under union) is termed knowledge space. In such a

knowledge structure, if two students were engaged in extensive interactions while

studying, it is conceivable that one of them would, at some point in time, acquire the

joint knowledge of both [4].

Fig. 1 shows one knowledge space. The nodes in this graph represent the knowledge

states and the edges represent surmise relation, which can be defined as follows:

problem a surmises problem b, if from knowing that a student is able to solve the

problem a we can infer that student is capable of solving problem b. In the figure we can

see that the domain consists of a set of problems {a, b, c, d}. A student can master

problems a and d independently, but in order to master problem b they need to be able

to solve problem a.

Fig. 1. Knowledge space

Surmise relation can be interpreted so that it gives a set of prerequisites for every

knowledge state. Formally, it is defined as the function that associates a family of

knowledge states to each knowledge state. The particularly important class of

knowledge spaces are those that are closed under intersection. Such knowledge spaces

can be represented by a quasi-order, without loss of information [4].

A knowledge space is considered to be a learning space if the following two

additional axioms hold:

1. If knowledge state K2 includes knowledge state K1, a student can reach K2 starting

from K1 by mastering one problem at the time.

766 Milan Segedinac et al.

2. If both K1 and K2 are knowledge states for which K1 ⸦ K2 holds and if is

also a knowledge state where q is an arbitrary problem from domain, then is a

knowledge state, as well. This axiom asserts that mastering new problems from a domain

will never disable a student from mastering the ones they were able to master before.

2.1. Knowledge Space Construction

There are two categories of the knowledge space construction methods:

1. Theory driven methods, that either utilize the experts’ knowledge about the domain

or rely on the analysis of the problem-solving process, and

2. Data-driven methods, based on the analysis of students’ response

The methods that utilize experts’ knowledge about the domain use specialized

algorithms for selecting appropriate combinations of questions and presented them to the

experts and construct the knowledge space from the responses. Examples of this

approach are the QUERY algorithm [5] and the method proposed by Cosyn and Thiery

that combines QUERY algorithm with the analysis of solved tests [6].

Other theory-driven knowledge space construction methods decompose the problems

in the domain into sets of motives. An example of such methods is proposed in paper

[7]. In this method the information about the motives required for solving the problems

is used for constructing the knowledge space.

Another similar theory-driven method observes competencies involved in problem

solving process [8]. This method represents competencies by uses revised Bloom’s

taxonomy for representing the cognitive processes and an ontology for the domain

knowledge. Other competence-based methods ([9], [10]) use domain ontology and

cognitive process taxonomy to defined the dimensions of the competences and values of

these dimensions are interpreted as attributes. The knowledge space constructed by

using such methods reflects the assumption that, if there are two problems testing the

same domain knowledge, the one that requires a lower cognitive process will precede

the one that requires higher cognitive process.

All of these theory-driven methods share the same advantage, that they can be used

prior to evaluating students. The most important disadvantage is that the need for

continuous involvement of experts in the knowledge space construction process makes

them labor intensive. Even though some of them tend to reduce the involvement of

experts to some extent (e.g., the one that decomposes the problems in the sets of

motives), all of them require a substantial amount of manual work. Another

disadvantage of such methods, identified in [11] is that knowledge spaces that experts

expect, often do not fit the test data properly so it was concluded that the real knowledge

space often differs from the expected one. Theory-driven techniques are also

inappropriate for constructing large knowledge spaces.

On the other hand, data-driven methods build a knowledge space starting from a set

of student’s answers to test questions that can be either right or wrong, i.e. response

patterns. Most of these algorithms fall into one of two categories: those that use Boolean

analysis to construct the surmise relation and those that construct the knowledge

structure directly from the data. The most prominent examples of the first category are

Item Tree Analysis (ITA) [12] and Inductive Item Tree Analysis (IITA) [13] while the

examples of the second category can be found in the Schrepp’s paper [14]. There are

A Neuroevolutionary Method for Knowledge Space Construction 767

also hybrid methods that combine the data-driven algorithms with skill maps, such as D-

SMEP method [15], or with consulting domain experts [6]. All the data-driven

algorithms follow a three-step procedure: 1) construct the set of candidate knowledge

spaces (2) test the knowledge spaces against a given criterion and (3) choose the best

one according to the given criterion. Since all knowledge states are derived from the

empirical data, the mentioned methods either consider all the possible knowledge states

or impose certain structural constraints to data that allow them to derive the knowledge

states that do not occur directly in the students’ response patterns. For example, ITA and

IITA construct quasi-ordinal knowledge spaces (both closed under union and

intersection).

IITA derives a set of quasi-ordinal surmise relations for the given domain and

chooses the one that fits the data best. That is achieved by estimating the number of

counterexamples for each of them, and the one with minimal discrepancy between the

observed and expected number of counterexamples is the fittest [15], [12]. This

algorithm has been criticized because of its inductive approach to the construction of the

knowledge space; namely is possible the addition of two implications causes an

intransitivity if they are added together, but not if added separately [16]. Overcoming

this problem by introducing the corrected estimator, and minimizing fit criterion so that

it favors quasi-orders that favor smallest minimum discrepancies proposed in paper [16]

led to the minimized and corrected IITA, de facto standard algorithm for data drive

knowledge space construction. Because of that, the method that we propose is to be

compared against the minimized and corrected IITA.

The method proposed in this paper is a purely data-driven one, meaning that it does

not require any experts’ involvement and results with a knowledge space aligned with

the test results. In contrast to inductive data-driven techniques (like IITA), it does not

impose any additional restriction to the knowledge space that is constructed, but it can

be easily adopted to follow restrictions if needed. In addition, it can be applied to wide

domains with large numbers of questions. The method establishes a set of analogies

between artificial neural networks and knowledge spaces, and uses these analogies to

apply well developed Deep Learning techniques for knowledge space construction. To

the best of our knowledge, this approach is novel and there are no other researches that

have established such analogies or utilized neuroevolution for the construction of

knowledge spaces.

2.2. Neuroevolution

There are topological similarities between feedforward neural networks and knowledge

spaces. This fact allows us to observe the problem of knowledge space construction as a

special case of the optimization of neural network topology. There are number of ways

to optimize the structure of neural networks. One of the most popular is neuroevolution,

a family of evolutionary algorithms for the construction and training of neural networks.

768 Milan Segedinac et al.

Evolutionary Computation. Data driven knowledge space construction requires

efficient combinatorial optimization techniques. Evolutionary computation [17], [18]

offers a family of such techniques, inspired by the process of biological evolution, that

search for suboptimal solutions for a given problem. Such techniques are most often

applied in solving optimization problems with large search spaces, that make them

particularly interesting candidate for knowledge space construction. In contrast to them,

traditional search algorithms choose possible solutions either at random (e.g. random

walk algorithm) or by using some heuristics (e.g. gradient descent) and their

computational complexity is too high for the mentioned problems.

In order to construct knowledge spaces by applying an evolutionary algorithm it is

necessary to choose the appropriate genetic representation, the way in which an

individual in the population (i.e. a knowledge space) represents a possible solution of

the given problem. That requires representing the set of encoded properties of an

individual which forms a genotype. Most often, individuals are represented by the fixed-

size sequences of bits (chromosomes), and that will also be the case in this research.

For each individual in the population the fitness function assesses how well it solves

the problem. In the case of knowledge spaces, the fitness function tells us how well the

knowledge space fits the given test results. The value given by the fitness function is

used as a selection criterion when choosing the individuals that are going to be parents

for next generation. From the set of parents obtained by selection, reproduction is

achieved by applying the crossover operator resulting in the offspring. Just before the

new generation is formed, the mutation operator is applied to the individuals that will

constitute it. The mutation operator defines small random changes in the chromosome

and its goal is to allow the algorithm to check a wider search space, and, in the end, to

find a better fitted solution. These steps are repeated until the individual that fulfils the

predefined termination condition is met. In this case, that is when the knowledge space

that sufficiently fits the assessment results is found.

Neuroevolution. Since evolutionary algorithms are developed for solving complex

optimization problems, they can be suitable for construction of knowledge spaces. In

that way, the knowledge space construction would start from from a knowledge space

and it would proceed by adding new knowledge states and extending the surmise

relation throughout the evolution. As knowledge spaces can be observed as feed-forward

artificial neural networks there is a possibility of applying a neuroevolutionary algorithm

for their construction instead of developing an evolutionary algorithm for that purpose

from scratch.

Neuroevolution is a branch of artificial intelligence that uses evolutionary algorithms

to construct neural networks – both to generate their topologies and to optimize

parameters [19]. The main idea is to iteratively generate, select and cross neural

networks until an acceptable suboptimal solution is found, as with the general

evolutionary algorithm explained in the previous section. In this process, the neural

networks that have better results on the training data and those that generalize the data

better are higher ranked by the fitness function.

Neuroevolution gives better results than the traditional methods based on gradient

descend in environments with sparse feedbacks, such as training a neural network to win

a game that requires a large number of steps to finish. Therefore, neuroevolution can be

applied to a broad set of problems where a large set of precisely labelled data is not

A Neuroevolutionary Method for Knowledge Space Construction 769

available. They impose restrictions that performance can be measured during the

training process and that the behaviour of the network can be changed as it evolves.

It should be noted that recent research has shown that simple neuroevolutionary

algorithms match the performance of modern sophisticated Deep Learning algorithms

based on gradient descent optimization [20]. Some of the most prominent

neuroevolutionary algorithms currently are GNARL [21], EPNet [22], NEAT [23],

HyperNEAT [24], DXNN [25].

In neuroevolution, there are two ways to map genotype into phenotype: direct and

indirect encoding. When direct encoding is applied, the genotype is directly mapped

onto the phenotype, meaning that each neuron and each synapse in a neural network has

its explicit representation in genotype. In our case, it would mean that every knowledge

state and every surmise relation would have their explicit representation in genotype.

On the other hand, in indirect encoding, the genotype indirectly specifies how the neural

network should be generated. Indirect encoding is often useful for compressing large

phenotypes into smaller genotypes, narrowing the search space [24], [26], [27]. In this

research we will rely on the direct encoding while indirect encoding will be a topic of

our future work.

Neuroevolution was first proposed as an alternative to training neural networks by

backpropagation algorithm [28]. Those algorithms were used on networks with fix-

topology, meaning that for them only the synaptic weights were subjected to

evolutionary optimization, while the topology remained unaltered. Thus, the fix-

topology neuroevolution differs from the evolution of the biological neural systems in

which the structure of the neural systems itself evolves. One drawback of fixed topology

neuroevolution is that in such algorithms the neural network cannot grow through the

evolution, and this fact stops the network from becoming able to solve problems harder

than the ones it was initially intended for. Fixed topology algorithm would be unsuitable

for the construction of knowledge spaces because they will not allow for new knowledge

states to be discovered. More recent algorithms solve this issue by evolving the topology

of the network together with its synaptic weights.

These algorithms fall into a broad category of topology and weight evolving artificial

neural network (TWEANN) algorithms. In them, the topology of the neural network can

be changed by adding new neurons and synapses among the neurons with respect to

certain constraints. Since the problem that we address in this research requires a

topology of the knowledge space to be evolved, it will be solved by an algorithm that

belongs to the TWEANN family.

3. Neuroevolutionary Knowledge Space Construction

In this section we present our neuroevolutionary approach to the knowledge space

construction. This approach is based on the NEAT algorithm, and for that purpose

knowledge spaces are observed as a special kind of neural networks.

770 Milan Segedinac et al.

3.1. NEAT Algorithm

Stanley and Miikkulainen have shown that simulated evolution of topology together with

the synaptic weights give better results than fixed-topology neuroevolution [29], and

proposed the NEAT algorithm as a member of TWEANN family. NEAT has solved

three problems persistent with the algorithms that have preceded it: (1) giving an

adequate genetic representation of the neural networks that enabled meaningful

crossing-over of substantially different networks (2) preservation of the topological

innovations for a few generations until their characteristics show up properly and (3)

minimizing the topology during evolution without additional metrics that would measure

the topology complexity. NEAT supports three mutation types: synaptic weight

modification, addition of a new synapse and addition of a new neuron that shares the

existing synapses. Additionally, NEAT has introduced new cross-over mechanisms and

a concept of shared fitness function that increases the diversity.

NEAT uses direct genotype to phenotype encoding, meaning that each neuron and

each synapse are explicitly represented. Because of that, there is no need to define new

rules for neural network generation from the genotype.

One important feature of the NEAT algorithm is that it gradually evolves small

networks, starting from a simple perception to more complex ones that can solve

demanding problems. It should be mentioned that the NEAT algorithm has also been

modified to be suitable for Deep Learning architectures–CoDeepNEAT [30].

3.2. The Neuroevolutionary Method for Constructing Knowledge Spaces

The NEAT algorithm was initially design to be used for neuroevolution, and in this

paper we adapt it so that it can be used for evolutionary construction of knowledge

spaces. To achieve this adaptation, we need to define the analogies between knowledge

spaces and neural networks. It should be stated that solving problems in other domains

by identifying the analogies with artificial neural networks is a well-known approach. In

paper [31] neural networks were used for the identification of nonlinear dynamic system

by identifying a set of analogies between the artificial neural networks and another

nonparametric identification technique. Another example of such an approach is paper

[32] where analogies between the inverse problem of choice and neural network learning

were utilized. Paper [33] identifies uses the analogies between community structures and

neural networks to model the evolution of social networks.

Feedforward neural networks can be considered as directed acyclic graphs where

input, hidden and output neurons are vertexes and synapses are edges. Knowledge

spaces can also be observed as directed acyclic graphs where knowledge states are

vertexes and surmise relations define the edges. In this analogy an empty knowledge

state would correspond to an input neuron, the knowledge state consisting of all the

items from the domain would be an output neuron, and all the other knowledge states

would be hidden neurons, while not every neuron has to be connected to all the neurons

in the adjacent layer. The general idea of this analogy is shown in Fig. 2.

A Neuroevolutionary Method for Knowledge Space Construction 771

Fig. 2. A feedforward neural network and a knowledge space. The knowledge space can be

considered as a neural network with 3 hidden layers and a single neuron in both the input and

output layers

The complete set of analogies is given in Table 1.

Table 1. The analogies between neural networks and knowledge spaces

Neural Networks Knowledge spaces

Neuron Knowledge state

Neuron in the input layer Empty knowledge state

Neuron in the output layer Whole domain

Synapses Surmise relation

Weights -

Topology optimization Knowledge space construction

Training -

After identification of the analogies, we can observe knowledge spaces as neural

networks, we can define the algorithm. It starts with an initial population of knowledge

spaces. The initial population consists of knowledge spaces having just one knowledge

state – an empty set. The initialization phase is followed by selection, crossing over and

772 Milan Segedinac et al.

mutation. These steps result with a new population of knowledge spaces. This

population is then divided into species and the division is made by the similarity

between the individuals. The pseudocode of the algorithm is given in the listing below.

population = population_size of empty_knowledge_spaces
for generation_number 0 to number_of_generations

 calculate_fitness for all_knowledge_spaces in population
 if best_fitness > fitness_treshold then
 return knowledge_space_with_best_fitness
 end if

 if (best_fitness_does_not_improve in max_generations) then
 return knowledge_space_with_best_fitness
 end if

 new_population = top_k_best_knowledge_spaces
 while size(new_population) < size(population) do

 parent_1, parent_2 = select_knowledge_space_parents
 child_knowledge_space = crossing_over(parent_1, parent_2)

 child_knowledge_space = mutate(child_knowledge_space)

 new_population.append(child_knowledge_space)

 end while

 population = form_species(new_population)

end for

Listing. 1. The algorithm

The remaining section describes the methodology for constructing the knowledge

spaces using NEAT algorithm.

Genetic representation. In evolutionary computing, the population consists of

individuals represented by genes. In neuroevolution, neural networks are individuals.

Since neural network consists of neurons and synapses, the genotype that represents the

individual also consists of two types of genes: those that represent neurons and those

that represent the synapses. Both of these two types of genes have additional attributes.

So, for example, a gene that represents a neuron can also contain the information about

the activation function or the type of the neuron (input, hidden or output), while a

neuron that represents a synapse can contain the data about the weight, the origin and the

destination neurons as well as the indicator if the synapse is active.

It has already been mentioned that, if a knowledge state is observed as a neuron and if

surmise relation is observed as a set of synapses, knowledge spaces can be interpreted as

a special kind of feed forward neural network. The genome of a knowledge space then

has two sets of genes: genes that represent the knowledge states and the ones that

represent the surmise relation. It should be noted that not all the information encoded in

the genome of a general neural network is required for representing a knowledge space.

The genes that represent knowledge states should not contain the information about the

activation function and the neuron type.

The surmise relation in a knowledge space represents a discrete phenomenon: either a

problem is a prerequisite to the other one, or it is not. Therefore, there is no need for

genes that represent the surmise relation to contain the information about the weight. It

is enough to represent if a connection exists and which knowledge states are connected

with it.

A Neuroevolutionary Method for Knowledge Space Construction 773

To represent knowledge spaces, two types of genes are required: those that represent

knowledge states and those that represent the surmise relation. The method that we

propose uses direct genotype to phenotype encoding.

For representing the knowledge states, additional information that does not occur in

the original NEAT algorithm should be given. Since a knowledge state is determined by

the problems from the domain that the student can solve, the knowledge state is

represented by a string of bits where each of them corresponds to one of the problems

from the domain. If a student can solve the problem qi, then the i-th bit in the array will

have a value of 1. In all other cases, it will have a value of 0. For example, for a domain

 ={ , , } and a set of knowledge states {{ },{ },{ , },{ , , }} the bit representation

would be: { }⇒100 { }⇒010 { , }⇒110 { , , }⇒111.

Such a representation has the advantage of using bitwise operations that make the

calculation of the fitness function efficient. For example, the fitness function described

in this paper uses symmetric distance between a knowledge state and a response pattern.

That can be achieved by subtraction and conjunction.

Fitness function. Choosing the right fitness function is very important for the

convergence of the algorithm. The fitness function should measure how well an

individual solves the initial optimization problem. In this approach, the candidate

knowledge spaces are being generated through crossover and mutation, and for each of

them the fitness function should evaluate how well the obtained knowledge space is

aligned with the dataset. In addition to that, the fitness function should be quick to

evaluate, because it is being evaluated a large number of times.

Because of these reasons, the discrepancy measure described in the paper [34], and

based upon the k-modes algorithm is used as a fitness function. For the sake of the

comprehensibility of the paper, the description of this discrepancy measure given in the

paper [34] follows.

In this method the dataset is a collection of response patterns, each of which

represents the problems from the domain that the student has solved correctly. The

observed dataset is represented by the pair (ℛ,), where ℛ⊆2 is a subset of the

partition set of domain Q and :ℛ→ℝ is a function that assigns the number of

occurrences to each response pattern. For function F, it holds F(R)≥0 for every ∈ℛ

and Σ ()= , for ∈ℛ and for N students’ responses.

For every knowledge structure over the domain Q, partitioning N response patterns

into | | classes is represented by partition function :ℛ× →ℝ that fulfils two

conditions:

1. f(,K)≥0 for ∈ℛ and ∈ ,

2. Σf(,)= (), for ∈ and ∈ℛ.

The partition function can be interpreted in the following manner: for given ∈ and

 ∈ℛ the function assigns f(,K) out of f() pattern response R occurrences to the class

that is being represented by the knowledge state K. The second condition guaranties that

each R is going to be assigned to some class represented by the knowledge state K. For

all possible partition functions for ℛ and , the one that minimizes a certain

dissimilarity measure is to be chosen. One such simple measure between ∈ and ∈ℛ

is the cardinality of their symmetric distance, d(,)=|(\)∪(\)|.

774 Milan Segedinac et al.

Dissimilarity measure within a class given by the knowledge state ∈ is the

weighted sum of the symmetric distances: Df(ℛ,)=Σ (,)⋅ (,), ∈ℛ.

And the total dissimilarity of a knowledge structure and a dataset (ℛ,) is the sum

of all dissimilarity measures within all the classes:

 (ℛ,)=ΣΣ (,)⋅ (,) ∈ℛ ∈ .

The value of the fitness function for an individual in the population (that is a

candidate knowledge space) is obtained from the dissimilarity that tells us how much

the knowledge space differs from the dataset.

Selection and crossover operators. The proposed method uses the selection and

crossover operators as the original the NEAT algorithm. In contrast to traditional genetic

algorithms, NEAT divides the population into species. For each species, the total fitness

function is calculated as the average fitness of all the individuals inside it. Then to each

species a number of offspring is assigned and it is proportional to the value of the

species’ fitness function. The total number of offspring has to be equal to the predefined

number of individuals in the population. That means that the species that have a greater

fitness value will give more offspring in the next generation and that good solutions will

propagate to next generations. After the numbers of offspring for the species are

determined, from each species two parents are chosen to produce the offspring. After the

crossover, the obtained individual is subjected to the mutation operator described in the

following section.

Mutation. In each step, chosen knowledge spaces mutate and a new knowledge state

can be added to them. This new knowledge state that is added to a knowledge space

selected from the population differs from a knowledge state that already exists in the

knowledge space for a single problem from the domain. That way, it is guaranteed that

the knowledge space is well-graded meaning that it is also a learning space.

Every genome goes through the mutation phase in which there is a fixed probability

that a mutation will occur. In this phase a knowledge state is chosen at random from the

knowledge space that this genome represents and, if the mutation occurs, the resulting

knowledge state includes one more problem from the domain. It is possible that such a

knowledge state already exists in the knowledge space represented by the selected

individual. In that case, the knowledge space is not changed by the mutation. In the other

case, if the new knowledge state is added to the knowledge space, the surmise relation is

being updated as well.

Since the mutation is random, it can happen that the newly obtained knowledge space

has a smaller fitness value than the original one, before the mutation. In that case, the

resulting knowledge space will have a smaller chance of survival and reproduction. All

the knowledge states have the same probability of being chosen for the mutation.

A Neuroevolutionary Method for Knowledge Space Construction 775

Speciation. Speciation is an idea from the original NEAT algorithm that relies on the

fact that new evolutions do not show their strengths right away, but need a couple of

generations to emerge. Traditional genetic algorithms put new structures at a

disadvantage. NEAT solves this problem by grouping individuals into species, and

keeping them protected inside their species until they are fully developed.

The species are formed in accordance to the similarity of the individuals inside it. For

that purpose, the function that measures the similarity between two genomes and the

threshold that determines if the two individuals should be considered to belong to the

same species are defined. The measure of genetic similarity is defined as:

(1)

where E is the number of excesses, D is the number of disjoint genes and S is the sum

of the symmetric gene distances. Coefficients 1, 2 and 3 serve as weights that

represent the importance of the addends. N is the total number of genes and it serves for

normalization. Speciation is applied in this research in the same way as in original

NEAT algorithm because it can turn out that the evolution of the knowledge space will

not show its strengths right away, but it might turn out to show them in future.

4. Evaluation

In this section we present the evaluation of the proposed method. As explained above,

today’s most widely used data-driven technique for knowledge space construction is

minimized and corrected IITA. Hence, the method that we propose is compared against

that algorithm

The algorithms were compared with respect to their ability to reconstruct knowledge

spaces from the dataset. In order to determine metrices the following was used:

1. The number of knowledge states | |
2. The true positive rate (TPR), that is the percentage of knowledge states from the

original knowledge space identified in the constructed knowledge space,

(2)

3. The false positive rate (FPR), that is the percentage of the knowledge states that

exist in the constructed knowledge space that do not exist in the original

knowledge space

(3)

4. The discrepancy measure described previously in this paper

 (6)

776 Milan Segedinac et al.

The dataset, consisting of response patterns used for the evaluation, is generated with

three variable parameters: the number of problems in the domain, the number of

knowledge states and the number of responses in the dataset. All the datasets are

generated by using basic local independent model (BLIM), a probabilistic model of

knowledge structures [35].

4.1. The dataset

BLIM defines the relation between a response pattern R and a knowledge state K with

the following equation:

(4)

In this equation P(R) is the probability of choosing a student with a response pattern

R, P(|) is the conditional probability of responding with the pattern R for the given

knowledge state K, and is the probability of a student having a knowledge state K.

Respecting the assumption that domain problems are locally independent in respect to

the given knowledge states, for any response pattern R and knowledge state K, the

conditional probability P(|) is given in the following equation:

(5)

Here, βq,ηq∈[0,1] are, respectively, the probabilities of a careless mistake and a lucky

guess.

In order to use BLIM to simulate the response patterns for N students, we must have

the knowledge structure. The first step is to take the knowledge state K with the given

probability. Then, for each problem in the domain ∈ , random careless errors and

lucky guesses are formed with the probabilities and . For simulating the datasets in

this paper, the following parameters have been varied:

 The number of problems in the domain ∈

 The number of knowledge states ∈

 The number of response patterns N

The values of the parameters for the datasets simulations used in this paper are given

in the table 2.

The appropriate number of knowledge states for the given domain depends on the

number of problems in the domain. The larger the domain is, the more knowledge states

there are. So, in this simulation, there were 30 or 60 knowledge states for the domains

with 10 problems and 100 knowledge states for the domain with 15 problems.

A Neuroevolutionary Method for Knowledge Space Construction 777

Table 2. the values of the parameters used for simulating the datasets

Combination

number

1 10 30 250

2 10 60 500

3 10 30 250

4 10 60 500

5 15 100 1000

Larger domains require more response patterns in order to construct a knowledge

space. For the knowledge spaces with 30 or 60 knowledge states there were 250 or 500

response patterns. For the one with 100 knowledge states, there were 1000 response

patterns.

Three knowledge spaces were constructed at random for the values in the table: 1

for combinations 1 and 2; 2 for combinations 3 and 4; and 3 for combination 5. For

each combination, 10 simulated datasets with N response patterns were generated using

BLIM. Parameters and are taken with uniform probability distribution from

interval (0,0.05]. The probabilities are taken from the interval [0.4, 0.6] also with

uniform distribution, and, afterwards normalized so to equal 1. For each combination, 10

datasets were generated making 50 datasets in total.

4.2. The Comparison

This section describes the comparison of the proposed method and minimized and

corrected IITA. For each of the generated datasets the learning space was constructed by

using these two algorithms. For the proposed method, when there are 10 problems in the

domain the population consisted of 1024 individuals, and, for 15 problems in the

domain there were 2048 individuals in the population. The number of generations was

100, but early stoppage was allowed if there were no significant improvements in 20

generations. These four metrices were measured for all 10 simulated datasets for each

combination. Afterwards the mean was taken to represent the performance of the

algorithm for the combination

4.3. The Results

This section gives the results of the evaluation of the proposed method. In order to

position it relative to the current state in the field, we have compared these results with

the ones obtained by state of the art minimized and corrected IITA which is de facto

standard for data-driven knowledge space construction. Table 2 shows the metrices of

the neuroevolutionary method in parallel to the minimized and corrected IITA.

778 Milan Segedinac et al.

Table 3. The results

 Neuroevolutionary method Minimized and corrected IITA

 TPR FPR TPR FPR

1
31.20

(1.78)

0.97

(0.04)

0.07

(0.02)

23.20 (31.05) 26.70

(4.12)

0.85

(0.11)

0.04

(0.03)

245.80

(208.02)

2
31.30

(1.79)

0.97

(0.03)

0.08

(0.03)

395.20

(346.45)

29.10

(3.86)

0.90

(0.08)

0.07

(0.05)

673.50

(570.02)

3
57.10

(3.33)

0.90

(0.05)

0.05

(0.04)

48.70 (44.73) 49.60

(10.06)

0.83

(0.17)

0.00

(0.00)

138.00

(185.93)

4
64.3

(2.19)

0.99

(0.01)

0.07

(0.04)

94.90 (23.65) 53.10

(3.33)

0.89

(0.06)

0.00

(0.00)

451.90

(208.75)

5
113.9

(7.19)

0.98

(0.01)

0.13

(0.05)

143.00

(60.52)

63.4

(4.54)

0.63

(0.05)

0.00

(0.00)

3678.60

(351.46)

Neuroevolutionary method results in knowledge spaces of the similar size to the

original ones. This is the consequence of the appropriate fitness function which

penalizes large knowledge spaces. The results show that our method resulted in slightly

larger knowledge spaces than the minimized and corrected IITA algorithm.

The neuroevolutionary method gives good results of TPR since it manages to find

almost all the knowledge states from the original knowledge space. It outperformed

minimized and corrected IITA and it is particularly noticeable for large learning spaces.

For combination 5 with 100 knowledge states the neuroevolutionary method has

identified 98% of the knowledge states, while the other algorithm managed to find 63%

of them.

On the other hand, minimized and corrected IITA proved to be slightly better in the

case of FPR. In the mentioned case of 100 knowledge states the neuroevolutionary

method had a FPR of 0.13 while this value for the other algorithm was 0. One of the

reasons for this is the fact that the search space in the case of this knowledge space is

much larger. Having larger populations might result in a better FPR rate, and it will be a

subject of future research. We can also see that the neuroevolutionary method had a

smaller discrepancy measure than IITA.

5. Conclusion

We propose in the paper a novel method for data-driven knowledge space construction.

The proposed method is based upon the neuroevolutionary computing, which is one of

the contributions of this paper. To the best of our knowledge, there are no similar

attempts in related works. The main motivation for this approach results from the fact

that neuroevolution allows solving complex optimization problems, and, therefore, the

proposed method is appropriate for the construction of knowledge spaces for large and

highly interconnected domains.

A Neuroevolutionary Method for Knowledge Space Construction 779

The method was based on the NEAT algorithm. For that purpose, a set of analogies

between neural networks and knowledge spaces was proposed. The identification of

these analogies itself is also a contribution of this paper, because it allows a wide range

of Deep Learning techniques to be applied in the field of Knowledge Space Theory, not

just to the construction of knowledge spaces.

In order to apply neuroevolution to the problem of knowledge space construction, we

have proposed a genetic representation of the knowledge space, introduced the fitness

function for knowledge spaces in accordance with the response patterns, and defined the

speciation operator for knowledge spaces. To the best of our knowledge, these problems

were not priorly solved.

The neuroevolutionary method has been compared with minimized and corrected

IITA which is de facto standard data-driven knowledge space construction algorithm.

From this evaluation we can conclude that the neuroevolutionary method is capable of

constructing knowledge spaces from the students’ response patterns. As expected, the

evaluation suggests that it is more appropriate method for constructing large knowledge

spaces than minimized and corrected IITA. There is still lot of space for research

concerning this algorithm. First of all, optimizing fitness function and population size

might result in a better FPR without compromising TPR, and this is one of the topics for

future research. Secondly, we can see that both the neuroevolutionary method and

minimized and corrected IITA have their strengths. Therefore, future research should

combine these two algorithms to harvest the benefits of both. In addition, the proposed

method can be combined with theory-driven techniques that will yield the initial

knowledge spaces before assessing knowledge, and applying the neuroevolutionary

method to refine them afterwards in our future work.

The method is useful for educators and education researchers. To the educators, it

will allow KST to be utilized in teaching subjects with large and complex domains. To

the educational researchers, it will help studying the way students learn such subjects. In

addition to that, the identification of the set of analogies between knowledge spaces and

neural networks will contribute further development of the field of Knowledge Space

Theory by allowing the application of other Deep Learning techniques.

References

1. Doignon, J.-P., Falmagne, J.-C.: Spaces for the assessment of knowledge. International

journal of man-machine studies, Vol. 23, No. 2, 175–196. (1985)

2. Ünlü, A., Sargin, A.: DAKS: an R package for data analysis methods in knowledge space

theory. Journal of Statistical Software, Vol. 37, No. 1, 1-31. (2010) 3. Doignon, J.-P.,

Falmagne, J.-C.: Knowledge spaces, Springer Science & Business Media, (2012)

4. Falmagne, J.-C., Doignon, J.-P.: Learning spaces: Interdisciplinary applied mathematics,

Springer Science & Business Media, (2010)

5. Koppen, M.: Extracting human expertise for constructing knowledge space: an algorithm.

Journal of mathematical psychology, Vol. 37, No. 1, 1–20. (1993)

6. Cosyn, E., Thiéry, N.: A practical procedure to build a knowledge structure. Journal of

mathematical psychology, Vol. 44, No 3, 383–407. (2000)

7. Schrepp, M., Held, T., Albert, D.: Component-based Construction of Surmise Relations for

Chess Problems. In D. Albert & J. Lukas (Eds.), Knowledge Spaces: Theories, Empirical

Research, and Applications (pp. 41–66). Mahwah: NJ. (1999)

780 Milan Segedinac et al.

8. Marte, B., Steiner, C. M., Heller, J., Albert, D.: Activity and Taxonomy-Based Knowledge

Representation Framework. International Journal of Knowledge and Learning, Vol. 4, No. 1,

189–202. (2008)

9. Albert, D., Held T.: Establishing knowledge spaces by systematical problem construction. In

D. Albert (Ed.), Knowledge Structures. New York: Springer Verlag, 78–112. (1994)

10 Albert, D., Held, T.: Component based knowledge spaces in problem solving and inductive

reasoning, In D. Albert & J. Lukas (Eds.), Knowledge Spaces: Theories, Empirical Research,

and Applications. Mahwah, NJ: Lawrence Erlbaum Associates., 15–40. (1999)

11. Segedinac, M., Horvat, S., Rodić, D., Rončević, T., Savić, G.: Using knowledge space theory

to compare expected and real knowledge spaces in learning stoichiometry, Chemistry

Education Research and Practice (CERP), Vol. 19, No 3, 670-680. (2018)

12. Ünlü, A., Albert, D.: The correlational agreement coefficient ca (≤, d)—a mathematical

analysis of a descriptive goodness-of-fit measure. Mathematical Social Sciences, Vol. 48,

No. 3, 281–314. (2004)

13. Schrepp, M.: A method for the analysis of hierarchical dependencies between items of a

questionnaire. Methods of Psychological Research Online, Vol. 19, No.1, 43–79. (2003)

14. Schrepp, M.: Extracting knowledge structures from observed data. British Journal of

Mathematical and Statistical Psychology, Vol. 52, No. 2, 213–224. (1999)

15. Spoto,A., Stefanutti, L., Vidotto, G.: An iterative procedure for extracting skill maps from

data. Behavior research methods, Vol. 48, No. 1, 729–741, (2016)

16. Sargin, A., Ünlü, A.: Inductive item tree analysis: Corrections, improvements, and

comparisons. Mathematical Social Sciences, Vol. 58, No 3, 376-392. (2009)

17. Rechenberg, I.: Evolution strategy: Optimization of technical systems by means of biological

evolution. Fromman-Holzboog: Stuttgart, Vol. 104, No 1, 15–16. (1973)

18. Holland, J. H., Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. MIT press. (1992)

19. Stanley, K. O.: Neuroevolution: A different kind of deep learning. (2017) [Online].

Available: https://www. oreilly. com/ideas/neuroevolution-a-different-kind-of-deep-learning.

(current December 2020)

20. Such, F. P., Madhavan,,V., Conti, E., Lehman, J., Stanley, K. O., Clune, J.: Deep

neuroevolution: Genetic algorithms are a competitive alternative for training deep neural

networks for reinforcement learning. arXiv (2017) [Online]. Available:

https://arxiv.org/abs/1712.06567 (current December 2020)

21. Angeline, P. J., Saunders. G. M., Pollack, J. B.: An evolutionary algorithm that constructs

recurrent neural networks. IEEE transactions on Neural Networks, Vol. 5, No. 1, 54–65.

(1994)

22. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE

transactions on Neural Networks, Vol. 8, No. 3. 694–713. (1997)

23. Stanley, K. O., Miikkulainen, R.: Efficient evolution of neural network topologies. In

Proceedings to CEC'02, Honolulu, HI, USA, USA. (2002)

24. Gauci, J., Stanley, K.: Generating large-scale neural networks through discovering geometric

regularities. In Proceedings to GECCO '07, London, England. (2007)

25. Sher, G. I.: Handbook of neuroevolution through Erlang. Springer Science & Business

Media. (2012)

26. Gruau, F.: Neural network synthesis using cellular encoding and the genetic algorithm. LIP-

IMAG. (1994)

27. Clune, J., Stanley, K. O., Pennock, R. T., Ofria, C.: On the performance of indirect encoding

across the continuum of regularity. IEEE Transactions on Evolutionary Computation, Vol.

15, No. 3., 346–367. (2011)

28. Rumelhart, D. E., Hinton, G. E., Williams, R. J.: Learning internal representations by error

propagation., ICS, San Diego, CA, USA. (1985)

A Neuroevolutionary Method for Knowledge Space Construction 781

29. Stanley, K. O., & Miikkulainen, R.: Efficient evolution of neural network topologies. In

Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (2002).

30. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B.,

Shahrzad, H., Navruzyan, A., Duffy, N.: Evolving deep neural networks. In Kozma, R.,

Alippi, C., Choe, Y., Morabito, F. C. (Eds.) Artificial Intelligence in the Age of Neural

Networks and Brain Computing. Elsevier, 293–312. (2019)

31. Masri, S. F., Chassiakos, A. G., Caughey, T. K.: Identification of nonlinear dynamic systems

using neural networks. Journal of Applied Mechanics, Vol 60, No 1, 123-133. (1993)

32. Mikoni, S. V.: Neural network approach to the formation models of multiattribute utility.

International Journal Information Models & Analyses, Vol 3, No 1, 3-9. (2014)

33. Rituraj, K, Biswal, B.: A model for evolution of overlapping community networks. Physica

A: Statistical Mechanics and its Applications, Vol 474, No 1, 380-390. (2017)

34. de Chiusole, D., Stefanutti, L., Spoto, A.: A class of k-modes algorithms for extracting

knowledge structures from data. Behavior research methods, Vol 49, No 4, 1212-1226.

(2017)

35. de Chiusole, D., Stefanutti, L., Anselmi, P., Robusto, E.: Assessing parameter invariance in

the BLIM: Bipartition models. Psychometrika, Vol. 78, No.4, 710–724. (2013)

Milan Segedinac received his M.Sc. degree in 2008 and Ph.D. in 2014 in Computer

Science from the University of Novi Sad, Faculty of Technical Sciences. He holds an

associate professor position at the same faculty. He has authored papers in international

and national journals and conferences in the field of computer enhanced education.

Nemanja Milićević has received his M.Sc. (2019) degree from the Faculty of Technical

Sciences at the University of Novi Sad. He is currently a data scientist at SmartCat. His

research interests are in the field of deep learning and AI supported education.

Milan Čeliković received his M.Sc. degree from the Faculty of Technical Sciences, at

University of Novi Sad in 2009. He received his Ph.D. degree in 2018, at the University

of Novi Sad, Faculty of Technical Sciences. Currently, he works as an assistant

professor at the Faculty of Technical Sciences at the University of Novi Sad, where he

lectures several Computer Science and Informatics courses. His main research interests

are focused on: Databases, Database management systems, Information Systems and

Software Engineering.

Goran Savić is an associate professor within the Department of Computing and Control,

Faculty of Technical Sciences, University of Novi Sad. He received his M.Sc. degree in

2006 and Ph.D. degree in 2011, all in Computer Science from the University of Novi

Sad, Faculty of Technical Sciences. His research interests are e-learning and enterprise

information systems.

Received: August 20, 2021; Accepted: January 25, 2022.

	Blank Page

