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Abstract. Materialized View Selection is one of the most studied problems in the
database field, covering SQL and NoSQL technologies as well as different deploy-
ment infrastructures (centralized, parallel, cloud). This problem has become more
complex with the arrival of data warehouses, being coupled with the physical de-
sign phase that aims at optimizing query performance. Selecting the best set of
materialized views to optimize query performance is a challenging task. Given their
importance and the complexity of their selection, several research efforts both from
academia and industry have been conducted. Results are promising – some solu-
tions are being implemented by commercial and open-source DBMSs –, but they
do not factor in the following properties of nowadays analytical queries: (i) large-
scale queries, (ii) their dynamicity, and (iii) their high interaction. Studies to date
fail to consider that complete set of properties. Considering the three properties si-
multaneously is crucial regarding today’s analytical requirements, which involve
dynamic and interactive queries. In this paper, we first present a concise state of
the art of the materialized view selection problem (VSP) by analyzing its ecosys-
tem. Secondly, we propose a proactive re-selection approach that considers the three
properties concurrently. It features two main phases: offline and online. In the offline
phase, we manage a set of the first queries based on a given threshold δ by select-
ing materialized views through a hypergraph structure. The second phase manages
the addition of new queries by scheduling them, updates the structure of the hy-
pergraph, and selects new views by eliminating the least beneficial ones. Finally,
extensive experiments are conducted using the Star Schema Benchmark data set to
evaluate the effectiveness and efficiency of our approach.
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1. Introduction

Selection of materialized views is a challenging task for designing advanced database
applications such as Analytical Databases [24], Autonomous Databases [2], Semantic
Databases [22], Cloud Databases [10] and NoSQL Databases [58]. The idea of using
materialized views to satisfy the quality-of-service of databases does not date from today,
but since forty years [35]. Their importance has been amplified since data warehouse
physical design has become more sophisticated to cope with complex decision support
queries [14,4]. Selecting a set of materialized views that would satisfy functional and non-
functional requirements is complex [24]. This gave rise to the materialized view selection
problem (VSP). Due to the importance and complexity of this selection, several research
efforts from academia and industry have been conducted. Certainly, the results obtained



736 Mustapha Chaba Mouna et al.

by these efforts have been implemented in commercial and open-source DBMSs such as
Data Tuning Advisor for SQL Server [1], Design Advisor for DB2 [64], SQL Access
Advisor for Oracle, and Parinda for PostgreSQL [39].

By examining the major solutions of VSP, we figure out that they usually consider
static workload of queries . In other terms, the potential views are quantitatively evalu-
ated and then greedily pre-materialized prior to executing the query workloads [49]. For-
mally, the VSP is defined in the literature as follows: given a workload of queries Q =
{Q1, Q2, . . . , Qn} and a set of resource constraints C (e.g., storage cost and maintenance
cost). The VSP consists in selecting a set of materialized views MV = {V1, V2, . . . , Vm}
that satisfies some of the non-functional requirements such as minimizing query perfor-
mance, saving energy consumption, etc. and respects C.

This situation is inadequate with the nowadays requirements of analytical applica-
tions, where high number, dynamic, and high interacted queries are simultaneously con-
sidered.

Due to the importance of the above three properties of nowadays workloads containing
a high number of dynamic, and highly interacted queries, their clarification is necessary.
With regard to the high number of queries, let us consider the following real examples
covering analytical and semantic databases: (i) the Periscope application manages twenty-
something million queries per day3; (ii) the snowflake platform deals with more than 300
million queries per day from its customer base4, and (iii) the obtained results of a recent
paper published in VLDB’2020, dealing with the problem of selecting materialized views
in Oracle DBMS, are obtained based on 650 queries running on a star schema [2], and (iv)
the SPARQL query logs executed at scholarly data of DBpedia contains 43 284 queries
[34].

The query operation sharing is a guiding characteristic and at the same time impacted
by the two other properties. Sharing computation among multiple concurrent queries was
first studied by Sellis in 1988 in the context of multi-query optimization (MQO). Re-
cently, this principle has been reproduced in the context of Cloud Databases under the
name ”Pay One, Get Hundreds for Free” [41]. The identification of common subexpres-
sions of queries is the key issue for the performance of multi-query processing, even for
a small set of queries, which was the natural hypothesis of existing studies. Historically,
the Problem of Multi-Query Optimization (PMQO) has been largely studied in the 80’s
[13], [56] in the context of relational databases [50]. This problem has been revisited
in all database generations without any exception since it aims at optimizing the global
performance of queries collectively instead of individually. The PMQO has been com-
bined with several important database problems such as caching [46], materialized view
selection [40], reusing [23], indexing [28], data partitioning [5], optimizing exploratory
queries [32]. In the context of relational data warehouses, the PMQO has been amplified
since OLAP workloads are a windfall of query sharing, where typical OLAP and reporting
workloads are overlapping.

Regarding the dynamic aspect of OLAP queries, the diversity of data analysis and the
changing business directives make the query workload more dynamic [53]. This dynam-
icity has contributed to increasing the research studies on self-tuning and autonomous
databases [2,11,47]. Several reactive approaches such as DynaMat [33], WATCHMAN

3 https://thenewstack.io/how-periscope-uses-kubernetes-to-power-data-science-services/
4 https://diginomica.com/snowflake-ceo-insists-his-company-can-take-heat

https://thenewstack.io/how-periscope-uses-kubernetes-to-power-data-science-services/
https://diginomica.com/snowflake-ceo-insists-his-company-can-take-heat
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[54], and Materialized Query Table (MQT) advisor [49] for dynamic materialized view
selection have been proposed. The main characteristic of these approaches is that they
react to transient usage, rather than purely relying on a historical workload [48]. These
solutions have to solve multiple problems [37]: what views to materialize [49] for serving
current and future queries, when to evict views (LRU cache) [49].

This motivates us to propose in this paper, a Proactive Re-selection of materialized
views (called ProRes) that integrates concurrently our three properties (Figure 1). Since
our queries arrive dynamically, based on a threshold, the first δ incoming queries are
routed to the offline phase that selects the most beneficial common subexpressions for
materialization purposes. The other coming queries are managed by the online phase that
exploits the selected views of the offline one. ProRes integrates three fundamental aspects:
(i) the usage of dynamic hypergraph structure that captures the interaction among queries,
(ii) bounding intervals are used to update the current set of materialized views based on
their benefits, and (iii) query scheduling if necessary. Contrary to most traditional studies
which assume that the queries are already pre-ordered, our queries can be scheduled if
their order reduces the query performance.

The paper is organized as follows: Section 2 overviews the most important studies
related to our two studied problems: PMQO and VSP. Section 3 presents the basics and
definitions related to hypergraphs and the processes for passing from queries to hyper-
graphs. Section 4 describes our ProPres approach, where all its components are detailed.
Section 5 presents our intensive experiments and a real validation in commercial DBMS.
Section 6 concludes the paper and discusses future work.

Dynamic

High number of queries

Query Operation Sharing

Our Proposal

Fig. 1. Position of our Proposal according to the state-of-the-art

2. Related Work

This section discusses the most important studies dealing with PMQO and VSP either in
isolation or jointly.

MQO is one of the main topics studied by the database community [52]. A specific
chapter on MQO has been reserved in the encyclopedia of Database Systems edited by
Ling Liu and Tamer Özsu [38]. Before connecting MQO to VSP, it would be wise to
provide its separate generic formalization. For a given workload of queries to be opti-
mized, where each query has a set of individual plans, the PMQO aims at finding the
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best merging of query plans where the global query processing cost is minimized. The
PMQO has proven as NP-hard in [59] where its search space formulation was given. An
A* algorithm with bounding functions and intelligent state expansion, based on query
order, to eliminate states of little promise rapidly has been proposed and guarantees an
optimal solution, for a small set of queries [56]. Several variations of Sellis’s algorithms
have been proposed [59] to prune the search space of the PMQO. Genetic, simulated
annealing and Depth-first Branch-and-Bound algorithms have also been experimentally
analyzed to handle larger MQO problems that cannot be solved using A* in a reason-
able time [16] [57]. Other algorithms are based on game theory [3]. [52] address the
problem of extending top-down cost-based query optimizers to support multi-query op-
timization, and present greedy heuristics, as well as implementation optimizations. Their
techniques were shown to be practical and to give good results. The adaptation of these
findings has been reproduced in several generations of databases through their query lan-
guages: object-oriented databases (OQL) [63], semantic databases (SPARQL) [36], XML
databases (XPATH) [20], distributed databases [32] [42], stream databases (CQL) [18],
graph databases (Sparql 1.1) [19], data mining [44] and SQL-on-Hadoop systems [15].

MQO and physical design are the most active research topics in the field of databases
and information systems. These two problems interact with the use of the query interac-
tion which has a great impact on logical and physical optimizations. Despite their strong
dependency, MQO and the instances of physical design have been tackled separately with-
out really taking into account their interaction. The PMQO has usually been studied for a
static set of queries, where several variations of the A* algorithm have been proposed for
finding optimal solutions to the moderately sized (up to ten queries) [57]. Other studies ad-
vocated the fact that rather than trying to obtain an optimal solution, finding near-optimal
solutions in less time is suitable. In the last years, there has been a growing interest in
solving physical design problems especially in selecting materialized views, which are
considered as one of the most interesting techniques to optimize OLAP queries. The VSP
has been addressed in static and dynamic contexts without really considering their inter-
action with the MQO problem. To the best of our knowledge, The work proposed by [60]
is the pioneer in the DW context that has highlighted this dependency. The main draw-
back of this work concerns the scalability of their algorithms in constructing the MVPP.
To fill this gap, hypergraphs have been proposed in [8] to capture the query interaction
among very large sets of static queries, then to study their contributions for selecting an
appropriate set of materialized views. Promising results have been obtained showing the
great benefit of hypergraphs to deal jointly with PMQO and the VSP [8] [51].

In physical design, Materialized views are one of the most important techniques to
optimize analytical queries and are strongly dependent to query operation sharing. The
materialized views selection problem is an NP-hard problem [24]. A large panoply of al-
gorithms has been proposed to deal with this problem. We are not overviewing them, since
several surveys exist. we suggest to readers the reference [51] which provides a nice clas-
sification of the existing algorithms. For complete classification of these algorithms, we
recommend the readers to refer to the survey paper of [40] which divides algorithms into
the following categories: deterministic algorithms, randomized algorithms, evolutionary
algorithms, and hybrid algorithms. From the scope of our paper, these existing studies
consider a small set of static queries, which contradicts the ad-hoc nature of analytical
queries. Dynamat system [33] is one of the most popular systems that studied VSP in a
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dynamic context. It monitors permanently the incoming queries and uses a pool to store
the best set of materialized views based on a goodness metric and subject to space and
update time constraints.

By analyzing the VSP studies, we realize that they are not connected to PMQO. The
work proposed in [60] is the pioneer in the context of DW that showed the strong depen-
dency among PMQO and VSP. It aims at constructing a unified query plan for a given set
of queries. At first, they select the individual join plan for each query. Afterward, these
plans are merged in a unified query plan called MVPP represented by a directed acyclic
graph and dedicated to the process of selecting materialized views. The main limitation
of this work is related to the scalability of their algorithms in constructing the MVPP.
To counter this problem, hypergraphs have been proposed in [7] for coupling PMQO
and VSP by considering the high number of queries. The authors have used the hyper-
graph structure for the identification of common subexpressions among a very large set
of queries and to study their contributions for selecting an appropriate set of materialized
views. In fact, Considering a huge number of queries produces a massive number of views
to materialize which violates the storage space constraint. Indeed, it is impossible to ma-
terialize all candidate views under such a situation. To handle this problem, the authors
[7] put a strategy that aims to maximize the benefit of using the materialized views before
their dropping. To do so, they proposed a new query scheduling policy that allows finding
the best query order that produces the highest benefit of the materialized views set.

An in-depth analysis of the major studies dealing with PMQO and VSP allows identi-
fying several common points. The main shared point among PMQO and VSP is the use of
graphs theory and their data structure either for pruning their large-scale search spaces or
to identify the common sub-expressions among queries. Three main graph data structures
have been proposed to prune the search space of VSP problem: AND/OR viewgraph [24]
[43] , data cube lattice [25] [61] [29] and MVPP [60]. For PMQO, query graphs have been
used to represent a set of queries [13] by merging the individual query trees in a single
unified query plan (UQP). The UQP spans four levels of nodes: selection, join, projection
and aggregation.

Another point shared by VSP and PMQO is the use of query scheduling policies to
improve their algorithms. To illustrate this point, several good examples can be given. For
instance, the work of [16], where the query scheduling has played a crucial role to improve
the MQO algorithm. Also, several works have studied VSP under query scheduling con-
straints. In [49], a dynamic formalization of VSP is given by considering query scheduling
policy based on a genetic algorithm. The two main limitations of Phan’s algorithm [49]
are (i) their dependence on DB2 advisor and (ii) their greedy genetic algorithm for re-
ordering queries which are not suitable when scaling. To overcome these limitations, a
scalable approach called SLEMAS is proposed in [7]. The scalability of this approach is
ensured by the means of hypergraphs structure which is used to identify the query opera-
tion sharing among very large sets of queries. Afterward, the most shared operations are
considered as candidates for materialization. The materialized views in SLEMAS are dy-
namically selected by considering scheduling constraints for a priori known workload of
queries. The main drawback of this approach is their assumption of static sets of queries,
which contradicts the dynamic nature of analytical queries.

Recently, PMQO and VSP are studied and revisited under a new angle by considering
simultaneously the 3-characteristics of today’s analytical queries [45]. To do so, dynamic



740 Mustapha Chaba Mouna et al.

hypergraphs have been used to capture the query operation sharing, and dynamically se-
lecting the appropriate set of materialized views without any consideration of the query
scheduling constraint. Intensive experiments are conducted by this work [45] to compare
the efficiency of their proposal against the major state-of-art. The obtained results showed
the great impact of the query scheduling techniques in maximizing the benefit of materi-
alized views and optimizing the performance of incoming workloads. Table 1 summarizes
our discussion by showing the interest of the main studies dealing with PMQO and VSP
in an isolated way or jointly.

Table 1. Classification of existing works on PMQO and VSP

Problems Work Used Properties Data Structure Query
Scheduling Drawbacks

MQO
[56] Query Sharing Query Graph No Scalability
[16] Query Sharing Query Graph Yes Scalability

VSP
[33] Dynamic No No Scalability
[49] No one No Yes Scalability

and DB2
Dependence

MQO and VSP
[60] Query Sharing MVPP No Scalability

[7]
High number of queries

& Sharing
Hypergraph Yes Static

[45] three-properties Hypergraph No Pre-ordered
Queries

3. Background

In this section, we present some fundamental notions and definitions related to hyper-
graphs and their ability to manage the three properties of analytical queries.

Hypergraphs are powerful tools for representing complex and non-pairwise relation-
ships. They contributed in several domains in capturing the interaction between studied
objects such as data mining, text/image retrieval, bio-informatics, social mining, and ma-
chine learning [27]. In the database fields, Hypergraphs have been used at logical and
physical phases (e.g., the detection of functional dependencies [21], data partitioning for
optimizing OLTP workloads [17] and materialized views selection for optimizing large-
scale OLAP workloads [8]).

Definition 1. A hypergraph H = (V,E), is defined as a set of vertices V (nodes) and a
set of hyper-edges E, where every hyper-edge connects a non-empty subset of nodes [9].
Note that when |ei| = 2 (∀i = 1...m), the hypergraph is a standard graph.

Definition 2. The degree of a vertex vi ∈V, denoted by d(vi) represents the number of
distinct hyper-edges in E that connect vi.

The incidence matrix of a hypergraph allows counting the connection between hyper-
edges and vertices, where rows and columns represent respectively vertices and hyper-
edges. The (i, j)th value in the matrix, denoted by IMij, is equal to 1 if vertex vi is
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v7

v6

v4

v1v8 v3 v9

v10v5v2

e2
e1

e4

e3

(a) Hypergraph H1



e1 e2 e3 e4

v1 1 0 0 0
v2 0 0 1 0
v3 1 0 0 1
v4 0 1 0 0
v5 0 0 1 0
v6 0 1 0 0
v7 1 0 0 0
v8 1 0 0 0
v9 1 0 0 1
v10 0 0 1 1


(b) The Incidence Matrix of H1

Fig. 2. Example of Hypergraph

connected in the hyperedge ej , and 0 otherwise.

IMij =

{
1, if jth hyperedge contains the ith vertex
0, otherwise.

3.1. Representation of a Query by a Hypergraph

For giving a realistic hypothesis, we consider in our study the SPJ (Select-Project-Join)
class of queries, which represent the most common queries studied in database theory. A
particular focus on selections and joins known as costly operations.

Definition 3. A query tree is a tree data structure representing a relational algebra ex-
pression. The tables of the query are represented as leaf nodes. The relational algebra
operations are represented as the internal nodes. The root represents the query as a whole.

In our study, the query plan of a given query is obtained by left-deep tree [26], where all
selections are pushed down as far down through its query graph (tree).

In the following, we show how a query tree is transformed into a hypergraph.

Example 1. To illustrate how to represent an OLAP query by a hypergraph, let assume
the following query Q defined on the star schema benchmark (SSB)5 that contains a fact
table Lineorder and four dimension tables Customer, Supplier, Part, and Dates.
select d_year, s_nation, p_category,
sum(lo_revenue - lo_supplycost) as profit
from DATES, CUSTOMER, SUPPLIER, PART, lineorder
where lo_custkey = c_custkey (J2)
and lo_suppkey = s_suppkey (J1)
and lo_PARTkey = p_PARTkey (J4)
and lo_orderdate = d_datekey (J3)
and c_region = ’EUROPE’
and s_region = ’EUROPE’
and d_year = 1993
and p_mfgr = ’MFGR#2’
group by d_year, s_nation, p_category
order by d_year, s_nation, p_category;

The query tree of the query Q is given in Fig.3, where four joins and selections are
well represented. This tree can be easily transformed to a hypergraph with four vertices
representing the four joins {J1, J2, J3, J4} and one hyperedge e corresponding to our
query Q. Note that each join node is defined by its join predicate and its associated selec-
tions.

5 http://www.cs.umb.edu/˜poneil/StarSchemaB.pdf

http://www.cs.umb.edu/~poneil/StarSchemaB.pdf
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▷◁
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▷◁
J2

▷◁
J1

σ1 σ2

σ3

σ4

Su Cu Da PaLo

s region = ’EUROPE’ c region = ’EUROPE’

d year = 1993

p mfgr=’MFGR#2’

Fig. 3. The Tree of the Query Q

J1(σ1) J2(σ2) J3(σ3) J4(σ4)

(a) Hypergraph of the Query Q

e

J1 1
J2 1
J3 1
J4 1

(b) Its Incidence Matrix

Fig. 4. The Representation of the Query Q by a Hypergraph

From the query hypergraph, the algebraic tree can also be generated if the type of join
processing tree (e.g., left deep, right deep, and bush) and the join order are a priori known.
It should be noticed that the join order has a crucial role in optimizing star join queries
involving dimension tables and a fact table. In our study, the fact table of an analytical
query is always joined with dimension tables following their size (from small to large).
Recent machine and deep learning-driven techniques for tackling the join order problem
can be easily incorporated in our approach [62].

3.2. Hypergraph for Capturing the Interaction of Queries

In this section, we show how hypergraphs can easily capture the query sharing. For a
given workload of queries W , we define a global hypergraph GH with a set of vertices
GHV and a set of hyperedges GHE . Each vertex vi ∈ GHV corresponds a join node Ji,
whereas each hyperedge ej ∈ GEE corresponds to a query Qj ∈ W . The set of vertices
of an hyperedge ej represents the set of joins that participates in the processing of the
query Qj .

Definition 4. A pivot node of a hypergraph is the first join shared by all queries.

Example 2. To illustrate the construction of the global hypergraph for a given query work-
load, let us consider 7 OLAP queries ({Q1, Q2, Q3, . . . , Q7}) defined in the appendix and
generated randomly using the star schema benchmark query generator. Fig. 5 shows the
obtained global hypergraph and its incidence matrix. The incidence matrix can easily give
hints on the most shared joins by adding a column representing the usage frequency of
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each join operation Ji (Freqi):
n∑

j=1

IMij . (1)

Since the selection operations are performed before joins, our global hypergraph may
contain several disjoint components. This is because selections reduce query sharing.
In our example, the hypergraph contains two components including respectively GH1 :
(Q1, Q3, Q6, Q7) and GH2 : (Q2, Q4, Q5). We observe that all queries of the first com-
ponent GH1 share the same join operation identified by node J1. As shown in the hyper-
graph and its incidence matrix, the four nodes identified by J1, J2, J4 and J6 are the most
shared join operations and they will be considered as candidates for materialization.

Q3

HG1
HG2

J9

Q4

Q5

Q2

Q6

Q7

Q1J10 J6

J5

J4

J11

J12

J8

J7

J3J2J1

(a) The Global Hypergraph



Q1 Q2 Q3 Q4 Q5 Q6 Q7 FRQ

j1 1 0 1 0 0 1 1 4
j2 1 0 0 0 0 1 0 2
j3 1 0 0 0 0 0 0 1
j4 0 1 0 1 0 0 0 2
j5 0 1 0 0 0 0 0 1
j6 0 1 0 0 1 0 0 2
j7 0 0 1 0 0 0 0 1
j8 0 0 1 0 0 0 0 1
j9 0 0 0 1 0 0 0 1
j10 0 0 0 0 1 0 0 1
j11 0 0 0 0 0 1 0 1
j12 0 0 0 0 0 0 1 1


(b) The Incidence Matrix

Fig. 5. The Global Hypergraph of the 7 Queries and its Incidence Matrix

3.3. Hypergraph for Managing High Number of Queries

The hypergraphs theory has a long history in solving many large-scale problems thanks
to their ability in modeling any relationships, and their efficiency in dividing large search
space of difficult problems into several sub search spaces through their fast partitioning
tools. The hypergraphs have shown efficiency in managing several applications dealing
with a huge amount of data and transactions. Several real examples can be given: As
in VLSI design, in which hundreds of millions of gates are needed to design logical cir-
cuits through the hypergraph. Also, in social network applications, hypergraphs have been
widely used to capture the interaction and behaviors of users [65].

Hypergraph partitioning is commonly used in dividing the search space of combinato-
rial large-scale problems into several sub-search spaces, which reducing prominently the
complexity of the studied problems. This feature is ensured through the advanced tools
of partitioning, which ensure scalability. Hypergraph partitioning problem consists of di-
viding the vertex set of the hypergraph H into a fixed number of k disjoint partitions of
bounded size Π = {P1, P2, . . . , Pk}, while minimizing a given objective function [55].

hMeTis [31], and PaToH [12] are two examples of hypergraph partitioning techniques
initially developed in the VLSI domain.

Figure 6 shows an example of partitioning of the hypergraph given in Figure 2a into
three partitions.
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v9v3v1v8

v10v5v2

v7

v6

v4

e2
e1

e4

e3

HG2

HG1

HG3

Fig. 6. An Example of Hypergraph Partitioning using hMetis

4. A Proactive Re-Selection of Materialized Views

We have all ingredients, to present our proactive re-selection of materialized views that
considers our three properties. Before detailing our proposal, let us formalize our prob-
lem: given: (i) a set of queries known in advance, (ii) a set of ad-hoc queries that arrives
dynamically, and (iii) a storage constraint. Our problem consists in selecting a set of mate-
rialized views speeding up the performance of all queries and satisfying the storage space
constraint.

Our approach to deal with this problem is composed of two phases: offline phase that
manages a set of the first δ queries Qfirst based on the defined threshold δ and online
phase that deals with the arrival of the ad-hoc queries. The global architecture of our
proposal is described in Fig.7.

4.1. The Offline Phase

The Offline Phase is relies on the following main modules.

1. Query parser: allows parsing the set of queries Qfirst in order to identify their log-
ical operations (nodes) (Selection-Projection-Join).

2. Hypergraph Construction: once all queries of our first set of queries Qfirst are
parsed, we use the same rules described in Example 2 to construct our initial global
hypergraph using two main primitives : add-node () , add-hyperedge().

3. Hypergraph Partitioning: Since our goal is to select joins that have a high sharing
that are candidates for materialized. Therefore, our hypergraph has to be partitioned
into groups of queries according to their interaction, where the query interaction is
maximal inside each component and minimal among components. To ensure scala-
bility, we adapt hMeTiS algorithm [30].
Contrary to the original codes of hMeTiS, where the number of partitions is known
in advance, in our case, the number of components to construct is unknown.
To partition our hypergraph, we adapt an existing algorithm derived from graph theory
to aggregate the join nodes into small connected components. The partition process is
applied on initial hypergraph GH(V,E) and the result of hypergraph partitioning is
k sub-hypergraphs, where each one is an hypergraph: GHi(Vi, Ei), where |Ei| ≤M
(1 ≤ i ≤ k). Our partitioning algorithm follows the same heuristic detailed in [6]
that includes the following steps :
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Fig. 7. The Global Architecture of our Approach

(a) Firstly, we adapt the code of the multilevel hypergraph partitioning Hmetis to
split our hypergraph into k partitions such that the number of hyperedges cut
is minimal. In our context, the exact number of partitions to construct is un-
known. In the same time, we want to get all possible disjoint partitions (con-
nected components). To do so, we adapt the original algorithm to our problem by
bi-partitioning until no partition can be repartitioned without cutting hyperedges.
More precisely, the algorithm behaves as follows: (i) the set of vertices will be
divided if and only if the number of hyperedges cutting is null. (ii) Each bisec-
tion result of the hypergraph partitioning will be divided in the same way until
no more divisible hypergraph is found.

(b) Secondly, we use Hmetis to partition each sub-hypergraph GHi(Vi, Ei), such as
|Ei| ≤M . The sub-hypergraph GHi(Vi, Ei) is then partitioned into k′ partitions
such as k′ = (|Ei|/M) + 1.

Table 2 summarizes the mapping between the graph vision and the query vision.
4. Unified query plan Generation: This step aims at generating the unified query plan

(UQP) for each connected component by transforming each sub-hypergraph into an
oriented graph. This generation is driven by cost models that allow ordering nodes.
This step is necessary to order the join nodes in each component. Adding an arc
to the oriented graph corresponds to putting an order between two join nodes. The
transformation process has three main stages:
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Table 2. Analogy Graph – Query.

Vision hypergraph Vision of query
Set of vetices Set of join nodes
Hyperedge Query

sub-hypergraph connect component
Oriented graph Processing Plans

(a) choose the pivot node, the pivot node corresponds to the node which has the best
possible benefit from reusing the intermediate results. The benefit of each node
ni is calculated using equation 2:

benefit(ni) = (nbr use− 1)× process cost(ni)− constr(ni) (2)

where nbr use, process cost(ni), and constr(ni) represent respectively the
number of queries that use the join node ni, the processing cost of ni, and the
construction cost of ni. In our study, we assume that the hash join is used to pro-
cess join operations. The cost of a join involving two tables Ti and Tj is given
by the following formula: 3× (|T1|+ |T2|), where |T1| represents the number of
pages of table T1. The cost of construction of a node ni is defined as a summation
of the cost of its generation and storage.

(b) Transform the pivot node from the hypergraph to the oriented graph.
(c) Remove the pivot node from the hypergraph. We mention that we were inspired

by the work proposed by [8] to generate the UQP which ensured the scalability
of our approach. Figure 8 shows an example for the transformation step of the
hypergraph to an oriented graph. In the end, the join nodes having a positive
benefit are selected as candidates for materialization. In this example, the two
nodes J1 and J2 are selected as candidates’ views.

5. Query Scheduling: To increase the benefit and reusing of materialized views before
their dropping, we propose to reschedule the queries of the set Qfirst. The scheduler
has the following formalization:
For a given hypergraph component, this module takes as an input the set of queries
of this component and their join nodes already selected as candidates for material-
ization. Our scheduler module aims at providing scheduled queries in a new order
maximizing the net benefit of using materialized views and reducing the overall pro-
cessing cost of queries. In fact, we are inspired by the work proposed in [7] showing
the efficiency of their scheduling algorithms in maximizing the benefit of materialized
views and improving the query processing cost. Contrary to this algorithm in which
the materialized views are all dropped after their usage by the appropriate queries. In
our proposal, we keep the Pivot node from each component to serve the future incom-
ing queries. The pivot nodes represent the views having the maximal benefit for each
component. To clarify our scheduling process, let us consider the hypergraph compo-
nent illustrated in the figure 9 in which 4 queries are involved. In this example, two
join nodes are selected as candidates for materialization: {J1, J2 } which are written
in red. The first step of our process is to order the join nodes according to their ben-
efits. Secondly, each query is assigned to a weight calculated by summing the benefit
of its used queen nodes. Finally, we order queries according to their weights.
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Fig. 8. From Hypergraph to Unified Query Plan

4.2. The Online Phase

In this section, we discuss our process for optimizing dynamic coming queries through our
hypergraph structure. For managing the dynamic arrival of ad-hoc queries, a set of prim-
itives are proposed for incrementally augmenting the global hypergraph constructed in
the offline phase: add-node(), add-hyperedge(),remove-node(), remove-hyperedge(), etc.
During the arrival of these queries, a set of materialized views is dynamically selected
based on the identified shared joins through our hypergraph and a benefit function tak-
ing into account storage and maintenance constraints. At each instant t of the arrival of
queries, the content and the size of the global hypergraph and the pool of materialized
views will change dynamically. Two main modules characterized the online phase.

Enrichment of the Hypergraph To ensure an efficient enrichment of the global hy-
pergraph, we put forward a strategy that consists in placing the incoming queries in the
appropriate component and materializing the most shared joins identified dynamically
by our hypergraph for re-using them by future queries. Our strategy for placing these
queries is based on two criteria defined between the incoming query Qt and the existing
sub-hypergraphs. This is done by respecting the following principles:
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Fig. 9. Query Scheduling process

Priority 1: In order to increase the reuse of materialized views already selected and
stored in the pool of each sub-hypergraph, we have defined a metric for the coming query
Qt called Nbr Shared V iews and defined as follows .
Nbr Shared V iews(Qt,GHt

i ):= |Joins(Qt)
⋂

PoolGHt
i |

The above metric represents the cardinal of the intersection among the set of join
nodes of incoming query Qt and the set of nodes already materialized for the ith sub-
hypergraph GHt

i . After calculating this metric among Qt and each sub-hypergraph. The
query Qt has to be placed in the component that maximizes this metric.

Priority 2: If the query Qt does not share any materialized views with the existing
sub-hypergraphs, Qt is placed in the component that shares with it the maximum of join
nodes. To do that, we have defined a new metric called Shared JoinsWeight (Qt,GHt

i )
(implemented in the algorithm2). This metric is calculated among the query Qt and each
sub-hypergraph. The metric Shared Joins Weight is related to the degree of each join
node belongs to Qt in the incidence matrix of a given sub-hypergraph. The node’s degree
is returned from the last column of each incidence matrix that we name it FRQ column.
To define the the metric Shared Joins Weight, we have to firstly define the degree
function that allows calculating the join nodes degrees of Qt in the incidence matrix of
the ith component using algorithm 1.

Algorithm 1: Degree

1 Inputs a join node: V t
i , the incidence matrix: MGHt

i ;
2 Outputs the calculated degree: Degree ;
3 if V t

i /∈ nodes(GHt
i ) then

4 Degree=0;
/* if the vertex V t

i does not belong to the set of
vertices of the sub-hypergraph (GHt

i ), then its
degree is zero */

5 else
6 Degree =

∑Number Columns−1
j=1 MGHt

i (i, j) ;
/* We assume that the join node Vi is positioned in

the ith Row */
7 end
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Using the above degree algorithm, we have defined the algorithm
Shared Joins Weight (Qt, GHt

i ) that calculates the weight of the incoming query Qt

in the incidence matrix of the ith hypergraph component GHt
i .

Algorithm 2: Shared Joins Weight

1 Inputs The incoming query: Qt, the ith sub-hypergraph: GHt
i ;

2 Outputs the calculated weight: Shared Joins Weight ;
3 Shared Joins Weight← 0 ;
4 foreach node ∈ join nodes(Qt) do
5 Degree← Degree(node,MGHt

i ) ;
6 if Degree ̸= 0 then
7 Shared Joins Weight← Shared Joins Weight+ 1 ;
8 end
9 end

The dynamic changes in the hypergraph components impose us to dynamically up-
dating their incidence matrix. To do so, we have defined the algorithm Update Incidence
Matrix (Qt,MGHt

i ) that allows adding columns, rows and updating the FRQ column
which represents the degree of nodes in the incidence matrix. We perform this task when
a new query is placed in the ith hypergraph component. If the query Qt does not share
any join with the existing components, a new hypergraph component is constructed and
associated with this query.

Algorithm 3: Update Incidence Matrix

1 Inputs The incoming query : Qt , the incidence matrix: MGHt
i ;

2 Outputs The updated incidence matrix: MGHt
i ;

3 add the column Qt to the matrix MGHt
i ;

4 foreach node /∈ nodes(Qt) do
5 if node /∈ nodes(GHt

i ) then
6 add new row to the matrix MGHt

i ;

7 Degree(node,MGHt
i ) = 1;

8 else
9 Degree(node,MGHt

i ) = Degree(node,MGHt
i ) + 1;

10 end
11 end

Dynamic Re-Selection of Materialized Views In fact, the dynamic and continuous ar-
rival of queries produces a massive number of views to materialize which violates the
storage space constraint. Indeed, it is impossible to materialize all candidate views under
such a situation. To cope with this problem, we put forward a strategy that consists in
materializing the most shared joins that can be used by future incoming queries. To do
that, we repeat the following process at each arrival of a new query to a component until
the saturation of the fixed storage space: At the arrival of a new query Qt to the ith hy-
pergraph component GHt

i , we calculate the benefit of each joins belonging to the query



750 Mustapha Chaba Mouna et al.

Qt using our benefits function 2. Afterward, we check if there are joins having a positive
benefit. In this case, we call the algorithm Update Materialized V iews to update the
pool of the ith component GHt

i by materializing joins which have a positive benefit. If
the storage space is saturated, we drop the materialized views having the least benefit in
the pool of this component and we replace them by materializing beneficial joins of the
current query.

Algorithm 4: Update Materialized Views
1 Inputs the query: Qt; the hypergraph component : Fi;
2 the views pool associated to the Component Fi: PoolFi ; disk Space: DS;
3 Output the updated pool of the component Fi: PoolFi ;
4 joins← Join(Qt);
5 Get Benefit (Joins);
6 L← Return Joins with Positive Benefit(Joins);
7 Descending Order(L) ;
8 foreach node ∈ L do
9 if node /∈PoolFi And size(PoolFi) + size(node) < DS then

10 Materializing ( node );
11 PoolFi .add(node);
12 size(PoolFi)← size(PoolFi) + size(node);
13 else
14 if node /∈ PoolFi And size(PoolFi) + size(node) > DS then
15 Ascending Order( PoolFi ) ;
16 idx← 0;
17 repeat
18 if benefit(node) > benefit(Pool[idx]) then
19 Dropping (Pool [idx]) ;
20 size(PoolFi)← size(PoolFi)− size(node) ;
21 idx← idx+ 1 ;
22 end
23 until Poolcompi) + size(node) < DS OR

benefit(node) < benefit(Pool[idx]);
24 if size(Poolcompi) + size(node) < DS then
25 Materializing ( node );
26 PoolFi .add(node);
27 size(PoolFi)← size(PoolFi) + size(node) ;
28 end
29 end
30 end
31 end

Algorithm 5 describes our dynamic process for constructing the hypergraphs and se-
lecting materialized views in the online phase. To illustrate our dynamic strategy for man-
aging ad-hoc and dynamic queries, an example is given in the figure 10 by considering
the same query workload and hypergraph considered in the previous examples 2.
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Algorithm 5: Incremental Construction of the hypergraph And Dynamic Mate-
rialization
1 Inputs: the incoming query Qt at the instant t; Storage space Sp;
2 Outputs: a list of components (F ) of GH; pool of views for each component;
3 loop;
4 t := 1;
5 Query Parser (Qt);
6 if |F t| = 0 then
7 F t := Construct new component() ;
8 add edge(F t, Qt);
9 M t := Calculate incidence matrix(GHt);

10 else
11 foreach F t

i ∈ GHt do
12 Nbr shared viewst := |Joins(Qt)

⋂
PoolF

t
i | ;

13 Listt1.add(Nbr shared viewst) ;
14 Shared Joins Weightt := Shared Joins Weight(Qt, F t

i ) ;
15 Listt2.add(Shared Joins Weightt) ;
16 end
17 Maximumt

1 := Maximum(Listt1) ;
18 if Maximumt

1 = 0 then
19 Maximumt

2 := Maximum(Listt2);
20 if Maximumt

2 = 0 then
21 Construct new component(F t

i ) ;
22 add hyperedge(F t

i , Q
t);

23 F.add(F t
i );

24 M t := Update incidence matrix ;
25 else
26 post := Return pos(Maximumt

2, List
t
2);

27 add hyperedge(F.get(post), Qt);
28 UpdateIncidenceMatrix(Qt,M t) ;
29 UpdateMaterializedV iews(Qt, F.get(Post), PoolF.get(Post), Sp);

30 end
31 else
32 Post := Return posn(Maximumt

1, List
t
1);

33 add hyperedge(F.get(post), Qt);
34 Rewrite(Qt, PoolF.get(Post));
35 UpdateIncidenceMatrix(Qt,M t) ;
36 Update Materialized V iews(Qt, F.get(Post), PoolF.get(Post), Sp);
37 end
38 end
39 t := t+ 1;
40 END LOOP
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Fig. 10. The optimization process of an ad-hoc query

5. Experimental Study

In this section, we firstly show the connection of our approach to a commercial DBMS.
Afterward, we conduct an efficiency study to validate and compare our proposal with
major state-of-art studies.

5.1. ProRes Connection to Oracle DBMS

Based on our findings, we have developed a tool, called ProRes inspired by the well-
known commercial advisors allows assisting DBA in their tasks when selecting material-
ized views with a strong advantage in managing the three-properties of analytical queries.
ProRes is developed using Java and integrates all phases and modules of our approach.
Our wizard is illustrated in fig 11.

Fig. 11. An Example of Functioning of ProRes.
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5.2. Efficiency Study

In this section, we present an experimental validation of our approach using the following
environment: a server with E5-2690V2, 3 GHz processor, 24 GB of main memory, and 1
TB of the hard disk. We generate a DW with 30 GB deployed in Oracle 12c DBMS and
queries using SSB generator modules.

Our approach has been compared against two approaches: (1) the approach proposed
in [60] (that we name it YANG) which is considered the pioneer study in data warehouses
that highlights the strong dependency among PMQO and VSP. For YANG we have de-
veloped both of their algorithms :(a) their naive algorithm called A feasible solution that
generates all possible MVPP and choose the plan with minimum cost (b) their algorithm
based on 0-1 integer programming which is faster than the first. (2) the algorithm pro-
posed in [49] which is considered as one of the most important works that highlighted the
crucial role that query scheduling plays in dealing efficiently with dynamic materialized
views selection. We reference this work in our experiments by PHAN. For PHAN, we
have developed the following algorithms : (a) their genetic algorithm which aims to find
the optimal order of queries by using natural selection taken from Darwin’s theory with
1000 generations. (b) an algorithm for selecting the nodes having the greater benefit as
candidates for materialization (in [49], these nodes are selected using DB2 advisor) (c)
their algorithm for pruning the set of candidates nodes based on their benefit (d) their al-
gorithm for evaluating the net benefit of the pruned set of candidates views in optimizing
a given query workload. (e) and finally, an algorithm for managing the cache following
LRU rules.

Number of selected materialized views and their benefit Optimizing a big workload
of queries by selecting a small set of materialized views is one of the crucial quality met-
rics recently highlighted by a leading DBMS editor [2]. Therefore , we attempt in this
experiment to evaluate the three algorithms in terms of the number of selected material-
ized views, the number of optimized queries, and the number of dropped views. To do so,
two experiments were conducted by considering two different workloads with 100 and
1000 queries. The obtained results are summarized in Fig.12. The obtained results show
that our approach outperforms the other approaches in terms of the number of optimized
queries.

Fig. 12. A comparison among Our Approach, Phan and Yang algorithms
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Impact of selected views on query processing and materialization costs The goal of
this experiment is to study the contributions of the selected materialized views by our ap-
proach and the other algorithms on the overall query processing and their materialization
costs. To do so, we have evaluated theoretically the different costs using our mathematical
cost model. The obtained results are reported in Fig. 13. The selected views by our ap-
proach are more beneficial than those generated by the other algorithms. This is due to our
materialization strategy that selects the most beneficial candidates and to our scheduling
policy that allows augmenting the benefit of the selected materialized views.

Fig. 13. Comparison among the three approaches in terms of processing/maintenance
costs

Oracle Validation: Comparison of the three approaches The goal of this experiment,
is to validate the results obtained theoretically in the previous experiments. To do this, we
consider a workload of 100 queries running on a DW with 30 GB deployed in Oracle 12c
DBMS. The storage space for materialized views is set to 60 GB. The obtained results are
reported in Fig. 14. We observe that our algorithm outperforms the other algorithms. The
obtained results coincide with those obtained theoretically, which confirms the efficiency
and the superiority of our approach .

Impact of query scheduling and dynamic materialization on optimizing queries For
testing the efficiency of our approach two scenarios are considered:

(a) Static Materialization: In this experiment, we consider a naive scenario in which
the nodes selected by each algorithm are materialized till the saturation of the storage
space. To perform this experiment, we have considered a data warehouse with 30 Gb and
a workload of 100 queries using SSB Benchmark. As shown in Fig.15a, there is not a
big difference between our approach and Yang’s algorithm, which demonstrate that our
approach does not avoid the selection of the best-materialized views.

(b) Dynamic Materialization with Query Scheduling: To perform this experiment,
we have used the same above data by considering SSB data set with 30 Gb and a query
workload of 100 queries generated randomly using the SSB generator. As shown in
Fig.15b, our approach outperforms largely Phan’s algorithm. This is due to the minimal
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Fig. 14. Workload execution times.

number of dropping in our approach than that of Phan. In addition, the materialized views
selected by our approach are used maximally to optimize the appropriate queries before
their dropping.

(a) Static scenarios (b) Dynamic scenarios

Fig. 15. Performance of our approach in static and dynamic scenarios

Impact of the threshold δ on the Processing Cost of Queries In this experiment, we
first evaluate theoretically (using our cost model) then in Oracle 12c the overall processing
cost of a given workload of 100 queries by varying the value of δ threshold. The obtained
results are depicted in 16. We observe the obvious effect of the threshold δ on the query
processing cost, where there is an inverse relationship between the threshold values δ and
the processing cost of queries. At each increase in the threshold value, the processing cost
of queries decreased until the threshold value reaches 70 which represents the stability
point of the processing cost optimization.
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(a) From theoretical Perspective (b) Oracle Validation

Fig. 16. The Effect of the Threshold on the Processing Cost

The processing cost reduction rate according to the threshold values In this exper-
iment, we follow the same above scenario by considering the same set of 100 queries
and varying the δ threshold values. The goal of this experiment is to evaluate the impact
of the threshold values and the quality of the materialized views selected by our proac-
tive strategy on the overall processing cost of queries. To do this, we firstly estimate the
overall real processing cost of the query workload without using our approach (costwith-
out). Afterward, we estimate the processing cost of this workload using our approach
by varying the offline threshold values. Finally, we compute the cost reduction rate as :

1− query cost with views
query cost without views .

Fig.17a shows the obtained results implemented in Oracle 12c DBMS. The obtained re-
sults confirm the previous results and prove that our approach becomes more interesting
when the offline threshold increases until the stability point value δ ≥ 70, where the cost
reduction rate is among 42% and 47%. This is due to the expansion of our pool by the
most beneficial materialized views.

The Number of optimized queries according to the offline threshold values: In the
last experiment, we attempt to evaluate our proactive strategy in terms of the number of
optimized queries according the threshold values δ . To do this, we consider the same
above scenarios and the same workload of queries. The obtained results are described
in Fig17b. They showed the proportional Relationship among the number of optimized
queries and the offline threshold values until the value δ ≥ 60, where there is a stability
in the number of optimized queries, where 69 queries have been optimized from the 100
received queries.

6. Conclusion

In this paper, we discuss the opportunity offered by the best aspects brought by the era of
Big Data to augment the data warehouses technology. Note that several efforts have been
recently deployed to augment this technology. But, they did not give great attention to the
high number of queries as the other aspects despite its strong connection to the different
phases of the data warehouse life cycle. Today, analytical queries are known by three
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(a) The Oracle cost reduction rate (b) The Number of optimized queries

Fig. 17. The cost reduction rate and the Number of optimized queries according to the
offline threshold

main properties: (1) very numerous, (2) dynamic, and (3) share similar operations. These
characteristics may touch several well-studied and known problems such as multi-query
optimization (PMQO), physical design. The classical solutions cannot be used directly to
handle these three properties during the physical and logical optimization of queries. We
guess that dealing with these three properties requires the usage of a flexible data structure.
Therefore, hypergraphs have been proposed for coupling PMQO and VSP under a new
angle by considering our three properties. In this work, we were inspired by the aspects
of new business intelligence (BI next-generation), where there are two types of queries:
a priori known queries and ad-hoc queries. To deal with both types of queries, we have
proposed a proactive approach composed of two phases: an offline phase for optimizing
queries known in advance and an online phase dedicated to optimizing the ad-hoc queries.
The offline phase and the online phase share the use of the same hypergraph structure for
capturing the query interaction and selecting the candidate views. The main particularity
of our approach is that it covers the two main categories of the dynamic selection of views.
Our proposal implemented by a simulator called ProRes was validated theoretically using
mathematical cost models and its results were directly implemented on the Oracle DBMS.
The obtained results are encouraging and show the efficiency and effectiveness of our
approach.

Our work opens several challenges: (i) currently, we are integrating our proposal into
PostgreSQL DBMS, (ii) considering other optimization techniques such as horizontal data
partitioning and indexes, (iii) integrating the machine learning techniques for predicting
the appropriate optimization structure for the ad-hoc queries. (iv) reproduce our proposal
for using hypergraphs to deal with SPARQL queries in semantic databases.
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Q1: select c_nation,s_nation,d_year,sum(lo_revenue) as revenue
from CUSTOMER, lineorder, SUPPLIER, DATES
where lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
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and c_region = ’AFRICA’
and s_region = ’AFRICA’
and d_year >= 1992 and d_year <= 1997
group by c_nation, s_nation, d_year
order by d_year asc, revenue desc;

Q2: select c_city,s_city,d_year,sum(lo_revenue) as revenue
from CUSTOMER, lineorder, SUPPLIER, DATES
where lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and c_nation = ’VIETNAM’
and s_nation = ’VIETNAM’
and d_year >= 1993 and d_year <= 1998
group by c_city, s_city, d_year
order by d_year asc, revenue desc;

Q3:select c_city,s_city,d_year,sum(lo_revenue) as revenue
from CUSTOMER, lineorder, SUPPLIER, DATES
where lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and (c_city=’IRAQ 4’ or c_city=’JORDAN 6’)
and (s_city=’IRAQ 4’ or s_city=’JORDAN 6’)
and d_year >= 1992 and d_year <= 1997
group by c_city, s_city, d_year
order by d_year asc, revenue desc;

Q4:select c_city,d_year,sum(lo_revenue) as revenue
from CUSTOMER, lineorder, DATES
where lo_custkey = c_custkey
and lo_orderdate = d_datekey
and c_nation = ’GERMANY’
and d_year >= 1993 and d_year <= 1998
group by c_city, d_year
order by d_year asc, revenue desc;

Q5: select s_city,p_brand,sum(lo_revenue-lo_supplycost) as profit
from SUPPLIER,lineorder, PART
where lo_suppkey = s_suppkey
and lo_PARTkey = p_PARTkey
and s_nation = ’VIETNAM’
and p_category = ’MFGR#34’
group by s_city, p_brand
order by s_city, p_brand;

Q6: select c_nation,s_nation,d_year,sum(lo_revenue) as revenue
from CUSTOMER, lineorder, SUPPLIER, DATES
where lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and c_region = ’AFRICA’
and s_region = ’ASIA’
and d_year >= 1992 and d_year <= 1997
group by c_nation, s_nation, d_year
order by d_year asc, revenue desc;

Q7:select c_city,d_year,sum(lo_revenue) as revenue
from CUSTOMER, lineorder, DATES
where lo_custkey = c_custkey
and lo_orderdate = d_datekey
and c_nation = ’BRAZIL’
and d_year >= 1992 and d_year <= 1997
group by c_city, d_year
order by d_year asc, revenue desc;
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