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Abstract. The number of services on the Internet has increased rapidly in recent
years. This makes it increasingly difficult for users to find the right services from a
large number of the functionally equivalent candidate. In many cases, the number
of services invoked by a user is quite limited, resulting in a large number of miss-
ing QoS values and sparseness of data. Consequently, predicting QoS values of the
services is important for users to find the exact service among many functionally
similar services. However, improving the accuracy of QoS prediction is still a prob-
lem. Despite the successful results of the proposed QoS prediction methods, there
are still a set of issues that should be addressed, such as Sparsity and Overfitting. To
address these issues and improve prediction accuracy. In this paper, we propose a
novel framework for predicting QoS values and reduce prediction error. This frame-
work named auto-encoder for neighbor features (Auto-NF) consists of three steps.
In the first step, we propose an extended similarity computation method based on
Euclidean distance to compute the similarity between users and find similar neigh-
bors. In the second step, we form clusters of similar neighbors and partition the
initial matrix into sub-matrices based on these clusters to reduce the data sparsity
problem. In the third step, we propose a simple neural network autoencoder that can
learn deep features and select an ideal number of latent factors to reduce the over-
fitting phenomenon. To validate and evaluate our method, we conduct a series of
experiments use a real QoS dataset with different data densities. The experimental
results demonstrate that our method achieves higher prediction accuracy compared
to existing methods.

Keywords: similarity computation, neighbors selection, quality of service (QoS),
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1. Introduction

Service recommendation and selection have attracted much attention in the service com-
puting community in recent years [4]. With the dramatic increase in the number of ser-
vices, different service providers offer many services with the same or similar functions
[45]. At the same time, due to the large number of available services, it becomes more dif-
ficult for a user to select services that meet his or her requirements [43]. So, it is an urgent
task to solve how to recommend suitable services to meet users’ requirements. The key
criterion considered in recommending services is their Quality of Service (QoS), which
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can distinguish the suitable services among different functionally equivalent services [45].
Most previous studies have assumed that the quality values of candidate services must be
known and accurate. However, it is really hard for a user to invoke all candidate services
to acquire their QoS values and make a final decision [45]. Thus, QoS prediction is an
indispensable task to finish service selection and recommendation with high quality.

As mentioned above, an active user usually can use only a limited number of services
due to the enormous number of them on the Internet what makes the QoS data very sparse
(there are many entries without QoS values). As a result, the task of QoS prediction to
complete the unknown entries in the dataset is really important. Traditional Collabora-
tive Filtering based methods are used to predict missing values. These last based on: 1)
Similarity Calculation. Generally, the similarity is calculated using the known QoS val-
ues between users and services. And, the widely adopted similarity computational model
includes Pearson correlation coefficient, cosine. etc [27]. 2) Neighborhood Selection. In
this step, similar neighbors of users and services are identified based on the computed
similarities [27]. 3) Collaborative Prediction. Here, the final prediction of QoS values is
made by weighting the sum of QoS values of the selected neighbors [27]. Among all
prediction methods, collaborative filtering (CF) methods have been deeply studied and
applied mainly because of their simplicity and effectiveness. However, In QoS predic-
tion, high data sparsity is a common problem and neighborhood-based CF method is not
able to learn latent features from historical QoS records. Therefore, the community has
proposed a new model-based CF algorithm that attracts more attention to latent features
learning. As a typical latent factor model, matrix factorization (MF) achieves good per-
formance in learning latent features in high sparsity. Many existing studies extend MF
for QoS prediction. However, despite the successful results of MF in the recommenda-
tion area, there are still a set of problems that should be handled, as we will mention in
the sect. 2. In this study, we aim to address two major issues: 1) the sparsity caused by
the service invocation matrix. 2) The overfitting due to the latent factors learning. These
two main problems affect prediction accuracy. Therefore, improving the accuracy of QoS
prediction has become a challenge.

Recently, deep neural networks have received much attention in many fields and have
become increasingly popular [45]. However, few studies use neural network techniques
in QoS prediction. One of the most widely used deep learning methods is autoencoder
due to the advantages of fast convergence and no labeling requirement. Autoencoder has
a simple network structure and also has a strong ability to learn latent features [45].

In this paper, we propose a framework-based autoencoder to alleviate the previous
issues and exploit the benefits of improving the quality of neighborhood selection and
learning deep latent features from the QoS dataset. The purpose of our model is to mini-
mize the discrepancy between input and output data. The main contributions of our work
can be summarized as follows:

– we propose an extended similarity computation method based on Euclidean distance
to compute the similarity between users and find similar neighbors. In this method,
we use a simple and efficient concept based on common services invoked by both
users to improve and facilitate the quality of neighbors’ selection;

– we create clusters for similar neighbors according to the computed similarities based
on QoS values. And, we partition the initial matrix into small sub-matrices based on
these clusters to reduce the data sparsity problem;
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– we propose a neural network autoencoder capable of learning deep features and se-
lecting an ideal number of hidden neurons to reduce the overfitting phenomenon in
the learning step;

– to validate and evaluate our method, we conduct a series of experiments use a real
QoS dataset with different data densities. The experimental results show that our
method achieves higher prediction accuracy compared to existing methods.

The remaining sections of this paper are organized as follows. Sect. 2 summarizes
related work on QoS prediction. Sect. 3 explains the whole framework. Sect. 4 elaborates
an example of motivation. Sect. 5 gives the experimental results. Sect. 6 discusses our
results, and sect. 7 concludes the paper.

2. Related Work

To improve the prediction accuracy, many researchers have proposed a series of QoS
prediction methods. These can be broadly classified into two categories, i.e., collaborative
filtering (CF) methods and content-based methods. Most of the proposed methods are
extended from CF algorithm [3], [34]. In this section, we introduce a literature review
about CF-based QoS prediction method, deep learning-based QoS prediction method,
and autoencoder based QoS prediction method.

2.1. CF based QoS Prediction

Collaborative filtering (CF) is widely used in web service recommendation and service
selection [16] due to its good performance. The basic idea of collaborative filtering is to
use historical data for prediction [20][23]. Generally, CF-based QoS prediction methods
can be divided into two categories, including neighborhood-based CF and model-based
CF [2]. The neighborhood uses the existing QoS values of similar users (or services) to
predict the missing QoS values, whereas model-based CF approaches build a predefined
prediction model trained using historical QoS data to then predict missing QoS values.
The improvement of most neighborhood-based CF methods is done by improving or de-
signing new similarity calculation techniques, improving the quality of neighbor selection
or combining different methods.

The neighborhood-based CF methods are widely used in QoS prediction and have the
advantages of easy implementation and high scalability. Neighborhood-based CF algo-
rithms can be classified into user-based CF methods, item-based CF methods and hybrid
CF methods. Nilashi et al. [17] propose a new hybrid recommendation method based on
Collaborative Filtering (CF) approaches using dimensionality reduction (SVD) and on-
tology techniques. Shao et al. [26] proposed a user-based CF with a new user similarity
calculation method. Sun et al. [30] proposed a new similarity method for calculating the
similarity between two services. Tang et al. [31] proposed a hybrid method to find sim-
ilar neighbors in users set and services set respectively. Zheng et al. [30] introduced an
improved similarity computation method to find similar neighbors.

This category mainly suffers from the data sparsity problem due to the limited number
of Web services that a single user invokes, suffers from cold start problems [49][26] i.e.,
how to recommend a service to a user when there are few or no QoS records.
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To alleviate the limitations of neighborhood methods, the community has designed
model-based methods that can deal with the data sparsity problem. Papadakis et al. [18]
propose a Synthetic Coordinate based Recommendation system. It is parameter-free, so
it does not require tuning to achieve high performance and is more resistant to the cold
start problem compared to other algorithms. Model-based CF methods use machine learn-
ing techniques, such as latent factor models [45], clustering-based models [41], [44], and
aspect-based models [28]. Different form neighborhood-based methods that make pre-
diction directly from the ratings of similar neighbors, model-based methods compress
user-service rating matrix into a low-dimensional representation in terms of latent fea-
tures using matrix factorization (MF) technique. The most widely applied algorithm that
factorizes the rating matrix into two matrices: the user‘s feature matrix and the item’s
feature matrix, where one row and one column of each matrix are taken as the inner prod-
uct for prediction [9]. Matrix factorization has emerged as one of the main approaches
of model-based method because it can handle sparse matrices and produces good pre-
diction accuracy. It has been verified by many experiments that model-based methods
often have better performance than neighborhood-based methods. However, the existing
model-based methods can only learn linear relationships between a user and a service,
and the inner product cannot catch deep features [6]. Xu et al. [40] introduced a proba-
bilistic matrix factorization model into service recommendation. Chen et al. [5] proposed
a fuzzy clustering-based approach to learn latent features of users and services and de-
signed a latent factor model to learn the features of each cluster. Mattiev et al. [15] pro-
pose new methods capable of reducing the number of class association rules generated by
“classical” classifiers for class association rules, that use distance-based agglomerative
hierarchical clustering. Zhu et al. [51] proposed a new context-aware reliability predic-
tion approach, which solves the problem of data sparsity by constructing context-aware
reliability models. Wu et al. [36] proposed a deep latent factor model by sequentially
connecting multiple latent factor models.

2.2. Deep Learning based QoS Prediction

Recently, deep neural networks have received much attention in many fields and have
become increasingly popular. Compared to the pure CF or MF methods, the neural net-
work’s method achieve better performance in traditional recommender systems. Some
studies have attempted to integrate neural networks into collaborative filtering [1], [10].
However, there are still few studies using neural network techniques in QoS prediction.
Jin et al. [8] proposed a deep learning model for predicting QoS of Web service, which
builds the model through multi-layer perceptron (MLP) and convolution neural networks
(CNN). Paradarami et al. [19] also presented a deep learning framework to recommend
new products to users.

2.3. Autoencoder based QoS prediction

As one of many deep learning methods, autoencoder model is widely applied in recom-
mendation systems for the advantages of fast convergence and no labeling requirement.
The auto-encoder has a simple network structure and a strong ability to learn latent fea-
tures. The autoencoder [24], [7] is an unsupervised neural network and can encode itself
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with its latent factors. For example, Liang and Baldwin [13] utilized an autoencoder model
to learn the user latent feature matrix for achieving fairly good performance in recommen-
dation. Zhuang et al. [52] proposed a Dual-Autoencoder model to generate latent user and
item feature matrices. The existing autoencoder based recommendation systems can be
generally divided into two types [46]: one is to learn the latent feature representations of
users and items as [21], and the other is to fill the missing value of the original matrix
in the reconstruction layer of autoencoder. The authors in [33] tried to use the denoising
autoencoder to reduce features dimension. Yin et al. use the autoencoder improved by the
substitution strategy to obtain nonlinear latent features of users and services, and missing
QoS are generated by the traditional MF methods [45]. Since autoencoder generally uses
one hidden-layer neural network to learn the embedding feature, Zhang et al. adopt the
MLP to model the nonlinear characteristics of embedding features [47], they also embed
similar neighborhoods in MLP to further improve prediction accuracy [8]. Wu et al. pro-
posed a deep neural network for making QoS prediction with contextual information [38],
where a deep neural network is added to the end of FM in series for prediction.

The ultimate goal of our work is to solve problems that are complementary to those
addressed by the previous works, like data sparsity and overfitting and obtain the deep hid-
den features by autoencoders. The experimental results presented in sect. 5 demonstrate
that Auto-NF significantly outperforms the existing compared methods.

3. The Proposed Framework

Some research works deal with QoS prediction to recommend high-quality services to
users in a dynamic environment. However, these works ignore the effect of data sparsity
and overfitting and cannot learn deep features. To overcome the major challenges, we
propose a high-reliability QoS prediction framework based on an autoencoder neuronal
network as shown in (Fig. 1). This framework named autoencoder of neighbor features
for short Auto-NF is capable of learning the hidden features to achieve highly accurate
QoS prediction.

As shown in (Fig. 1), we assume that the user-service QoS record is the official input
of the proposed method. First, we convert this dataset into a matrix with n services in
columns and m users in rows. Then, we calculate the similarity between users to obtain
neighbors and create sub-matrices with these neighbors. After that, we add features to the
matrices of neighbors. Finally, we predict missing QoS values of the services.

3.1. The Framework Procedure

The framework procedure consists of three stages. Stage 1 selects the neighbors of users
and services. Stage 2 adds features to the sub-matrices of neighbors. Stage 3 predicts the
missing QoS values. The three stages are explained in detail below:

Phase 1 (neighbors selection). This step is to identify the similar neighbors of users and
services to partitions them into clusters.

1. Similarity calculation: we propose an improved similarity computation method
based on common services invoked by both users. This similarity uses historical QoS
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records of services invoked by the same users. And, it can be determined by the two
following factors:

– Common services with different QoS values, i.e., how many services that users
have both invoked in the past;

– Common services with the same QoS values, i.e., how similar their QoS values are
for services that users have both invoked in the past.

Based on these two factors, we incorporate the following formulate λu,v into the similarity
computation method to improve it and then increase the accuracy of neighbor’s selection.
This formula is computed as:

λu,v = log
|i|∣∣iu,v∣∣ (1)

Where |i| is the total number of services, and
∣∣iu,v∣∣ represents the number of common

services invoked by any two users u and v.
We will now discuss how to consider the two factors defined.1

– First factor. When two users have both called a large number of services. They have
partitioned into the same cluster. And they will likely invoke similar other services;

– Second factor. Given a service s invoked by user u and user v, s is considered as a
common service for these two users if their properties for service s are similar. If the
number of common services is large, they are classified into the same cluster.

The proposed similarity is based on Euclidean distance and computed as follows:

Su,v =
1

1 +
√∑M

i=0 ((qu,i−q̄u)−(qv,i−q̄v))
2.λu,v

|M |

(2)

Where Su,v is the similarity between user u and user v. We form the common behavior
service invocation of services co-invoked like: M = Mu∩Mv which is the set of services
invoked by both user u and user v. Mu denotes the set of services invoked by user u and
Mv denotes the set of services invoked by user v. qu,i is the real QoS value generated after
the target service i is invoked by the target user u, and qv,i is the real QoS value of the
target service i is invoked by the target user v. We add a one to the similarity formula to
avoid division by zero. q̄u is the average QoS value of user u, and q̄v is the average QoS
value of user v. The final similarity results are recorded in the clusters of user and service
neighbors.

2. Clusters selection: the goal of this step is to partition similar users and services into
clusters. To determine reliable clusters, we divide the similarity values into ten intervals
of [0, 0.1], [0.1, 0.2], ..., [0.9, 1], and [0, 0]. The users with the same similarity interval are
included in the same cluster, and the services invoked by their users are partitioned into

1 Remark

– Services accessed by the same users are considered as neighbors and placed in the same cluster.

– The services not invoked by any users are not considered;

– The users who have invoked few services and have no shared services with other users are considered
untrusted users and not included in any cluster.
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the same cluster according to the similarity interval. Each user appears in only one cluster.
In this way, we obtain six clusters for users and six clusters for services, i.e., {u1, u6, u8},
{u9}, {u2, u4}, {u3, u5, u7}, {u15,u14}, and {s1, s0, s6}, {s0, s9, s8}, {s1,s2, s4}, {s3,
s5, s7},{s0,s2,s20, s13}. The users or services in the same cluster have similar or even
the same experiences with certain services. The final clustering results are recorded in the
sub-matrices of neighbors.

Phase 2 (neighbors features). In the initial matrix, there are n services in columns and m
users in rows, where each cell represents a corresponding QoS value assigned to a service
by a user. We assume that these QoS contain missing values, resulting in a very sparse
matrix. This step aims to reduce this sparsity by preparing the matrix and splitting it into
pre-completed sub-matrices of neighbors and features because the denser the matrix, the
better the results. To do this, we go through a series of steps described in the sect. 5 of
results.

1. Matrices of neighbors: we divide the prepared matrix into sub-matrices that have
a different number of rows and columns. The number of rows and columns corresponds to
the size of each cluster. thus, each cluster of neighbors is represented with a reduced ma-
trix. Finally, we add features to these sub-matrices and obtain six sub-matrices of neigh-
bors.

2. Matrices of features: simultaneously with the calculation of similarity between
users, six features vectors with the same number of clusters are generated. Here each
vector represents a particular cluster of neighbors. The size of the vector equals six. As
shown in Table 1, a vector initialized with zero receives a one at the specified cell, based
on the specified similarity interval for that cluster. After that, the vectors of features and
the matrices of neighbors are combined to create the neighbor’s features matrices. Then,
transmit these matrices to predict their missing QoS values with our autoencoder model.

Table 1. Features of clusters (users and services)

Similarity interval Vectors of features Clusters of users Clusters of services
0.2–0.5 1 0 0 0 0 0 Clu0 Cls0
0.5–0.6 0 1 0 0 0 0 Clu1 Cls1
0.6–0.7 0 0 1 0 0 0 Clu2 Cls2
0.7–0.8 0 0 0 1 0 0 Clu3 Cls3
0.8–0.9 0 0 0 0 1 0 Clu4 Cls4
0.9− 1 0 0 0 0 0 1 Clu5 Cls5

Phase 3 (QoS Prediction with an Autoencoder). Autoencoder is an unsupervised model
that attempted to reconstruct the input data in the output layer [46] for each training sam-
ple through the network. In general, autoencoder can be considered as an extended version
of artificial neural network with three or more layers (an input layer, one or more hidden
layers, and an output layer), where the output layer should have the same size as the in-
put layer. In our work, we propose an improved auto-encoder (an auto-encoder with SBS
structure, sect. 3.2) to predict missing QoS values where the numbers of neurons in the
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input and output layer are represented by the number of users. The learned autoencoder
produces the missing QoS values and shown us the prediction error for these values.

3.2. Structure of Autoencoder

Autoencoder has two types of Structures as shown in (Fig. 2): Small-Big-Small (SBS)
structure, where the largest layer is in the middle and the smallest layers are at the be-
ginning and end. And Big-Small-Big (BSB) structure, where the smallest layer is in the
middle and the largest layers are at the beginning and end. We tried both structures on our
work and found that using a single hidden layer with a large number of neurons is the best
(SBS).

output x1
(reconstruction)

input x

l = code = latent featurs

decoder

encoder

decoder

encoder

Autoencoder Structures

BSB SBS

Fig. 2. General structures of autoencoder

4. Motivation and Problem Description

Our method aims to predict missing QoS values with high accuracy so that users can select
the optimal service among candidate services. Table 2 shows an example of a matrix with
4 users in columns and 4 services in rows in total. In this matrix, each entry (e.g. q1,1
to q4,4) represents a property of the quality value (e.g. In this paper, we mainly focus on
the response time property). We define the response time as the time duration between
a user sending a request and receiving a response of a service (e.g. Service i1 to Service
i4) observed by a user (e.g. User u1 to User u4) in the past. For example, when User u1
invokes Service i1, this response time value is recorded as the first entry q1,1. The NaN
value in the matrix means that the user has not invoked the service yet. And therefore,
there is no record of the quality of service. Since users invoke few services in the real
world, the user-service matrix is very sparse. The problem is how to use the known entries
in predicting the unknown entries in the user-service matrix. More formally, the problem
studied in this paper is defined as follows:
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Given a sparse user-service matrix M, the existing entries val = qu,i are used to
predict the missing (NaN) values. We define the users that invoked the same set of services
as S(u) and the services that are commonly invoked by the same set of users as S(i).

Given a user u, a service i, a set of users U = {u1, u2, u3, u4}, and a set of services I
= {i1, i2, i3, i4}, the prediction process of the quality of service i mainly consists of three
parts: (1) identifying S(u) from U and S(i) from I; where S(u) is the user’s neighbors and
S(i) is the service’s neighbors. (2) Creating the set matrices of features neighbors based
on the initial matrix M and the set of neighbors S(u) and S(i). (3) Predict missing QoS
values and know the optimal service preferred by user u from the candidate services in
matrix M.

Table 2. An example of a user-service matrix

Service i1 Service i2 Service i3 Service i4
User u1 q1,1 q1,2 NaN q1,4
User u2 NaN q2,2 q2,3 q2,4
User u3 q3,1 q3,2 NaN q3,4
User u4 NaN NaN q4,3 NaN

From Table 2, we take User u1 as an example. The QoS value of Service i3 is missing
for User u1. In this case, we represent it as q1,3 and consider User u1 as the target user and
Service i3 as the target service. So, u1 only invoke {i1, i2, i4} and we represent its QoS
values for these services by {q1,1, q1,2, q1,4}. While i1 invoked by {u1,u3}, i2 invoked by
{u1, u2, u3}, and i4 invoked by {u1, u2, u3}. If we want to predict how user u1 will show
the quality of service i3, we need to identify its similar users by calculating the similarities
between him and three other users, namely u2, u3, and u4. First of all, we should find the
sets of calls for these users. Then, based on these sets we can find the set of neighbors:
From the table, we have seen that u2 invoke {i2, i3, i4}, u3 invoke {i1, i2, i4}, and u4
invoke {i3}. We represent their QoS values by {q2,2, q2,3, q2,4}, {q3,1, q3,2, q3,4}, and
{q4,3} respectively. We have seen that u2 and u3 have several commons services with u1.
Therefore, we can conclude that by u1 ∩ u3 = {i1, i2, i4} and Su1 ∩ u2 = {i2, i4},
which means that both users u1 and u3 have used services i1, i2, i4. And both users u1
and u2 have used services i1 and i4, respectively. So, S(u) = u1,u2,u3 and S(i) = i1,i2,i4.
In this way, we can obtain q1,3, considering the similarity between u1 and u3 as: {q1,1,
q1,2, q1,4}, {q3,1, q3,2, q3,4}, and between u1 and u2 as: {q1,2, q1,4}, {q2,2, q2,4}. In the
same way, the remaining missing QoS values can be predicted. Considering u1 and u4,
we obtain S(u1) ∩ S(u4) = {}, which means that users u1 and u4 have any services in
common. Based on the two factors defined in sect. 3, u1 and u4 are not similar. Therefore,
u4 is not helpful and should not be used to predict q1,3. Consequently, identifying similar
users is of great significance. Meanwhile, it is also important to exclude dissimilar users.

5. Experimental and Evaluation

To evaluate the effectiveness and efficiency of our model, in this section we conducted a
set of experiments on a real QoS dataset of Web services. Sect. 5.1 presents the experimen-
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tal setup in detail, including parameters settings and dataset description. Sect. 5.2 shows
the preparation of the dataset. Sect. 5.3 and sect. 5.4 introduce the methods comparison
and the metrics used, respectively. Then, sect. 5.5 analyzes the results, including the eval-
uation of the table comparison, data validation, prediction, the effect of matrix density,
and an example to evaluate our model with another type of dataset called MovieLens. In
particular, our experiments aim to answer the following research questions (RQs): RQ1:
How does the proposed method perform compared to the well-known state-of-the-art QoS
prediction methods? Does it provide better prediction accuracy than them? RQ2: Does our
model sensitive to over-fitting? RQ4: The data density is usually used to simulate the true
scenario in the real world, where the goal is to evaluate the prediction accuracy of the
proposed method. So, in our case, what is the performance of the proposed method under
different data densities?

5.1. Experimental Setup

Our source code is implemented in python, runs on spyder, and all variants of experiments
are performed on a machine with Intel(R) Core(TM) i7-8550U @ 1.80GHz CPU 1.99GHz
with 8Go RAM on a Windows 10 Professional server.

Parameters Settings the parameters used in our approach are shown in Table 3.

Table 3. Important parameters used in our approach

Parameters Optimal value
Regularization 0.001
Learning rate 0.0001
Activation function Selu
Optimization function Adam
input and output layers The number of users in each matrix
Batch size (hidden layer) 2048
Layers [input layer, hidden layer, output layer]

Dataset Description we conducted our experiments using one of the most widely avail-
able dataset in the world called WS-DREAM 2: dataset#2, which was previously collected
by Zheng et al [48]. WS-DREAM contains a total of 1,974,675 QoS records obtained from
4500 web services accessed by 142 users from all over the world. There are two attributes
for each QoS record in this dataset, response time (RT) and throughput (TP). However,
in this work, we focus on the response time dataset as the evaluation attribute. In total,
we have 142 × 4500 × 64 QoS records for each criterion (response time or throughput).
This dataset has been used in the research community by many researchers [45],[43],[34]
to evaluate the accuracy of QoS prediction. The statistics of our experimental dataset are
shown in the following Table 4.

2 https://wsdream.github.io
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Table 4. Dataset statistics

Property Value RT TP
Range 0 20s 0 7000kbps
Average 1.33s 11.35kbps
Time slices function 64 64
Time interval 15min 15min
Number of users 142 142
Number of services 4500 4500
Number of all values 30 287 611 30 287 611
Number of missing values 10 609 313 10 609 313
Mean values 3.165s 9.608 kbps

5.2. Dataset Preparation

In real-world service invocation, the number of known QoS records is quite limited. Users
typically invoke only a very small number of services, resulting in limited overlap of the
same service invocation among users. However, in experiments, a user always invokes
thousands of web services. Note that the original dataset is a dense full matrix. To simulate
the real scenario and make the data-sparse, we randomly removed some records to obtain
a density of 5% to 90%. Then, the sparse data is used as a training set, while the removed
QoS value is used as a test set. For example, data with a density of 20% means that
20% of the data is kept as training set and used to build the predictive model, while the
removed 80% of the data is used to evaluate the model. This step aims to reduce the
number of invalid entries and thus improves the prediction accuracy. In the beginning, our
dataset contains missing values. To precompute it, we first need to identify each missing
QoSi,u,s,t value in the dataset and then replace it according to the following two rules:

QoSi,u,s,t = average (3)

QoSi,u,s,t = 0 (4)

Where iϵ{response time}, u is the user ID, s is the service ID, and t is the time slot of
the QoS value (tϵ{0, ..., 63}) [29].

We make a comparison between zero and average values as shown in Table 5. We take
the smallest and the largest matrix from our set of sub-matrices (matrix 0 and matrix 2)
and calculate the error values predicted for both sub-matrices at the highest and lowest
densities, and we take the average error values between the two sub-matrices. Where:
Matrix 0: is the smallest matrix in our set of sub-matrices with a size of 17 users in the
rows and 4506 services in the cols.
Matrix 2: the largest matrix with a size of 38 users in the rows and 4506 services in the
cols.

From Table 5 we can see that zero gives the smallest error of the predicted values. So,
the results are better when we replace the missing values with zero than when we replace
them with the average values.

In the following, we assume that this prepared dataset will be the official input of our
proposed autoencoder model, and now we are ready to start learning it.
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Table 5. Comparison between zero and average QoS value based on RMSE and MAE
errors

Training set density —— response time dataset
zero average

10% 90% 10% 90%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Matrix 0 Prediction 0.1121 0.1644 0.0200 0.0287 0.1338 0.1808 0.0236 0.0328
Matrix 2 Prediction 0.1774 0.2416 0.0511 0.0711 0.2044 0.2708 0.0554 0.0761
average Prediction 0.1447 0.2030 0.0356 0.0499 0.1691 0.2258 0.0395 0.0544

5.3. Comparison

To evaluate the prediction accuracy of our model, we compared it with several well-known
QoS prediction models, as listed below.3 The results are shown in Table 6 and Table 7.

UMEAN (User Mean): this method uses the average QoS value known by the active
user to predict the missing QoS value of all services invoked by him [45].

IMEAN (Item Mean): this method employs the average QoS value on the used ser-
vices to predict the QoS values of the unused services [45].

UPCC is a user-based Collaborative Filtering method that uses the Pearson Correla-
tion Coefficient to calculate the similarity between users and then predict the missing QoS
values based on the historical QoS records of similar users [22].

IPCC is the same as UPCC, except that it calculates the similarity between items [25].
UIPCC is a hybrid method proposed in [14] that combines the advantages of UPCC

and IPCC methods to fully exploit the similarity between users and services for predicting
missing QoS values.

WSRec this method is a hybrid approach that exploits both similar users and similar
services, and linearly combines the prediction results of UPCC and IPCC [48].

PMF (probabilistic matrix factorization) is based on probabilistic matrix factoriza-
tion, which introduces probability models to further improve matrix factorization models,
and it also factorizes the user–service QoS matrix for the prediction [16].

NMF (Non-negative Matrix Factorization) this method applies non-negative matrix
factorization to the user-item matrix to predict missing values without considering neigh-
borhood information [11].

CAP (Credibility-Aware Prediction) CAP is a novel credibility-aware QoS prediction
method that uses two-phase K-means clustering algorithms [35].

CMF (Classic Matrix Factorization) CMF is the classical matrix factorization method
whose main objective is to builds a global model to make quality predictions based on the
available quality information [9].

LFM (Latent Factor Model) LFM decomposes the user-service QoS matrix into a
low-dimensional reduction to learn latent features of users and services and then predicts
results based on the learned latent features [9].

SN-MF (Service Neighbors-based MF). SN-MF proposes three service-neighborhood
enhanced prediction models for selecting neighbors of each service with the integration
of latent features of service neighbors into the basic matrix factorization model [42].

3 All parameters in the widely-used models are set to the same values as in the original papers.
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LE-MF (Linear-Ensemble MF). LE-MF integrates context information of users and
services respectively and trusts mechanism into traditional matrix factorization model to
predict QoS values [39].

LR-MF (Location and Reputation-aware MF).LR-MF combines both the user’s rep-
utation and location information into the matrix factorization (MF) model to predict the
missing QoS values [12].

NIMF (Neighborhood-Integrated Matrix Factorization). This method was the first
one that integrates neighborhood-based information of users into the MF-based model to
achieve higher quality predictions. It computes the PCCs to identify N(u) [50].

NAMF. This method also integrates users’ neighborhood information to make quality
predictions. Unlike NIMF, it identifies N(u) based on their geographical locations and the
network map used to measure the network distance between users [32].

CSMF CSMF is a general context-sensitive matrix factorization method to make col-
laborative QoS predictions. By considering the complexity of service invocations, CSMF
proposes to model user-to-service and environment-to-environment interactions simulta-
neously and fully exploit implicit and explicit contextual factors in QoS data [37].

JCM (Joint CNN-MF) is a new matrix factorization (MF) model which integrates a
convolutional neural network (CNN). JCM is capable of learning deep latent features of
a user or a service neighbor. JCM incorporates a novel similarity computation method to
improve the accuracy of neighbor selection in edge computing environments.[43].

Table 6. Prediction accuracy comparison with different prediction methods in low data
densities (A smaller value means a better performance)

Model
Training set density —— response time dataset

d = 5% d = 10% d = 15% d = 20%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UserMean 0.871 1.858 0.873 1.856 0.873 1.856 0.879 1.853
ItemMean 0.742 1.577 0.728 1.548 0.711 1.530 0.700 1.530
UPCC 0.955 2.126 0.782 1.856 0.671 1.726 0.597 1.717
IPCC 1. 102 2.258 0.878 1.989 0.784 1.862 0.722 1.794
UIPCC 0.847 1.920 0.729 1.730 0.612 1.590 0.552 1.587
CMF 0.611 1.414 0.516 1.356 0.491 1.216 0.459 1.198
NMF 0.618 1.574 0.604 1.549 0.599 1.534 0.598 1.533
PMF 0.567 1.473 0.499 1.286 0.472 1.216 0.449 1.182
NIMF 0.551 1.407 0.485 1.274 0.453 1.198 0.435 1.167
NAMF 0.538 1.385 0.485 1.259 0.452 1.207 0.435 1.144
CNMF 0.528 1.305 0.471 1.237 0.431 1.136 0.413 1.116
CAP / / 0.360 0.643 / / 0.352 0.664
WSRec 0.679 1.488 0.621 1.426 0.603 1.368 0.602 1.351
LFM 0.578 1.501 0.564 1.320 0.543 1.271 0.535 1.226
SN-MF 0.631 1.396 0.537 1.269 0.500 1.226 0.487 1.207
LE-MF 0.573 1.370 0.513 1.251 0.482 1.204 0.464 1.180
LR-MF 0.551 1.415 0.478 1.257 0.446 1.212 0.434 1.142
JCM 0.513 1.332 0.466 1.250 0.450 1.185 0.436 1.180
Our 0.292 0.399 0.153 0.214 0.120 0.169 0.101 0.142
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Table 7. Prediction accuracy comparison with different prediction methods in high data
densities (A smaller value means a better performance)

Model
Training set density —— response time dataset

d = 30% d = 50% d = 70% d = 90%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UserMean 0.868 1.835 0.877 1.859 0.877 1.866 0.872 1.841
ItemMean 0.682 1.529 0.674 1.504 0.674 1.518 0.680 1.526
UPCC 0.586 1.502 0.607 1.620 0.562 1.473 0.563 1.379
IPCC 0.631 1.472 0.586 1.618 0.543 1.470 0.668 1.417
CAP 0.331 0.678 / / 0.228 0.581 0.188 0.582
WSRec 0.480 1.342 0.465 1.271 0.431 1.205 0.416 1.132
LFM 0.476 1.351 0.421 1.250 0.401 1.151 0.384 1.101
JCM 0.429 1.174 0.406 1.148 0.389 1.115 0.378 1.089
Our 0.077 0.108 0.054 0.075 0.043 0.057 0.038 0.054

5.4. Metrics

We evaluated the prediction accuracy of our model compared to other methods using the
following metrics, including standard error metrics such as mean absolute error (MAE)
and root mean square error (RMSE).
Mean Absolute Error (MAE): MAE is a quantity used to measure the prediction ac-
curacy of QoS prediction methods; it indicates the average of the absolute difference
between the predicted QoS value and the real QoS value of the service invoked by a user
over the test records.
MAE is defined as follows.

MAE =

∑
(u,i)εMt

∣∣qu,i − q̂u,i
∣∣∣∣N(Mt)

∣∣ (5)

Root Mean Square Error (RMSE): During the calculation of RMSE, the individual
differences between the predicted values and the corresponding observed values are each
squared and then averaged over the sample. Then the square root of the average is taken
as the final result.
RMSE is defined as follows.

RMSE =

√∑
(u,i)εMt

(qu,i − q̂u,i)2∣∣N(Mt)
∣∣ (6)

Where Mt denotes the test set matrix and N(Mt) is the number of QoS values in the
test set Mt , qu,i and qu,i represent the real QoS value and the predicted QoS value,
respectively. According to the above two definitions, MAE and RMSE both vary in (0,
∞), and a smaller value of them means higher prediction accuracy. They are widely used
in the field of web service prediction.
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5.5. Analyze of Our Results

In the following sections, we conduct a series of experiments to evaluate our model on dif-
ferent training sets with different densities (5%, 10%, 15%, 20%, 30%, 50%, 70%, 90%)
and we investigate how the density key affects the prediction accuracy. The experiments
are conducted on the response time dataset.

Evaluation of the Tables of Comparison From Table 6 and Table 7 and in comparison
with the state-of-the-art and other methods, we can make the following observations:

– Our Auto-NF model achieves the lowest errors for both MAE and RMSE metrics in
all cases of data densities, including low and high data densities. This indicates that
our method can be applied to both sparse and dense datasets;

– Our Auto-NF model performs better prediction accuracy than all other prediction
methods compared;

– Our Auto-NF model can better handle the data sparsity problem.

Impact of matrix density Fig. 3 shows the influence of density on prediction accuracy
using MAE and RMSE errors. This figure shows that as the data density increases, both
MAE and RMSE values decrease rapidly at first. However, they are still the same after
the density increases. Therefore, our model produces the lowest prediction errors and has
the best results in high density. The reason is that the more the data is trained, the better
the quality of learning deep features becomes.

Fig. 3. The MAE and RMSE variation under different densities

Data validation To check if our model is sensitive to the overfitting problem, we needed
to follow the evolution of the training and validation graphs based on MAE and RMSE
metrics in the learning step and then compared their changes over time.
From Fig. 4 and Fig. 5, we can see that the gap between MAE and RMSE in the training
and validation graphs is small, and when we attend a high density, the two graphs coincide,
which means that our model is not overfitted.
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Fig. 4. The evolution of training and validation data based on MAE and RMSE errors in
matrix 0

Fig. 5. The evolution of training and validation data based on MAE and RMSE errors in
matrix 2
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Prediction After the training step, first, we took the test set data from both the small-
est and largest sub-matrices from our set of neighbor matrices as missing values and
predicted their values with our autoencoder model. Then, we compared original and pre-
dicted values to show the difference between them and then evaluated the performance of
our model.

For more explanation, we used MAE and RMSE measures to evaluate the predicted
values compared to the real ones (test set values) and stored the difference between them
as (MAE, RMSE) prediction error, as shown in Table 8 below.

Table 8. MAE and RMSE errors between some random real and predicted values for the
evaluated model

Real value 7.489 1.519 2.570 3.768 1.389
Predicted value 6.991 1.433 2.255 3.570 1.024
MAE prediction error 0.26780975
RMSE prediction error 0.3974242
Real value 0 0.002 6.407 0 0.533
Predicted value 0.0009 -0.072 6.457 -0.037 0.548
MAE prediction error 0.04516501
RMSE prediction error 0.05946906

From Table 8, it can be seen that the predicted values are almost the same as the real
ones in both sub-matrices (first, second, fifth, and sixth rows). There are small values
for MAE and RMSE errors, especially when the actual and predicted values are close to
zero (third, fourth, seventh, and eighth rows). This assures the performance and the high
accuracy of our proposed model.

Real value is represented as:

realvalue =

∫
(predicted value) + (Error term predicton) (7)

Where
∫

is the activation function, the error term is MAE or RMSE used in this work.

Example MovieLens dataset 4: is one of the well-known movie datasets that has been
used for the evaluation of recommender systems. The numbers of users and movies in
the Movielens dataset are 69878 and 10677, respectively. In this dataset, the users have
provided ratings on a 5-star scale. Hence, based on the number of users and movies, this
dataset includes 100, 000, 54 anonymous ratings.
For this example, we have selected 500 users and 5896 movies from the dataset Movie-
lens.
We proceeded in the same way as for the WS-Dream dataset. We have got two clusters
for neighbors for both (users and services). Each cluster is represented by a small matrix.
Finally, we have obtained two sub-matrix of neighbors features.
Matrix 0: with a size of 9 users in the rows and 3069 movies in the cols.

4 http://www.movieLens.org
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Matrix 1:with a size of 495 users in the rows and 615 movies in the cols.
First, we replaced the missing QoS values in the sub-matrices once with zero and once
with the average values. Then, we calculated the error values predicted for both sub-
matrices at the highest and lowest densities. Finally, we compared between zero and av-
erage values, as shown in Table 9 follow:

Table 9. Comparison between zero and average QoS value based on RMSE and MAE
errors (MovieLens dataset)

Training set density —— MovieLens dataset
zero average

10% 90% 10% 90%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Matrix 0 Prediction 0.0101 0.0154 0.0059 0.0078 0.0456 0.0640 0.0099 0.0142
Matrix 1 Prediction 0.4748 0.7549 0.3564 0.6092 0.2456 0.3917 0.2006 0.3472
average Prediction 0.2424 0.3851 0.1811 0.3085 0.1456 0.2278 0.1052 0.1807

From Table 9 we can see that average gives the small error of the predicted values.
So, the results are better when we replace the missing values with average than when we
replace them with the zero values.

To make a new evaluation of our model, we compared the results of its last experi-
ments on the movielens dataset with the previous ones on the WSDREAM dataset. The
results are shown in Table 10 and Table 11.

Table 10. Prediction accuracy of our method compared between WSDREAM and Movie-
Lens at low data density (A smaller value means a better performance)

Model
Training set density —— WSDREAM Vs MovieLens datasets

d = 5% d = 10% d = 15% d = 20%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Auto-NF WSDREAM 0.292 0.399 0.153 0.214 0.120 0.169 0.101 0.142
Auto-NF MovieLens 0.153 0.236 0.144 0.227 0.140 0.222 0.137 0.218

Table 11. Prediction accuracy of our method compared between WSDREAM and Movie-
Lens at high data densities (A smaller value means a better performance)

Model
Training set density —— WSDREAM Vs MovieLens dataset
d = 30% d = 50% d = 70% d = 90%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Auto-NF WSDREAM 0.077 0.108 0.054 0.075 0.043 0.057 0.038 0.054
Auto-NF MovieLens 0.125 0.203 0.116 0.191 0.108 0.181 0.107 0.183
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Table 10 and Table 11 show that our model evaluated with movielens gives good
results. However, most values of the WSDREAM dataset are better than that of movie-
lens (the errors values for both MAE and RMSE in WSDREAM are smaller than those
in the movielens). As a result, movieLens provides lower prediction accuracy than the
WSDREAM of our model, although it performs well.

6. Discussion

Our principal goal is to select optimum services and recommend them to users based on
their Quality of Service, which is the most important criterion considered in recommend-
ing services. However, due to the large number of available services on the internet, it is
really hard for a user to invoke all candidate services to acquire their QoS values and then
make a final decision about the optimal one. Thus, predicting the QoS values of services
is an indispensable task to finish service selection and recommendation.
In summary, in this study, we have proposed a model to predict the missing QoS values
of services using WSDREAM, the most important dataset in the domain of web services.
The experimental results in section. 5 confirm that our method has improved prediction
accuracy and reduced susceptibility to overfitting.
Using the WSDREAM dataset of web services allowed us to train our predictor model
correctly and with a good performance. However, using a different dataset could lead to
lower accuracy. To verify that, we have tried our model with MovieLens, the well-known
dataset in the field of movie recommendation see ”Example” in the previous section. 5.5

Table 12 aims to present the difference between our work and the works proposed in
the papers of Yin et al. (2019) [43] and Smahi et al. (2018) [29].
From the experimental results section. 5 and Table 12, we derive the following findings:

Users in the same country may not be neighbors. They may not call the same services,
or they may have different QoS values for the same services. As shown in the Table 13
below:

From Table 13, we can observe that the QoS value (the response time) of u1 invoking
s1 is very close to u29, even though they are not in the same country. Similarly, u0 and u2
from different countries intend to select the same service s5.
Since service s0 and service s1 are in the same network, their QoS values largely depend
on the network distance among users and services.

6.1. Advantages of our model

– Has a simple structure (autoencoder with input-output and one hidden layer);
– Capable of reading deeply hidden features;
– Handle the data sparsity problem;
– Less sensitive to the overfitting problem;
– Achieves the lowest errors for both MAE and RMSE in all cases of data densities,

including low and high data densities;
– Outperforms all previous methods in comparison (see tables 6 and 7);
– Performed better prediction accuracy;
– Our model has succeeded in minimizing the discrepancy between input and output

data (see Table 8).
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Table 12. Comparison between our work and the works presented in the papers of: Yin et
al. (2019) [43] and Smahi et al. (2018) [29]

Our work Yin et al. (2019) [43] Smahi et al. (2018) [29]

Similarity
computation

We propose a simple
new concept, i.e., λu,v

based on the common
services invoked by
both users.
λu,v is integrated into
Euclidean distance
to compute the similarity
between two users.

Yin, Y et al propose two
new concepts, i.e., IIFU
(inverse invocation
frequency of users)
and IIFS (inverse
invocation frequency
of services).
IIFU and IIFS are
integrated into Euclidean
distance to compute the
similarity between two
users or two services.

/

Neighbors
selection
based
clustering

We divide the input
dataset into a series of
clusters to reduce the data
sparsity based on the QoS
values. Each cluster is
represented with a reduced
matrix that has
fewer columns and rows
concerning the initial dataset.

/

Smahi, M.I. et al divide
the input dataset into
a series of clusters
to reduce the data
sparsity based on
the country ID or
the provider ID.
Each cluster is
represented with
a reduced matrix
that has fewer
columns and rows
concerning the
initial dataset.

Data
density
values

5%, 10%, 15%,
20%, 30%, 50%,
70%, 90%

5%, 10%, 15%,
20%, 30%, 50%,
70%, 90%

80%

Over-fitting

In the learning step,
we try with
different sizes
of hidden layer.
Finally we find
it 2048 neurons.

/

In the learning step,
Smahi, et al
perform a cross-validation
to infer the best
hidden layer size.
Finally, they find
it 120 neurons.

MAE and
RMSE errors

Our model achieves
the lowest errors
for both MAE and RMSE
in all cases of
data densities,
including low
and high data
densities.
See tables 6 and
7 ”our” model.

See tables 6
and 7 ”JCM” model.

For 80% density
and 120 neurons:
MAE: 0.681 RMSE:1.369
See original paper.

Dataset
WS-DREAM
Movielens ml10M

WS-DREAM WS-DREAM

Technique Autoencoder CNN + MF Autoencoder
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Table 13. A capture from the real-world service invocation scenario rtdata from wsdream
dataset

S0
United
State

S1
United
State

S5
United
State

S14
Argentina

S50
Australia

U0 United State 4.18 0.416 20.0 1.469 nan
U1 United State 1.166 0.335 20.0 0.653 0.771
U2 Japan 5.975 0.251 20.0 0.581 0.823
U29 United Kingdom 1.997 0.324 20.0 0.646 0.888
U30 Canada 1.638 2.408 20.0 10.755 4.132

6.2. Point limits of our model

– Using a different type of dataset like MovieLens could lead to lower accuracy.

7. Conclusion and Future Work

Due to the increasing number of services on the internet, it becomes harder to find the
right ones. Furthermore, it is impracticable to check all services for their quality values
since this consumes many resources. Therefore, users invoke a quite limited number of
services, resulting in a sparse amount of data. Thus, a QoS prediction method is very im-
portant to find the most appropriate service among many functionally similar ones. In this
work, we propose an effective model for predicting missing QoS values of services. We
use historical QoS records for this purpose. Here we split the original dataset into par-
tial matrices to eliminate sparsity and learn deep latent features to reduce the overfitting
problem. Experimental results on a public dataset demonstrated that our model achieved
the best results compared to the traditional and counterpart methods, both in low and high
data densities. In contrast to other deep learning-based recommendation methods, that
can achieve better results only in high data density. In the future, we plan to elaborate on
another based-deep learning model, such as a convolutional neural network. Also, we will
continue to improve our model.
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