
Computer Science and Information Systems 19(2):679–707 https://doi.org/10.2298/CSIS210512059P

PE-DCA: Penalty Elimination Based Data Center

Allocation Technique Using Guided Local Search for

IaaS Cloud

Sasmita Parida
1,2

, Bibudhendu Pati
1
, Suvendu Chandan Nayak

2
, Chhabi Rani

Panigrahi
1
, and Tien-Hsiung Weng

3

1 Department of Computer Science,

 Rama Devi Women's University, India

sasmitamohanty5@gmail.com

patibibudhendu@gmail.com

panigrahichhabi@gmail.com
2 Department of Computer Science and Engineering,

Gandhi Institute for Technological Advancement,

 BPUT, Bhubaneswar, India

suvendu2006@gmail.com
3 Science and Information Engr. (CSIE),

Providence University, Taiwan

thweng@gm.pu.edu

Abstract. In Cloud computing the user requests are passaged to data centers

(DCs) to accommodate resources. It is essential to select the suitable DCs as per

the user requests so that other requests should not be penalized in terms of time

and cost. The searching strategies consider the execution time rather than the

related penalties while searching DCs. In this work, we discuss Penalty

Elimination-based DC Allocation (PE-DCA) using Guided Local Search (GLS)

mechanism to locate suitable DCs with reduced cost, response time, and

processing time. The PE-DCA addresses, computes, and eliminates the penalties

involved in the cost and time through iterative technique using the defined

objective and guide functions. The PE-DCA is implemented using CloudAnalyst

with various configurations of user requests and DCs. We examine the PE-DCA

and the execution after-effects of various costs and time parameters to eliminate

the penalties and observe that the proposed mechanism performs best.

Keywords: Cloud Computing, Data Center, Allocation, Penalty, Meta-heuristic,

Guided Local Search.

1. Introduction

Data centers are located through an assortment of topographical regions in cloud

computing. As per the user request, the cloud offers types of assistance utilizing the pay-

per-use model. Cloud computing offers services through inter-process correspondence

between various server farms[1]. For proficient inter-process correspondence, a center

level is essential among the clients and cloud providers. The middle person is

answerable for simple organization, allotment, and cloud administrations' executives to

680 Sasmita Parida et al.

the cloud clients. Presently, we essentially center around end clients' vicinity, so service

providers guarantee clients' most extreme fulfillment with all availability of assets [2],

[3]. Because of the rapid increase in the number of users in the cloud, administrations'

requests are rapidly expanded. Accordingly, the cloud upgrades data centers'

dependability and accessibility to offer independent services, just as heterogeneous

clients [4]. The best DC selection is to oblige solicitations of a specific client.

Furthermore, adjusting the heaps among the DCs ignoring the expense is also a

monotonous issue [5].

The allocation of on-demand resource allocation initiates a few pre-requisite steps. It

must be followed for better resource allocation, such as request processing, searching for

data centers, allocating on-demand resources, computing, monitoring, and releasing

resources [6]. The request processing phase analyzes the on-demand parameters such as

the number of users, number of cluster nodes, request size, the demand of storage, CPU,

memory, number of processors, type of operating systems, and several others on the

cloud service provider [7], [8] then locating suitable data centers to fulfill the user

requirements with minimum resources where the requests can be executed [9]. The

network latency has much more impact in allocation which can be reduced if multiple

instances will be deployed near by the users [10]. However, the searching mechanisms

consider the basic parameters related to cost, time, Service Level Agreements (SLAs),

and Quality of Service (QoS) [11], [12]. The resource allocation process occurs, keeping

task scheduling and load balancing and initiating the computing process. The monitoring

process keeps track of the computing process and resources; whenever the computing

process is over, the allocated resources get released and ready to further allocation [13].

Among all these processes, the searching of data center processes favourably impact

allocation. Eventually, it is a tedious task during peak hours to refer to the suitable DCs.

Thus, the selection of a suitable DC for the on-demand request is a challenging aspect.

Service broker policy routes the user requests after finding suitable DCs for resource

allocation and keeps load balancing [14], [15].

In the last decades, various meta-heuristic and optimization-based DC allocation

mechanisms have been proposed. These mechanisms target in optimizing cost and time,

managing SLA and QoS by computing optimal DC lists. While computing the optimal

DC list, researchers have focused less on the importance of searching techniques.

Assume is the set of solution (DC list) computed through some techniques for a set of

variables (user request) . Let f(x) computes the optimal solution si for user request RJ.

While considering multiple parameters may not be an optimal solution for RJ. The

optimal solution for RJ could be possible if we compute the penalty associated with the

parameter set P. In cloud computing, if the data center DCi is selected for Rj, then the

penalty for users' set for the parameters needs to be computed.

Motivation and Contribution. The DC allocation techniques need the discussion of

search techniques. Local Search (LS) can be considered as the right solution with less

time. However, out of all neighbors present in the search space, LS can be trapped as

local optima- position. Over the year, different approaches are suggested for the

improvement of the LS effectiveness. Simulated Annealing (SA), Tabu Search (TS), and

Guided Local Search (GLS) are providing the supports to improve LS rather than the

local optimum. The GLS technique is a meta-heuristic and a global optimization

algorithm that utilizes an embedded LS algorithm. It is an expansion to the LS

 PE-DCA: Penalty Elimination Based Data Center... 681

algorithm, and for example, Hill Climbing is comparable in the system to the Tabu

Search calculation and the Iterated Local Search calculation.

GLS is a penalty based meta-heuristic searching mechanism to solve issues related to

local minima due to augmented objective function. GLS is used to deal with

combinatorial optimization problems by improving efficacy of local search process. It

calculates utility for each penalized feature. The basic aim is to assign penalties to all

those features in the search space having high cost function values with maximum

utility. While searching the suitable DC for allocation, the local search does not consider

the penalty and utility. The local search techniques compute the searching with the

constraints. The DC selection requires multiple parameters to select the suitable one. In

case of random DC allocation, the penalty may be more with less utility. So the work

suggests implementing GLS technique in the DC allocation mechanism.

In this work, we propose a new DC allocation technique named as PE-DCA, using the

meta-heuristic search technique GLS. The PE-DCA mechanism allocates suitable DCs

for the on-demand user requests by evaluating the penalty associated with time and cost

metrics. The total cost of the VM is minimized, and the response time and processing

time are reduced. The contributions of this work are mentioned as follows.

 Propose a novel meta-heuristic DC allocation mechanism for on-demand

resources.

 Address the penalty associated with searching for a suitable DC.

 Formulate and discuss the proposed GLS based DC allocation technique (PE-

DCA)

 Study the performance of the proposed mechanism through the java-based

simulation tool called CloudAnalyst.

 Compare the performance parameters such as total cost, response, and

processing time with the existing techniques.

The remainder of this work is organized as follows. Section 2 discusses the

formulation of the problem statement and discusses the importance of the searching

technique in allocation, while the background of the GLS technique is highlighted in

Section 3. The detailed presentation of the proposed PE-DCA mechanism model and

algorithm is discussed in Section 4. The simulation and the performance results are

discussed in Section 5 to present the importance of PE-DCA in allocation. Section 6

presents the performance comparison results with the existing mechanisms for allocation

in clouds. The related work for resource allocations are presented in Section 7, and

finally Section 8 summarizes the contribution of the proposed work and the future

directions.

2. Problem Statement Formulation

This section asserts DC allocation for on-demand resources for which the work is

proposed. The importance of searching techniques and their improvement is addressed

to select suitable DC. It also presents how the searching approaches can be improved to

find globally optimal solutions from the local optimal solutions. The Table.1 presents

the symbols and notations with descriptions used in this proposed work.

682 Sasmita Parida et al.

Table 1. Symbols and Notations

Symbols Explanation

DC Data center

PU Physical machine Unit

VM Virtual machine

R Region

Ti Time

C Network constant

DTcost Data transfer cost

VMtotal Total VM cost

VMcost VM cost

STcost Storage cost

Mcost Memory cost

α Regularization parameter

NDTime Network delay

ResTime Response time

Reqin_time Request initiated time

DR Data size per request in bytes

BWavaliable Available bandwidth

Ndl Network latency due to delay

η Data center request size

d Delay parameter

Protime Processing time

RVMcapacity Request VM capacity

DCload Load of DC

DCcapacity Capacity of DC

Cloud infrastructure is made up of various DCs, and all DCs are integrated with

varying configurations and geographical locations are shown in Figure 1. These

configuration parameters need to be considered in DC allocation. Let

 be the set of regions, be the set of DCs

and , where . Each DCi consists of a set of physical machine units

(PU): and PUi represents with a set of VMs:

. A set of objective function can be

enhanced. In general, time and cost parameters have an essential role in the resource

allocation mechanism. A data center matrix DCi can be computed with time and cost

given in Eqn. (1).

 (1)

The regions are separated geographically, so the DCi(Ti, Ci) can vary due to the

parameter α, where α stands for data transfer cost and network constant C and is given

as in Eqn. (2).

 PE-DCA: Penalty Elimination Based Data Center... 683

Fig. 1. Cross-cutting of Data Center Allocation

Consider the set of user requests . The on-demand resource of

user Ui can be available in multiple data centers in various locations. The challenge is to

select the best data center for Ui. All the optimal data centers are not the global optimal

data center for Ui due to penalty and utility. The penalty and utility are reciprocal to

each other and are influenced by α and C for a data center. It is essential to search the

global optimal data center from the local optimal data center list and is shown as in

Figure 2.

Solution Region:

List of possible DC in region Ri

Global Optimal SolutionLocal Optimal Solution
Ri(DCi)

Ri(DCj)

O
bj

ec
tiv

e f
un

ct
io

n

Fig. 2. Optimal Solution Approach

At this point, we have to follow combinatorial optimization as defined by a pair

(D,c), where

D = the set of feasible solutions.

684 Sasmita Parida et al.

c = objective function, which maps each member with D.

The objective is to find a solution d in D that minimizes the objective function c and

is formulated as:

Now, we define a neighborhood N for the pair (D,c) that is covers D and is given by

Consider N(d) as the neighborhood of d, and it has all possible solutions which are

reachable from d with a single move. Here, the movie is an operator that transforms one

form of solution to another with some modification.

Let m be the solution called as a local minimum with respect to N(d) if and only if

In the process of local searching primarily, we are minimizing the cost function f

iteratively in various steps, and the current solution m being replaced by a solution y

such that

y=c

3. Guided Local Search (GLS)

This section presents the meta-heuristic-based GLS technique. It discusses the derived

cost function for GLS in DC allocation, and the penalty function is formulated to find

the different penalties associated with various allocation parameters.

To apply GLS, solution features must be characterized for the given problem. The

solution features are characterized to recognize arrangements with various qualities, so

areas of comparability around local optima can be perceived. The arrangement

highlights' decision relies upon objective function and a limited degree on the local

search algorithm[16]. The main idea to design the GLS algorithm system is to utilize

punishments to empower a local search method to get away from local optima and find

the global optima [17]. A local search algorithm is executed until it stalls out in local

optima. The local optima highlights are assessed and punished, the consequences of

which are utilized in an enlarged cost function utilized by the local search methodology.

The local search is rehashed on various occasions utilizing the last local optima found

and the enlarged cost function that guides investigation away from arrangements with

highlights present in found local optima [18].

GLS is a meta-heuristic search technique[16] that sits on top of the local search

technique to change its computation. It is an intelligent searching technique for a

combinatorial optimization problem. The main idea states that the technique does

iterative use of local search, gathers information from various sources and guides the

local search towards a promising and suitable search space. It provides reasonable

approximated solutions from local solution space due to its iterative searching

mechanism. GLS follows a penalty-based mechanism that leads the local search

technique through the guide function, which considers a feature where the cost and

penalty are associated. The objective function f(.) defines the cost over the feature i.

GLS develops punishments during a search. It utilizes penalties to assist the local search

algorithm by looking through local minimal and plateaus. When the given local search

 PE-DCA: Penalty Elimination Based Data Center... 685

algorithm settles in a local optimum, GLS changes the objective function by utilizing a

particular plan [19].

At that point, the local search utilizes an expanded objective function intended to

bring the search out of the local optimum. The key idea is to change the objective

function. GLS has been applied to a non-insignificant number of issues and found to be

productive and viable. It is generally easy to execute and apply, with scarcely any

parameters to tune. Assume the objective function f(.) and the guide function g(.) is

treated as augmented objective function with the feature i and the corresponding penalty

pi in the solution space s. In each iteration g(.) contributes as a guide function and

adjusts the increasing the penalties for the feature i from s and its utility can be

evaluated. The feature i with the highest utility value is computed from s.

The greedy approach is followed in local searching techniques where we start with

random solution space and stop with local minima. Here, instead of searching the whole

solution space, we consider approximated solutions space using the iterative approach to

compute the optimal solution.

In GLS, the general local search is given by the form as in Eqn. (6).

where, d2 is the local minimum and d1 is the initial solution, and c is the objective cost

function.

GLS defines solution feature as an augmented function, here we consider cost

function as it and put the non-trivial solution element in the solution feature. Due to this

property, each feature solution depends on the problem and interfaces within a particular

application. The cost may affect directly or indirectly the solution feature.

A feature fi is defined in Eqn. (7) as

The constraints on features are given by augmenting the cost function c to set a

penalty.

Now, we have a new cost function called augmented cost function g(d) and is given

in Eqn. (8).

where n = Number of features defined over solutions.

Pi= Penalty parameter for fi

 δ = Regularization parameter

Here, δ relates to the solution cost and has an impact on the search process and

defined as in Eqn. (9).

A penalty vector is given over the defined solutions throughout the search process.

During each iteration, the local search finds a local minimum over the possible set of

solutions and let the penalty vector is given by

686 Sasmita Parida et al.

4. Proposed DC Allocation Mechanism (PE-DCA)

The detailed design and working mechanism of the proposed PE-DCA are described in

this section. Various formulated functions followed by the diagrammatical

representation of the proposed PE-DCA is also presented.

4.1. System Model

In this work, we propose a data center allocation mechanism named as PE-DCA using a

meta-heuristic GLS technique. The local search does not consider the penalty for on-

demand resources and multiple feasible data centers are also possible in different

regions. The PE-DCA considers the penalty associated with feasible data centers. We

derive the cost function C() and time function T() to consider different associated

parameters. The total VM cost (VMtotal) can be computed by VM cost (VMcost) and data

transfer cost (DTcost) and is given as in Eqn. (10).

where, VMcost is calculated as the sum of the cost per VM (VMPcost), memory cost

(Mcost), and the storage cost (STcost) and is given as in Eqn. (11).

where x defines the number of required memory units for MB main memory and y

signifies the required storage units to X-MB [20][21]. These values are defined by the

service provider during DC configuration using different pricing models [22]. DTcost is

derived by utilizing Eqn. (12) from available bandwidth (BWavaliable), Data Size Request

in bytes (DR), and the number of PU as:

The VMcost is fixed in the feasible solution space, though the DTcost is varied from the

data center to the data center. So, VMtotal also has impact in searching for the optimal

global solution. We also compute the response time utilizing the Eqn. (13) and consider

its importance in searching for the optimal solution.

where ResTime= Response time, c1= Time required to take decision for allocation,

ti=tentative start time of allocation, Reqin_time=Request initiated time, NDTime = network

delay and c2 = Time required for configuration checking. The proposed architecture is

shown as in Figure 3.

The PE-DCA finds the optimal data center for the on-demand request. If the searched

data center is overloaded, then PE-DCA refers to the next optimum data center within

the same region. In a region when all the data centers are allocated, then PE-DCA

searches the next closest region.

 PE-DCA: Penalty Elimination Based Data Center... 687

Fig. 3. Proposed PE-DCA Architecture

The proposed mechanism considers the network latency due to delay (Ndl) along with

cost and time to search a suitable data center. We can compute Ndl as the time delay for

a request from its initiation to retrieve a processing response. The latency directly

depends on the BWavaliable and the delay parameter (d) and cooperatively impacts the

response time, though discursively increase the overall cost for the VM.

where = Data center request size and = Processing time.

The bandwidth alludes to the amount of data that can be conveyed inside the network

from users to various DCs farms at a time instance. Likewise, it fundamentally

influences the required response time of the request. Besides, the response time and all-

out expense of the cloud environment proportionately influence the response time.

Appropriately, the data centers farm can deal with more demands within a time unit

when the processing time reduces, i.e., roughly with an improved response time. Thus,

the cloud framework's final cost decreases with processing time, resulting in refined

overall performance.

688 Sasmita Parida et al.

4.2. Penalty Elimination and Allocation Technique

The proposed PE-DCA allocates the on-demand resources on the computed values of

cost and time and is defined in Eqn. (10) and (13). The network latency as defined in

Eqn. (14) is countered with cost and time in the suitable data center's searching

mechanism. The various computational steps of PE-DCA are highlighted in Figure 4.

The basic principle of GLS is analyzing constraints on solution features. For each

iteration, the local search tends to a local minimum, and the penalty parameter defining

one or more features over different solutions can be incremented by GLS. As the penalty

parameter gradually increases for one or more features over a possible solution set the

increment of penalty signifies that the penalized feature must be avoided by local search.

Thus, high-cost features have more penalties in comparison to low-cost features.

Fig. 4. Proposed PE-DCA Model and Design Steps

We assume that all the penalty values for all feature is set to 0 initially. Let each

feature fi is assigned to a total cost Ci and is represented by a vector as given in Eqn.

(15).

If the feature fi is found as a local minimum solution then

 PE-DCA: Penalty Elimination Based Data Center... 689

 as per Eqn. (7).

Let a vector L considered as indicator function values which keep local minimum

and is represented as in Eqn. (16).

There is a utility function related to each data center's possible solutions. In local

minimum , the penalty values are increased by one if the utility function is

maximized for each feature fi.

The DC with minimum utility is selected before being assigned in a local minimum.

Thus the utility function uses Vector L(D*) and cost vector C. We introduced DC utility

associated with each instance specified in Eqn.(17) to avoid the penalty incorporated to

be of high cost. The PE-DCA evaluates the during allocation. It is calculated using Eqn.

(18).

Request VM capacity (RVMcapacity):

where Ps= processing speed of the processor in MIPS and N=Number of processors.

VM Taskload (VMload): The VMload states the workload of each VM with service rate

at a time t. So the VMload for i
th

VM at time t is calculated by using Eqn. (19).

where k=1,2, …, n, TLi = Task Length in Million Instructions (MI) and X(VMi,t) =

service rate of VMi at time t.

Datacenter load (DCload): It represents the number of the task of i
th

VM in a request

for a data center and is computed by using Eqn. (20).

where p = number of tasks associated with the request.

Datacenter capacity (DCcapacity): The DC capacity represents the sum of VM capacity

and is calculated by using Eqn. (21).

Expected processing time (EPT): It is the time counted before allocation to complete

the task with the on-demand request in the data center. EPT is defined as a total load of

a data center and the total capacity and is given as in Eqn. (22).

Algorithm1:DC_Guided_Local_Search(P,g(d),α,[],

690 Sasmita Parida et al.

[],n)

Inputs: dcList=[1,2,…,n]

Output: D*

1 Begin

2 k←0

3 D0←InitialAllocation(P)

4 Set all penalties cost to 0

5 for i←1 to n

6 Pi 0

7

8 While stoppingCriteria==false

9 do

10 Dk+1←DClocalSearch(Dk,g)

11 for←1to n do

12

13 for each i such that is maximum do

14 Pi←Pi+1

15 End for

16 k← k+1

17 End for

18 End while

19 dcName=D*← best solution with the minimum of DCtotal and ResTime

20 Return D*

21 End for

The proposed mechanism PE-DCA implements two procedures

DC_Guided_Local_Search() and Select_DC(). The DC_Guided_Local_Search()

empowered with the meta-heuristic search mechanism GLS. The design approach

follows the InitialAllocation() to construct the initial solution for D over problem

P. The DClocalSearch(Dk,g) searches local minimum and improves the solution

with Dk and compute the utility till the stoppingCriteria fails. By eliminating the

penalty, the best solution is selected based on the objective function for DCtotal

and ResTime as defined in Eqn. (10) and (13). The procedure Select_DC()

emphasizes in selecting the data center with minimum penalty. It computes the

cost and time using the defined objective functions for each user request to

penalty while allocating the data center. The minimum penalty of cost and time

defined in step 7 is the selected data center's parameters. For allocating the

computing data center, we compute and as defined in Eqn. (20)

and (21) to know whether the computed data center is a suitable one or not; if

suitable, the dcName is tracked with the index for allocating the user's resources.

 PE-DCA: Penalty Elimination Based Data Center... 691

Algorithm 2:Select_DC()

Inputs: dcList=[1,2,…,n], regionList=[1,2,…,m], where m<n

Output: dcName[]

1 Begin

2 For the selected region get data center index regionList

3 Get regionalDatacenterIndex.get(region)

4 Keep region list for selected data center

5 if regionList is not NULL then

listSize_size(regionList)

6

if listSize_size is 1 then

dcName_regionList.get(0)

else

7

for i=1 to n

Compute and for each DC

Create the list p for DC with

End for

8

for all p

Compute and

 if (<

get DC index and prepare dcName[]

dcName[index]=dcName_regionList.get(p)

End if

End for

10 End if else

11 End if

12 Return dcName[]

13 End

692 Sasmita Parida et al.

5. Simulation and Results

This section presents the proposed PE-DCA outcomes, briefing the required simulation

tool, setup, and configuration, and evaluating different parameters such as cost, response

time, and processing time obtained through simulation and analyzes the performance.

CloudAnalyst [20] is an open-source Java-based cloud tool issued to study the proposed

PE-DCA behavior to support a built-in environment.

5.1. Simulation Environment

The standard parameters of CloudAnalyst were customized to examine the results of PE-

DCA. CloudAnalyst defines six geographical regions indexed as (R0, R1,…, R5) to locate

DCs in its simulation environment. We consider various network delays in milliseconds

among the simulation regions and is given as in Table.2. We assume a minimum

network delay of 25 milliseconds in a similar region and vary to a maximum of 500

milliseconds for other regions during our simulation. We consider various bandwidths

ranging from 800 to 2500 Mbps for data transmission among the regions and are given

in Table.3 in our simulation study. PE-DCA is examined for a different set of user

requests and DCs and is presented in Table.4.

Table 2. Network delay in regions (ms)

Region R0 R1 R2 R3 R4 R5

R0 25 100 150 250 250 100

R1 100 25 250 500 350 200

R2 150 250 25 150 150 200

R3 250 500 150 25 500 500

R4 250 350 150 500 25 500

R5 100 200 200 500 500 25

Table 3. Bandwidth in regions (Mbps)

Region R0 R1 R2 R3 R4 R5

R0 2000 1000 1000 1000 1000 1000

R1 1000 800 1000 1000 1000 1000

R2 1000 1000 2500 1000 1000 1000

R3 1000 1000 1000 1500 1000 1000

R4 1000 1000 1000 1000 500 1000

R5 1000 1000 1000 1000 1000 2000

Table 4. Experimental User and Data Center Set

User

Set

No of

Users

No of DCs

1 100 28

2 150 43

3 200 55

4 250 68

5 300 80

 PE-DCA: Penalty Elimination Based Data Center... 693

The network bandwidth and transmission delay for the considered experiments and

scenarios were kept constant during the simulation. The proposed simulation model is

shown in Figure 5 and the user requests are generated using the user base interface of

CloudAnalyst. Similarly, the data center configuration interface of CloudAnalyst is used

to configure the data centers. Here, we created two new classes under the package of

cloudsim.ext for implementing PE-DCA, and those classes along with the package are

imported to the package cloudsim.ext.gui. Finally, all the classes are executed from the

caller's primary method GuiMain.java class. The Java-based application is developed to

implement the computed functions and is shown in Figure 5.

Fig 5. Implementation Model of PE-DCA for Simulation

Here, we consider cost and time to prepare the user list and derive total VM cost in

Eqn. 10 and response time in Eqn. 13. The user list is computed with minimum total VM

cost and response time. Similarly, we prepare the DC list considering the compute cost

and response time. As we earlier discussed GLS work on the top of the local search

technique in incremental way. We implement the cost and the response time function as

the augmented function for incremental growth of the searching technique. The java-

based function is developed which consider the 1
st
 user request from the user list and

estimate the cost to the corresponding DC list. This process goes incrementally and

computes the penalty and utility corresponding to the DCs. The similar process is

repeated for the response time augmented function. The application keeps all the records

of the penalties and utilities of each user request with respect to the DCs. Here, we

consider DCload and DCcapacity as the searching constraints. If DCload is less than DCcapacity

then the proposed system selects the minimum penalty and returns the DC index for

allocation.

694 Sasmita Parida et al.

6. Performance Evaluation

The study of PE-DCA is performed by considering diverse userbase (user request) and

data center configuration specifications. The performance was obtained for a variable

number of user requests, with a maximum of up to 300 in different scenarios. The

number of user requests per hour varies from 60-90, the request size is set to 1-500 KB,

and the average off-peak user is 50 and 100. The data center is configured as x86

architecture, Linux OS, Xen VMM with variable physical H/W units (1-4) with four

numbers of processors, each having 10,000 MIPS. We consider different standard costs

for the data center: the cost per VM per Hr as 0.1$, memory cost as 0.05$, and data

transfer cost per GB as 0.1$. The performance is studied by considering a number of

data centers vary between 28-80, which is less than 30% of the number of user requests

in different scenarios.

The performance of PE-DCA is also studied under different scenarios to determine

suitable data centers for a user request. We implement the derived function (Eqn.(10))

for VMtotal and Resume for each user request (Eqn. (13)) in the set. The DCutil function as

in Eqn.(17) is computed to examine the utilization for each data center before allocation.

Implementing DCutil is to maintain load balancing among the DCs and is used as the

stoppingCriteria in PE-DCA. We compute the response time penalty in millisecond and

cost penalty in dollar ($). However, from the obtained results it was found that the

penalty in allocation increases the response time, and the penalty in cost improves the

total VM cost. So, as the penalty is reduced for time and cost, the response time and

total VM cost are reduced, and better data center allocation is achieved.

PE-DCA evaluates the deviation in the cost for each user request for the DCs. On the

other hand, we had also evaluated the response time deviation for each user request and

the selected DCs. The penalties may vary for each set of the user request and the DC.

So, we evaluated the penalty of cost and response time in average and is noted in

Table.5 for users set. Figure 6 depicts the response time penalty associated with a

different set of user requests. It signifies that the deviations in cost and time for each

user request need to be eliminated. Note that the increase in deviation may increase the

total cost and response time. The minimum and maximum response time penalty of 0.02

ms and 0.8 ms were observed during the simulation. It was noticed that the average

penalties varies between 0.6025 ms to 1.0575 ms during the experimentation. The cost

($) penalty associated to user requests in different user sets is shown in Figure 7, where

the minimum and maximum cost penalties are 0.02$ and 0.28$ and the simulation

studies consider the average cost penalties within the range 0.1231$ to 0.1394$ which

are responsible for increasing the total VM cost and need to be eliminated.

Table 5. The Cost and Response Time Penalty

User

Set

Average P(c) in

$

Average P(t) in ms

1 0.1231 0.6025

2 0.1338 0.8583

3 0.1352 0.8709

4 0.1371 0.9732

5 0.1394 1.0575

 PE-DCA: Penalty Elimination Based Data Center... 695

Fig. 6. Computed Response Time Penalty (ms) to User Request in Different User Set

Fig. 7. Cost Penalty ($) associated to User Request in Different User Set

7. Results and Discussion

This section presents simulation results along with the analysis of results. The simulation

results of the total cost, response time, and data center processing are discussed for

various users. The advantages of the PE-DCA for data center allocation are also

highlighted.

7.1. Overall Response Time

The response time computed during the simulation addresses the time required to

allocate the data center. It can vary from data center to data center for various bandwidth

and network delays. The computation of response time was computed with regard to

bandwidth and network delays are given in Table.2 and 3. The response time penalties

696 Sasmita Parida et al.

occur due to improper allocation, which may be considered as the deviation during

allocation. We derived the function for response time (Eqn.(13)) and computed it by

considering the penalty associated with each user request. The suitable data center was

selected by evaluating the δ defined in Eqn.(9) which examines whether the data center

can accommodate the request or not. To evaluate δ, we implemented Eqn. (19), (20),

and (21) and computed the minimum, maximum, and average response time for all the

user sets are noted in Table.6. It was observed from obtained simulation results that the

proposed PE-DCA mechanism requires a minimum of 46.0875677158 ms and a

maximum of 173.990628155 ms to allocate the data center. The overall response time

for various user request set is monitored and shown in Figure 8.

Fig. 8. Overall Response Time (x-axis: Number of User Request, Y-axis: Response Time (ms))

Table 6. Overall Response Time for Various User Sets

User

Set

Over All Response Time

Minimum Maximum Average

1 46.09 102.25 76.28

2 47.74 126.41 88.85

3 47.08 138.05 92.09

4 47.32 161.83 104.67

5 47.34 173.99 111.52

7.2. Overall Total Cost

The CloudAnalyst simulator supports for evaluating different costs such as VM cost,

data transfer cost, and total cost. The total cost is the sum of VM cost and data transfer

cost. We implemented Eqn. (11) and (12) to evaluate the total VM cost. It can be varied

from request to request due to the Request VM capacity defined in Eqn. (18). We

computed each request VM capacity and the corresponding cost. We computed the

penalty cost associated to user request is shown in Figure 7. In PE-DCA, we observed

that the penalty cost was gradually decreasing to a minimum level and was not changed

 PE-DCA: Penalty Elimination Based Data Center... 697

further as shown in Figure 9. We considered the minimum penalty cost for computing

the overall cost metric: VM cost (VMcost), data transfer cost (DTcost), and total cost

(VMtotal) for all user sets and were recorded in Table.7.

Fig. 9. Penalty Cost Reaching to Minimum Level

Table 7. Overall Cost Metric in $

User Set VMcost DTcost VMtotal

1 71.73 53.57 125.30

2 84.26 71.48 155.74

3 114.44 83.67 198.11

4 141.76 94.67 236.43

5 176.78 108.54 285.32

7.3. Overall Processing Time

During simulation, we computed the overall processing time for all the user sets. The

processing time varies for different types of users due to the on-demand of resources.

For each user request, we computed the EPT as defined in Eqn. (22) and considered

min(EPT) in the implementation to evaluate the overall processing time. As the

proposed work was simulated using the CloudAnalyst tool, we used the in-built

mechanism and examined the overall processing time for our configured data centers

and user requests rather than defining any procedure. The overall processing time for

various user sets is shown in Figure 10, and noted the minimum and maximum time as

3.98 ms and 1371.28 ms in our simulation. The minimum, maximum, and average

computational overall processing time was recorded as given in Table.8.

698 Sasmita Parida et al.

Fig. 10. Overall Processing Time (X-axis: Number of user requests, Y-axis: Processing time

(ms))

Table 8. Overall Processing Time (ms)

User Set Minimum Maximum Average

1 19.98 730.47 371.5

2 3.98 855.17 427.99

3 5.05 926.09 475.38

4 4.48 1162.04 607.31

5 6.03 1371.28 692.79

8. Comparison

In this section, we represent the performance comparison of the proposed PE-DCA with

different prevailing techniques. We compare the in-built broker policies of

CloudAnalyst first, followed by comparing various techniques as proposed researchers

for data center allocation.

8.1. PE-DCA vs Benchmark Broker Policy

We compare the performance parameters such as total VM cost, overall response time,

and overall processing time for various user sets with the benchmark broker policies of

CloudAnalyst. The Closest Data Center [20] broker policy focuses on routing user

requests based upon the nearest data center. It does not consider other computing

parameters for allocation. It allocates the data center by considering the distance among

the data center. CloudAnalyst defines Optimize Response Time [20] broker policy to

optimize the response time of the user request. This policy allocates data centers based

upon minimizing the response time of the request. The comparison of average total cost

in $ is noted in Table.9.

 PE-DCA: Penalty Elimination Based Data Center... 699

Table 9. Comparison of Average Total Cost in $

User Set Closest DC Policy Optimize

Response Time

PE-DCA

1 1.3593 1.2984 1.2530

2 1.1320 1.1471 1.0382

3 1.0332 1.0957 0.9905

4 1.0629 1.1051 0.9457

5 1.0811 1.0444 0.9510

Fig. 11. Comparison of Total VM Cost for User Sets

Fig. 12. Comparison of Average Overall Response Time for User Sets

700 Sasmita Parida et al.

Fig. 13. Comparison of Average Overall Processing Time for User Sets

8.2. PE-DCA vs Existing Approaches

Many researchers have recently used optimization techniques for resource management,

mainly the Particle Swarm Optimization (PSO) impacted more. We compare our

proposed work with the existing PSO-based mechanisms for cost and response time

optimization in resource management for cloud computing. To establish a comparison

with existing mechanisms, we develop new java classes under the package of

cloudsim.ext and import them to the package cloudsim.ext.gui. To compare costs, cost-

aware PSO (CA-PSO) [23], novel PSO (NPSO) [24], and Modified PSO (MPSO)[25]

are considered, where such techniques are executed, and the number of iterations is

similar to the number of user requests in the set. The comparison of total cost between

the above approaches and proposed PE-DCA is shown in Figure 14, and the average

overall response time is depicted in Figure 15. Note that the total VM cost of PE-DCA

and existing NPSO and MPSO are found to be approximately equal as shown in Figure

14, but the average overall response time is found to be more than PE-DCA as noticed

in Figure 15.

 PE-DCA: Penalty Elimination Based Data Center... 701

Fig. 14. Comparison of Total VM Cost with PSO Based Techniques

Fig. 15. Comparison of Average Response Time with PSO Based Techniques

9. Related Work

This section elaborates various related work on DC allocation and meta-heuristic search

techniques for selecting suitable DC in cloud computing. Firstly, we discuss the recently

proposed optimization-based approaches for allocation and then the searching-based

techniques for cloud computing are presented.

For assigning the cloud services, the selection of suitable data center is much

required. For which different allocation mechanisms have been proposed in the

literature. Here, we present only the optimization-based techniques that target to

optimize the allocation parameters such as cost and time. Manasrah et al. [21] designed

a meta-heuristic-based Variable Service Routing Policy (VSBRP) which reduces the

data centers overload and significantly minimized the response time and processing

time. Jessica et al. [26] proposed a Multi-Objective Genetic Algorithm based cloud

brokering policy which reduces the response time and cost. The authors simulated the

real data over Amazon EC2. Manasrah et al. [27] discussed an optimized service broker

routing policy based on a differential evolution algorithm. It aimed to minimize response

702 Sasmita Parida et al.

time, processing time, and overall cost in fog and cloud environments. The authors

implemented the new broker policy using six different scenarios.

Pengcheng et al.[28] considered the scheduling mechanism as a multi-objective

optimization problem and presented the mechanism to optimize the cost and makespan.

It eliminates useless resources to narrow down the search space. A fuzzy-based

approach to minimize the end-user cost is discussed using the Ant Colony Optimization

(ACO) mechanism to allocate the computing and network resources in [29]. Recently,

Zhenxin [30] modified Artificial Bee Colony (ABC) to elite-guided ABC for large

number of particle problems. Mapetu et al.[31] discussed load balancing mechanism

using binary PSO to schedule the task with low-cost and low-time complexity. A cost

optimization-based mechanism is presented for the enterprise cloud to optimize

computing cost, bandwidth cost, and I/O cost for resource allocation [32].

Table 10. Summary of Literature Study

Reference Optimization Based Without

Penalty

 Based

Sear.

Penalty

Based

Sear.
Cost Response

 Time

Processing

Time

Makespan Other

Manasrah et al.[21] × √ √ × × × ×
Jessica et al.[26] √ √ × × × × ×
Manasrah et al.[27] √ √ √ × × × ×
Pengcheng et

al.[28]
√ × × √ × × ×

Mishra et al. [29] √ × × √ × × ×
Mapetuet al. [31] √ × √ × × × ×
Suchintan et al.[32] √ × × × × × ×
Larumbe et al.[34] × × × × √ √ ×
Tellez et al.[35] × × × × √ √ ×
Pan et al.[36] × × × × √ √ ×
Hamza et al.[37] × × × × √ √ ×
Parida et al.[38] √ √ √ × × × ×
Divya et al.[39] √ × √ × × × ×
Ali et al.[40] × × × √ × √ ×
Alkhashai et al.[41] √ × √ × × √ ×
Parida et al. [42] √ × √ × × × ×

Proposed PE-DCA √ √ √ × × √ √

Researchers also utilized various searching mechanisms for resource management,

task scheduling, VM allocation, and DC allocation in cloud computing. Leonard et

al.[33] integrated the brokering concept with multi-criteria location-based selection

using neighborhood search approaches for virtual machines residing in the multi-cloud

era. The author implemented in CloudSim with the Greedy approach and meta-heuristic

search. This work also proved to give improved latency and optimized cost. Larumbe et

al.[34] determined the DC location using the Tabu search optimization technique. The

work aims to optimize network performance and CO2 emission. Tellez et al.[35]

presented the Tabu search technique for optimal load balancing between cloud and fog

nodes. To solve the joint resource allocation task scheduling problem, Pan et al.[36]

 PE-DCA: Penalty Elimination Based Data Center... 703

proposed a Tabu search-based heuristic approach for cloud computing. Hamza et al.[37]

discussed a hybrid approach using Tabu search and simulated annealing for load

balancing in cloud computing. In [38] authors proposed a new meta-heuristic approach

for data center allocation with minimum cost, response time, and processing time. The

summary of the literature review is presented in Table.10. From the literature study it is

found that the penalty estimation and elimination are the major issues while searching

for a suitable data center for allocation and is not found from the literature review.

10. Conclusions and Future Work

The datacenter allocation to the on-demand resources in cloud computing is an essential

yet open issue for fair allocation with minimized response time, processing, and cost.

Due to the dynamic nature of cloud computing, DC allocation is an NP-hard problem. In

this work, we study and examine the impact of a penalty during the allocation of

resources. While allocating the resource Ri to on-demand request Ui, the penalty may be

associated with another user request Ux, which means Ri might be the best suitable

resource for Ux. To search the suitable data centers for the on-demand user, we suggest

PE-DCA, a new search-based allocation technique addressing the penalty associated

with response time, processing time, and cost using the GLS meta-heuristic technique.

The selection of data centers for the on-demand resources is established through finding

and eliminating the penalties for each user request in allocation to achieve fair

allocation. During the implementation, the number of user requests and data centers

were configured using the CloudAnalyst tool and the time and cost parameters were

computed. The performance was compared and studied with benchmark allocation

techniques of CloudAnalyst and other PSO-based techniques (CA-PSO, NPSO, and

MPSO). From the simulation results it was found that as compared with the

CloudAnalyst benchmark mechanisms, the proposed PE-DCA performs better in

minimizing the time and cost parameters as depicted in Figures 11, 12, and 13. The total

VM cost of PE-DCA is approximately equal to the evaluated cost of existing techniques

of NPSO and MPSO. In contrast, the average response time of PE-DCA is found to be

less as compared to NPSO and MPSO. The PE-DCA provides better data center

allocation with minimum response time, cost, and processing time.

As future directions, we will further consider additional constraints for data center

allocation in cloud computing such as power consumption, deadline constraint

workflow, SLA, and QoS. The penalties related to power consumption, task penalty for

deadline-based workflow scheduling, evaluation of SLA, and QoS penalty violation will

also be investigated in the context of cloud computing. The exploration of other

penalty-related searching techniques is also needed to enhance the cloud environment

performance. The data center allocation task can be related to energy consumption to

formulate an optimized allocation algorithm for cloud systems. The dynamic nature of

cloud computing can be further added to explore more on resource allocation

mechanism along with multiple objectives. Such approaches can also be cascaded with

penalties by eliminating the searching approach to enhance the efficiency of cloud

systems.

704 Sasmita Parida et al.

References

1. Z. Zhang, C. Wu, and D. W. L. Cheung, “A Survey on Cloud Interoperability: Taxonomies,

Standards, and Practice,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4, pp. 13–22,

2013.

2. Y. Cao, L. Lu, J. Yu, S. Qian, Y. Zhu, and M. Li, “Online cost-rejection rate scheduling for

resource requests in hybrid clouds,” Parallel Comput., vol. 81, no. 800, pp. 85–103, 2019.

3. W. Liang, D. Zhang, X. Lei, M. Tang, K. C. Li, and A. Zomaya, “Circuit Copyright

Blockchain: Blockchain-based Homomorphic Encryption for IP Circuit Protection,” IEEE

Trans. Emerg. Top. Comput., vol. 6750, no. c, pp. 1–11, 2020.

4. A. Shawish and M. Salama, “Cloud Computing: Paradigms and Technologies,” Inter-

cooperative Collect. Intell. Tech. Appl., vol. 495, pp. 39–68, 2014.

5. J. L. Sarkar, C. R. Panigrahi, B. Pati, A. K. Saha, and A. Majumder, “MAAS: A mobile

cloud assisted architecture for handling emergency situations,” Int. J. Commun. Syst., vol.

33, no. 13, pp. 1–15, 2020.

6. S. C. Nayak, “Multicriteria decision ‐ making techniques for avoiding similar task scheduling

conflict in cloud computing,” Int. J. Commun. Syst., no. July 2018, pp. 1–31, 2019.

7. Sasmita Parida, Suvendu Chandan Nayak, et al. “Truthful Resource Allocation Detection

Mechanism for Cloud Computing,” in Third International Symposium on Women in

Computing and Informatics (WCI ’15), Indu Nair (Ed.). ACM, 2015, pp. 487–491.

8. S. Mohapatra, C. R. Panigrahi, B. Pati, and M. Mishra, “MSA: A task scheduling algorithm

for cloud computing,” Int. J. Cloud Comput., vol. 8, no. 3, pp. 283–297, 2019.

9. J. Proaño, C. Carrión, and B. Caminero, “Empirical modeling and simulation of an

heterogeneous Cloud computing environment,” Parallel Comput., vol. 83, pp. 118–134,

2019.

10. G. Zou, Z. Qin, S. Deng, K. C. Li, Y. Gan, and B. Zhang, “Towards the optimality of service

instance selection in mobile edge computing,” Knowledge-Based Syst., vol. 217, p. 106831,

2021.

11. R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-Oriented Resource Provisioning for Cloud

Computing : Challenges , Architecture , and Solutions,” in International Conference on

Cloud and Service Computing, 2011, no. Figure 1, pp. 1–10.

12. J. Li, S. Su, X. Cheng, M. Song, L. Ma, and J. Wang, “Cost-efficient coordinated scheduling

for leasing cloud resources on hybrid workloads,” Parallel Comput., vol. 44, pp. 1–17, 2015.

13. S. C. Nayak and C. Tripathy, “Deadline based task scheduling using multi-criteria decision-

making in cloud environment,” Ain Shams Eng. J., vol. 9, no. 4, pp. 3315–3324, 2018.

14. S. Nanda, C. R. Panigrahi, and B. Pati, “Emergency management systems using mobile cloud

computing: A survey,” Int. J. Commun. Syst., no. May 2019, pp. 1–20, 2020.

15. Parida S., Pati B., Nayak S.C., Panigrahi C.R. (2020) Offer Based Auction Mechanism for

Virtual Machine Allocation in Cloud Environment. Proceedings of ICACIE 2018, Volume 2,

vol. 2. pp. 339-352, 2020.

16. C. Voudouris, “Chapter 7 Guided Local Search,” Handb. Metaheuristics, pp. 185–218, 2003.

17. A. Alsheddy and E. P. K. Tsang, “Empowerment scheduling for a field workforce,” J.

Sched., vol. 14, no. 6, pp. 639–654, 2011.

18. P.H. Mills “Extensions To Guided Local Search: A thesis submitted for the degree of Ph . D

. Department of Computer Science University of Essex,” 2002.

19. M. Gendreau and J.-Y. Potvin, Variable Nneighborhood search (chapter), vol. 146. pp.211-

238, 2010.

20. B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A cloudsim-based

visual modeller for analysing cloud computing environments and applications,” Proc. - Int.

Conf. Adv. Inf. Netw. Appl. AINA, pp. 446–452, 2010.

 PE-DCA: Penalty Elimination Based Data Center... 705

21. A. M. Manasrah, T. Smadi, and A. ALmomani, “A Variable Service Broker Routing Policy

for data center selection in cloud analyst,” J. King Saud Univ. - Comput. Inf. Sci., vol. 29,

no. 3, pp. 365–377, 2017.

22. J. Huang, R. J. Kauffman, and D. Ma, “Pricing strategy for cloud computing: A damaged

services perspective,” Decis. Support Syst., vol. 78, pp. 80–92, 2015.

23. G. Zhao, “Cost-Aware Scheduling Algorithm Based on PSO in Cloud Computing

Environment,” Int. J. Grid Distrib. Comput., vol. 7, no. 1, pp. 33–42, 2014.

24. R. Pragaladan and R. Maheswari, “Improve Workflow Scheduling Technique for Novel

Particle Swarm Optimization in Cloud Environment,” Int. J. Eng. Res. Gen. Sci., vol. 2, no.

5, pp. 675–680, 2014.

25. S. gaelle Mohamod, Kasim, “Council for Innovative Research,” J. Adv. Chem., vol. 10, no.

1, pp. 2146–2161, 2014.

26. Y. Kessaci, N. Melab, and E. G. Talbi, “A pareto-based genetic algorithm for optimized

assignment of VM requests on a cloud brokering environment,” 2013 IEEE Congr. Evol.

Comput. CEC 2013, pp. 2496–2503, 2013.

27. A. M. Manasrah and A. B. B. Gupta, “An optimized service broker routing policy based on

differential evolution algorithm in fog / cloud environment,” Cluster Comput.,Vol.22, pp.

1639–1653, 2019..

28. P. Han, C. Du, J. Chen, F. Ling, and X. Du, “Cost and makespan scheduling of workflows in

clouds using list multiobjective optimization technique,” J. Syst. Archit., Volume 112, pp.

809-837, 2021.

29. S. B. Suchintan Mishra, Arun Kumar Sangaiah,Manmath Narayan Sahoo, “Pareto‑optimal

cost optimization for large scale cloud systems using joint allocation of resources,” J

Ambient Intell Hum. Comput, 2019.

30. Z. Du, D. Han, and K. C. Li, Improving the performance of feature selection and data

clustering with novel global search and elite-guided artificial bee colony algorithm, vol. 75,

no. 8. Springer US, 2019.

31. J. P. B. Mapetu, Z. Chen, and L. Kong, “Low-time complexity and low-cost binary particle

swarm optimization algorithm for task scheduling and load balancing in cloud computing,”

Appl. Intell., vol. 49, no. 9, pp. 3308–3330, 2019.

32. S. Mishra, M. N. Sahoo, A. Kumar Sangaiah, and S. Bakshi, “Nature-inspired cost

optimisation for enterprise cloud systems using joint allocation of resources,” Enterp. Inf.

Syst., no. 0123456789, 2019 (Inpress).

33. L. Heilig, R. Buyya, and S. Voß, “Location-aware brokering for consumers in multi-cloud

computing environments,” J. Netw. Comput. Appl., vol. 95, pp. 79–93, 2017.

34. F. Larumbe and B. Sansò, “A tabu search algorithm for the location of data centers and

software components in green cloud computing networks,” IEEE Trans. Cloud Comput., vol.

1, no. 1, pp. 22–35, 2013.

35. N. Téllez, M. Jimeno, A. Salazar, and E. D. Nino-Ruiz, “A Tabu search method for load

balancing in fog computing,” Int. J. Artif. Intell., vol. 16, no. 2, pp. 106–135, 2018.

36. P. Yi, H. Ding, and B. Ramamurthy, “A Tabu search based heuristic for optimized joint

resource allocation and task scheduling in Grid/Clouds,” 2013 IEEE Int. Conf. Adv.

Networks Telecommun. Syst. ANTS 2013, 2013.

37. F. Youssef, B. L. El Habib, R. Hamza, Labriji El Houssine, E. Ahmed, and M. Hanoune, “A

New Conception of Load Balancing in Cloud Computing Using Tasks Classification

Levels,” Int. J. Cloud Appl. Comput., vol. 8, no. 4, pp. 118–133, 2018.

38. S. Parida and B. Pati, “A Cost Efficient Service Broker Policy for Data Center Allocation in

IaaS Cloud Model,” Wirel. Pers. Commun., no. 0123456789, 2020 (Inpress).

39. D. Chaudhary and B. Kumar, “A New Balanced Particle Swarm Optimisation for Load

Scheduling in Cloud Computing,” J. Inf. Knowl. Manag., vol. 17, no. 1, 2018.

40. A. Al-maamari and F. A. Omara, “Task Scheduling Using PSO Algorithm in Cloud

Computing Environments,” Int. J. Grid Distrib. Comput., vol. 8, no. 5, pp. 245–256, 2015.

https://www.sciencedirect.com/science/journal/13837621/112/supp/C

706 Sasmita Parida et al.

41. H. M. Alkhashai and F. A. Omara, “An enhanced task scheduling algorithm on cloud

computing environment,” Int. J. Grid Distrib. Comput., vol. 9, no. 7, pp. 91–100, 2016.

42. Parida S., Pati B., Nayak S.C., Panigrahi C.R. (2021) Offer Based Auction Mechanism for

Virtual Machine Allocation in Cloud Environment. Proceedings of ICACIE 2019, Volume 1,

vol. 2. pp. 621-633, 2021.

Sasmita Parida completed B.Tech. and M.Tech. in Computer Science and Engineering

from Biju Patnaik University of Technology, India in the year 2004 and 2010

respectively. She is currently working as Assistant Professor in the Department of

Computer Science and Technology at GITA Autonomous College, Bhubaneswar,

BPUT, India. She has around 15 years of experience in teaching and research. She is

pursuing Ph.D. degree at Rama Devi Women′s University, India. Her area of research is

cloud computing, Bigdata, IoT, Machine Learning and parallel computing. He has

published more than 18 research papers in different journals and conference

proceedings.

Bibudhendu Pati completed his Ph.D. degree from IIT Kharagpur, India. He is

currently working as Associate Professor in the Department of Computer Science at

Rama Devi Women's University, Bhubaneswar, India. He has around 23 years of

experience in teaching and research. His areas of research interests include Wireless

Sensor Networks, Cloud Computing, Big Data, Internet of Things, and Advanced

Network Technologies. He has got several papers published in reputed journals,

conference proceedings, and books of international repute. He has been involved in

many professional and editorial activities. He is a Life Member of Indian Society for

Technical Education, Computer Society of India and Senior Member of IEEE.

Suvendu Chandan Nayak received his Ph.D. degree from Veer Surendra Sai

University of Technology (Formally University College of Engineering, Burla) India in

Computer Science & Engineering. He is currently working as an Associate Professor in

the Department of Computer Science and Information Technology at GITA

Autonomous College Bhubaneswar, BPUT, India. He has 14 years of teaching and

research experience in the field of computer science. His area of research is cloud

computing, Bigdata, IoT and parallel computing. He has published more than 20 papers

in different International / National journals and conference proceedings.

Chhabi Rani Panigrahi received her Ph.D. in Computer Science and Engineering from

IIT Kharagpur, India. She is currently an Assistant Professor in the Department of

Computer Science at Rama Devi Women's University, Bhubaneswar, India. Prior to this,

she was working as Assistant Professor in Central University of Rajasthan, India. Her

research interests include Software Testing, Mobile Cloud Computing, and Machine

Learning. She holds 20 years of teaching and research experience. She has published

several international journals, conference papers, and books. She served as chairs and

technical program committee member in several conferences of international repute.

 PE-DCA: Penalty Elimination Based Data Center... 707

Tien-Hsiung Weng is currently working as a Professor in the Department of Computer

Science and Information Engineering, Providence University, Taichung City, Taiwan.

He received his PhD in Computer Science from the University of Houston, Texas. His

research interests include parallel computing, high performance computing, scientific

computing, and machine learning. He has has published several international journals,

conference papers, and books.

Received: May 12, 2021; Accepted: September 22, 2021.

	Blank Page

