
Computer Science and Information Systems 19(2):659–678 https://doi.org/10.2298/CSIS210507002W

Performance and Scalability Evaluation of a
Permissioned Blockchain Based on the Hyperledger

Fabric, Sawtooth and Iroha

Arnold Woznica and Michal Kedziora1

Wroclaw University of Science and Technology, Wroclaw, Poland
michal.kedziora@pwr.edu.pl

Abstract. This paper shows the performance and scalability evaluation of different
blockchain platform implementations. Hyperledger Iroha implementing YAC con-
sensus, Sawtooth implementing PoET algorithm, and Hyperledger Fabric frame-
work implementation. Performance evaluation and scalability assessment were done
by varying different sets of parameters such as block size, transaction sending rate,
network traffic distribution, and network size. Performance evaluation was done
based on average transaction latency, network throughput, and transaction failure
rate. Scalability was assessed based on changes in transaction latency and through-
put with increasing network size. Test results let to study the impact of a particular
parameter on the private blockchain network performance and show how they can
be adjusted to improve performance.

Keywords: Blockchain, Hyperledger Fabric, Sawtooth, Iroha.

1. Introduction

The popularity of blockchain technology paid attention to various businesses that want
to adapt it to achieve their business goals. In a public blockchain network, everyone can
join the network and be its participant without any authentication. To prevent fraud and
malicious operations on the blockchain network, a particular blockchain platform must
provide appropriate security mechanisms. In public blockchains, security is generally
provided by the underlying consensus algorithms, such as proof of work in Bitcoin or
proof of stake in Ethereum[12]. The consensus is the process by which a network of
nodes provides a guaranteed ordering of transactions and validates the block of transac-
tions [9]. High scalability is another issue that public consensus protocols must handle
well. Unfortunately, those factors result in low throughput and high transaction latency in
those systems, i.e, Bitcoin has throughput around 3 transactions per second and transac-
tion latency around 10 minutes[14]. On the other hand, companies adapting blockchain
technology work in a partially trusted environment, therefore the security of business
blockchain networks might be resolved with mechanisms other than used consensus al-
gorithms[11][10][3]. Scalability in business blockchain networks is also a less important
factor. Business solutions need high throughput and low latency blockchain networks to
handle quickly big amounts of transactions and that are the major demands on the con-
sensus algorithms used. In 2015, companies, such as IBM and Intel, joined their efforts to
create a common business blockchain framework under the Hyperledger project. Hyper-
ledger is an open-source collaborative effort created to advance cross-industry blockchain



660 Arnold Woznica and Michal Kedziora

technologies. It is a global collaboration, hosted by The Linux Foundation, including lead-
ers in finance, banking, Internet of Things, supply chains, manufacturing, and Technology
[5]. It is a very fast-growing project concentrated on the development of a common frame-
work for private and permissioned networks.

The goal and contribution of this work is evaluation of the performance of private
blockchain platform implementations and algorithms. As there are many different con-
sensus algorithms [16] the range of algorithms under evaluation is bounded to algorithms
used in private and permissioned blockchain networks. The incentive behind such bound-
aries was a very fast growing Hyperledger project. Its growth means there is a very big
demand on the market for private and permissioned blockchain solutions. The work aims
to assess those consensus algorithms which are implemented in existing solutions. This
work contains a performance evaluation of consensus protocols implemented in the fol-
lowing platforms: Hyperledger Fabric v1.4.0, Hyperledger Sawtooth v1.0.5, and Hyper-
ledger Iroha v1.0.0 rc5. Performance Evaluation is performed by measuring: transaction
latency, throughput, network, and scalability. It was done by testing with a different set of
parameters such as transaction sending rate, network size, block size, and network traffic
distribution.

2. Related work

This section describes articles that concentrate on the performance analysis of different
consensus protocols of private blockchain platforms. Contributions of those papers were
ideas on how to improve performance and they are implemented in newer versions of
Hyperledger Fabric. There were not found any existing articles regarding performance
analysis of Hyperledger, Iroha, and Sawtooth platforms, this makes a gap in the research
field.

Nasir et al. [15] is the most related work to this paper. Authors concentrate on the
performance evaluation of Hyperledger fabric v0.6 and fabric v1.0, those versions differ
significantly, also other consensus protocols are used. Fabric v0.6 uses Practical Byzantine
Fault Tolerance with order-execute architecture, on the other hand, fabric v1.0 uses Kafka
ordering service with execute-order-validated architecture. To assess the performance,
measurements such as transaction latency, execution time, throughput, and scalability are
taken. The authors deployed the whole blockchain network on a single server machine
with 24 core CPU and performed two tests: the first was an evaluation for a single peer
network, the second was assessing scalability by varying the number of nodes to 20 in the
network while performing the first test for each network topology. In the results section,
the authors claimed that fabric v1.0 outperforms fabric v0.6. The second observation was
that for fabric v1.0 the latency is within a certain range for different scenarios, while for
fabric v0.6 the latency increases with network size.

Thakkar et al. [23] contains a very comprehensive performance evaluation of Hyper-
ledger Fabric v1.0. The authors of that paper tried to answer the following questions:
What should be the block size to achieve lower latency? What type of endorsement policy
is more efficient? What is the performance difference between CouchDB and GoLevelDB
when they are used as local world state databases? Authors divided transaction commit
latency into endorsement, broadcast commitment, and ordering latency, which was mea-
sured by analyzing Hyperledger Fabric logs. The created test network was distributed



Performance and Scalability Evaluation of a Permissioned Blockchain 661

over different machines and consisted of four organizations with two endorsed peers each.
For each experiment, many observations with guidelines on how to improve performance
were given. Experiments included checking the impact of transaction arrival rate, block
size, endorsement policy, ledger, database channels, and resource allocation. The main
contributions of this paper were identifying three major performance bottlenecks, provid-
ing and studying improvements, changing the overall performance 16-times. All proposed
improvements are contained in newer versions of the Hyperledger Fabric platform.

Sousa et al. [19] proposed a new Byzantine fault-tolerant Ordering Service for Hy-
perledger Fabric 1.0 instead of crash fault Kafka Ordering Service cluster. The proposed
solution is based on BFT-SMaRt and WHEAT protocol. The authors implemented their
solution and tested in LAN and WAN networks with nodes geolocated across the Ameri-
cas.

Rüsch [18] mentions the performance and security issues of Byzantine fault tolerance
schemes in blockchain and does an investigation for permissioned networks. The author
refers to other papers to show the scalability problems of Byzantine fault-tolerant proto-
cols for an increasing number of nodes.

Dinh et al. [6] presented the first Benchmark for private Blockchain evaluation called
Blockbench. Blockbench can have an extended backend to evaluate different blockchain
platforms. At the time of writing this article backend to test Ethereum, Parity, and Hy-
perledger fabric existed. Blockbench has a set of different macro and microbenchmarks
to test different aspects of the working blockchain network. Blockbench supports evalua-
tion of security by simulation network-level attacks. The authors compared three different
platforms: Ethereum, Parity, and Hyperledger Fabric v0.6 by doing comprehensive tests.
Empirical results have shown that Hyperledger Fabric v0.6 outperformed Ethereum and
Parity across different benchmarks, but failed to scale over sixteen nodes. Their results
have shown that tested platforms are not well suited to large-scale data processing work-
loads.

Li et al. [13] proposes a new architecture to improve blockchain network scalability.
New architecture proposes satellite chains to create a network of networks, and it men-
tions the problem of scalability of single Byzantine Fault Tolerant based networks like
Hyperledger Fabric v0.6. The presented architecture provides the ability to transfer assets
between different networks in a secure way.

Gorenflo et al. [8] propose performance improvements on Hyperledger Fabric v1.2
without the change of its API. Authors test their implemented ideas to show that this plat-
form can have a throughput of 20 000 transactions per second. Improvements consisted
of I/O operations, caching, parallelism, and efficient data access. In their design, orderers
receive only transaction IDs instead of full transactions, and validation on peers is more
parallelized. Authors determined critical paths and leveraged light-weight data structures
for fast data access.

Sukhwani et al. [20] [22] [21] presented a Stochastic Reward Net performance model
of Hyperledger Fabric v1.0. This model can be used to compute the throughput, utiliza-
tion, and mean queue length for each peer in a network. The model is validated with the
usage of Hyperledger Caliper. Authors discovered the performance bottlenecks of the or-
dering service and ledger write operations. Authors claimed that the bottleneck can be
mitigated using larger block sizes, although with transaction latency increase.



662 Arnold Woznica and Michal Kedziora

Turki et al. [24] proposed another Ordering service for Hyperledger fabric v1.0+ built
on top of the HoneyBadgerBFT protocol. The authors tested their solution on a local
machine and compared it to the results of Solo Ordering Service available for the Hyper-
ledger Fabric v1+ platform.

Feng et al. [7] proposed a new Byzantine Fault Tolerant consensus called scalable
dynamic multiagent PBFT (SDMA-PBFT), which is a modification of Practical Byzantine
Fault Tolerance protocol. The proposed method decreases latency and improves efficiency
and throughput.

Angelis et al. [4] compared the Practical Byzantine Fault Tolerance algorithm with
proof of authority algorithms(Aura and Clique). Performance analysis was qualitative and
based on how the algorithms worked in terms of message exchanging.

Vukolic [25] performed a theoretical comparison of Byzantine fault-tolerant algo-
rithms versus Proof of work consensus algorithms with a literature review describing
what was done to improve their performance and scalability.

Bakaman [1] made a comprehensive review of the state-of-the-art blockchain consen-
sus algorithms. Then proposed an analytical framework to evaluate the pros and cons of
consensus mechanisms.

Rui Wang [26] analyzed four mainstream blockchain systems (Ethereum, Fabric,
Sawtooth and Fisco-Bcos), and then performed a performance comparison through open
source blockchain benchmarking tools. After that, they propose optimization methods and
discuss the future development of blockchain technique.

3. Methodology

Each of the evaluated platforms implements a different consensus mechanism. To test
the performance of consensus, there is a need to submit transactions, which change the
World State of a particular blockchain network. It is important to notice, that the database
operation needed to trigger consensus mechanisms has an impact on the performance
of a blockchain network. To reduce this impact simple transactions were needed to be
implemented. This ’Simple’ test works in the following way: Every transaction generates
some random number based on the system time, which is appended to a literal value.
Each of those literals creates a key-value pair with a constant value. Every transaction
is an insert transaction causing World State change. The randomness of the key makes
with negligible probability impossible to insert a key that was previously in the database,
therefore transactions are protected against being invalid.

3.1. Research Environment

Experiments were conducted in the cloud on the Azure platform. A single virtual machine
D64 v3 was used, with 64 vCPU, 256GB of RAM, and 1600GB storage. The running
operating system was Ubuntu 18.04 LTS.

To analyze the performance of different Hyperledger platforms, a dedicated bench-
mark was used. Hyperledger Caliper [2] is a performance benchmark tool for multiple
blockchain platforms that can cooperate with blockchain networks in two ways. First
is connecting to an existing and working blockchain network, the second is starting a



Performance and Scalability Evaluation of a Permissioned Blockchain 663

blockchain network before the benchmark test using the networks defined in docker-
compose.yaml files. Hyperledger Caliper produces .html reports containing several per-
formance indicators, such as transactions per second, transaction latency, throughput, and
resource utilization. Hyperledger Caliper architecture consists of four main layers: the
benchmark layer, adapter layer, an interface layer, and blockchain framework layer. The
adaptation layer is the main component of the caliper tool. It is used to integrate different
blockchain network implementations into the benchmark. For every blockchain network,
the adaptor implements the Caliper Blockchain NBIs(North Bound Interface) by using
the corresponding blockchain’s native SDK or RESTful API. Currently supported plat-
forms are: Hyperledger Fabric v1.4+, Hyperledger Sawtooth 1.0+, Hyperledger Iroha 1.0
beta-3, and Hyperledger Burrow 1.0.

Benchmark layer contains the tests for typical scenarios, each test has a configuration
file that defines test arguments and a backend blockchain network. Such configuration files
define use cases that are then used by the underlying benchmark engine to perform the
test. The role of this layer is to perform stress tests on the implemented blockchain plat-
form. The blockchain framework layer contains different implementations of blockchain
networks, which can be run separately from the benchmark. Caliper communicates with
a particular network with the utilization of an appropriate adaptor.

3.2. Key Metrics Definitions

The first key metric is transaction latency, which is the time difference between transac-
tion submission and transaction commit confirmation time across the network. It includes
the propagation time and any setting time due to the consensus mechanism in place. This
measure is computed per single transaction. The calculation of transaction latency differs
according to the used protocol. This definition is appropriate for blockchain systems with
deterministic transaction finality. Blockchain systems with a lottery-based consensus like
Bitcoin, have probabilistic transaction finality, hence the latency calculation should fol-
low other rules [17]. For measurements in this paper, the finality of the underlying systems
under test is assumed. Second metric is transaction throughput, which is the rate at which
the blockchain system under test commits valid transactions in the defined time frame. It
is calculated as the number of transactions per second (tps). This rate refers to the entire
blockchain network, rather than to a single node. Since only valid transactions are consid-
ered, the throughput consists of only positively verified transactions [21]. The transaction
here refers to a commit transaction. This paper does not consider the throughput of query
operations. Third metric is scalability, which is measured as the change in throughput and
latency when increasing the number of nodes and the number of concurrent workloads.
[6]

3.3. Test plan

There were four parameters for each blockchain platform test case: Transaction sending
rate, block size, network size, and network traffic mode. A transaction sending rate is a
number of transactions sent to the blockchain network in a defined time frame range. The
transaction sending rate is presented as a transaction number per second. One test case
consists of multiple rounds. In each round there is a constant transaction sending rate



664 Arnold Woznica and Michal Kedziora

being sent within 5 seconds. For example, for 50 Tps the total number of transactions sent
in the round is 250 transactions. Each new round has a bigger transaction sending rate.

Block size is the maximum allowed transaction quantity which can be placed in a
block being published to the blockchain network. Hyperledger Fabric and Hyperledger
Iroha were tested with two different values of the block size(10 and 50). Hyperledger
Sawtooth was tested only for a block size equal to 50.

Network size is the number of nodes participating in the blockchain network con-
sensus mechanism. The smallest tested network consists of 5 nodes. The biggest tested
network is for Hyperledger fabric and consists of 100 nodes.

The last parameter is the network traffic mode. Transactions can be distributed across
all nodes in the network or can be sent to some particular nodes only. This parameter is
introduced to check whether blockchain network performance will change when network
traffic switches from distributed against all nodes to single node operating all transactions.

4. Results and discussion

This part contains the results of the tests for all parameters defined in the Test plan sec-
tion. Test results are being shown in the form of figures and tables and the following
examinations are being made:

– Impact of transaction sending rate to network latency.
– Impact of transaction sending rate to network throughput.
– Impact of block size to network latency.
– Impact of Block size to network throughput.
– Impact of network traffic mode to latency and throughput.
– Scalability, the impact of network size on latency.
– Scalability, the impact of network size on throughput.
– What are the reasons for failing transactions for some networks?

4.1. Hyperledger Fabric performance evaluation

This section contains the test results for Hyperledger Fabric v1.4. Fabric network consists
of one organization owning all peers working on a single channel, therefore the network
works as a private blockchain network. The network uses only one Solo ordering node.
Endorsing peers are those who have smart contracts installed to be able to execute and
endorse transactions. Due to technical reasons with running fabric network with Hyper-
ledger Caliper maximum number of endorsing peers in all tests is 30, for network size
exceeding 30 rest of peers works only as storage nodes. To analyze the impact of transac-
tion sending rate on transaction latency, each fabric network was tested against different
transaction sending rates. The whole network used a maximal block size of 10 transac-
tions. Network traffic was distributed equally between all peers.

Figure 1 shows how the minimal transaction latency depends on transaction sending
rates. To illustrate this relation three tested network sizes were chosen: 10, 50 and 100
peers. It is easy to notice that the network with 10 peers has smaller minimal transaction
latency, but generally it is similar for all networks. Other observation is that the transaction
sending rate does not have any impact on the minimal latency. For each fabric network
size minimal transaction latency was bigger than 200ms.



Performance and Scalability Evaluation of a Permissioned Blockchain 665

Fig. 1. Impact of Transaction sending rate to minimal latency for Hyperledger fabric platform

Figure 2 shows impact of transaction sending rate to average transaction latency in
the network. The first observation is increasing the average transaction latency with in-
creasing sending rate, it seems that at some point it grows faster, but this is because the
scale on the x-axis has changed. It seems that the average latency depends linearly on the
transaction sending rate. The second observation is that networks with fewer peers have
smaller average latency than bigger networks at the same transaction sending rate. The
third observation is that for networks with 30 peers and more there is no difference in
average transaction latency. It might create an assumption that the performance of fabric
networks depends only on the number of endorsed peers.

Fig. 2. Impact of transaction sending rate to average latency of Hyperledger fabric platform

Analysis of transaction sending rate impact to network throughput was performed just
as its impact on latency. The maximum number of transactions in a single block is 10.
Network traffic is distributed equally to all peers. The maximum number of endorsing
peers in the network is 30.



666 Arnold Woznica and Michal Kedziora

The result shows how the network throughput depends on the transaction sending
rate. Results show increasing network throughput with transaction sending rate to some
point at which with larger transaction sending rate throughput is constant. To this point
throughput is only a bit smaller than the transaction sending rate. The second observation
is that smaller networks reach their saturation point later and achieve bigger network
latency. As the maximum network endorsing peers number is limited to 30, we can see
larger networks with no more endorsing peers have maximal throughput the same as the
network with 30 peers only.

To analyze how block size impacts average latency fabric networks up to 100 peers
were tested. Transactions were distributed equally between all peers. Tests were per-
formed for two block size values: 10 and 50.

Figure 3 shows impact of block size to transaction average latency. Every network was
tested against two-block size values. To detect the relations between maximal transactions
in a block and transaction latency, network with 5, 20, and 40 peers were chosen to be
depicted in the figure. Figure 3 shows there is no difference in transaction latency for
different block sizes. It might suggest that the bottleneck of the transaction processing is
not in the ordering service.

Fig. 3. Impact of block size to transaction latency for Hyperledger fabric platform

To analyze how block size impacts network throughput, fabric networks up to 100
peers were tested with a sending rate up to 500 transactions per second. Transactions were
distributed equally between all peers. Tests were performed for two block size values: 10
and 50.

Results shows the impact of block size to network throughput. Every network was
tested against two-block size values. To detect relations between network throughput and
maximal transactions in a block fabric network with 5, 10, 20, and 40 peers were chosen to
be depicted in the figure. Results shows that networks with 20 peers had bigger throughput



Performance and Scalability Evaluation of a Permissioned Blockchain 667

with larger block sizes while for 5 and 10 peers it was opposite, smaller block size caused
better throughput. No strict correlation between block size and throughput were noticed.

To analyze the difference between traffic distribution modes to transaction latency and
network throughput all network sizes were tested against with the transaction sending rate
starting with 50 transactions per second and finishing with 500 transactions per second.
The network block size was 50 for all networks. All transactions in the network are being
handled by a single peer which is the only endorsing peer in the network.

Figure 4 shows the relation between transaction sending rate and average transaction
latency for fabric networks up to 100 nodes with all network traffic sent to a single node.
Average latency, as seen in the figure, is constant until a saturation point for a sending
rate equal to 100 tps, after that the saturation point latency starts to grow linearly. In com-
parison with figure 2 from subsection ”Analysis of transaction sending rate to transaction
latency” it is easy to notice that for traffic divided between multiple nodes the latency was
bigger.

Figure 5 shows the relation between transaction sending rate and network throughput
for networks up to 100 nodes in which all transactions are sent to one peer. Network
throughput, as seen in the figure, grows linearly with the transaction sending rate until
it reaches a saturation point for the transaction sending rate between 100 and 200 tps.
Regardless of the network size, all networks do not exceed the throughput of 150 tps in
this examination.

Fig. 4. Impact of transaction sending rate to transaction latency of Hyperledger Fabric platform for
traffic handled by a single node

To analyze the relationship between network size and network average transaction
latency fabric networks with peers quantity up to one hundred were tested. Each network
was tested against a few sending transaction rates. All transactions sent to the network
were distributed equally among all peers in the network. Maximal transactions in the
block were equal to 10. The maximal number of endorsing peers was 30.



668 Arnold Woznica and Michal Kedziora

Fig. 5. Impact of transaction sending rate to network throughput for Hyperledger Fabric platform
for traffic handled by a single node

Figure 6 shows impact of fabric network size to average transaction latency in the
network. To show the relation between network size and its average transaction latency
results are shown for different transaction sending rates: 50, 100, 300, and 500 transac-
tions per second. From figure 6 it is easy to notice that the transaction latency grows with
the network size up to the maximum number of endorsing peers in the network, which
is 30. For more peers than 30 latency becomes a constant value, depending on sending
transaction rate.

Fig. 6. Impact of network size to average transaction latency for Hyperledger Fabric

To analyze the relationship between network size and network throughput fabric net-
works with peers quantity up to one hundred were tested. Each network test consisted
of sending transactions at a different rate. All transactions sent to the network were dis-



Performance and Scalability Evaluation of a Permissioned Blockchain 669

tributed evenly between all network nodes. Maximal transactions in the block were equal
to 10. A maximal number of endorsing peers was 30.

Figure 7 shows impact of fabric network size to fabric network throughput. To show
the relation between network size and network throughput each network was tested against
different transaction sending rates: 50, 100, 300, and 500 transactions per second. Figure
7 shows that for bigger fabric network throughput is getting smaller. Peers who are not
endorsing peers do not impact network throughput.

Fig. 7. Impact of network size to network throughput for Hyperledger Fabric

4.2. Hyperledger Iroha performance evaluation

This section contains test results and analysis of Hyperledger Iroha. This network was
tested up to 50 nodes, as for more nodes the network did not work correctly. The network
was tested for two maximal transactions in a single block value: 10 and 50. Maximal
sending rate for which this platform was tested was 200 transactions per second.

Analysis of transaction sending rate to transaction latency To analyze the transac-
tion sending rate impact to transaction latency each Iroha blockchain network was tested
against different transaction sending rates. The whole network used a maximal block size
of 50 transactions. Network traffic was distributed equally between all peers.

Figure 8 shows minimal transaction latency for different transaction sending rates. To
illustrate these four network sizes were tested: 5, 10, 20, and 30 peers. Block size was
equal to 50 transactions. Figure 8 shows that there is no strict correlation with transaction
sending rate and minimal latency. For most transaction sending rates the minimal latency
is around 4 seconds.

Results shows the average transaction latency for different transaction sending rates.
To illustrate these five network sizes were tested consisting of 5, 10, 20, 30, and 40 peers.
Block size was equal to 50 transactions. Result shows that generally the average transac-
tion latency is constant and at the same value for all transaction sending rates, therefore



670 Arnold Woznica and Michal Kedziora

Fig. 8. Impact of transaction sending rate to minimal transaction latency for Hyperledger Iroha

does not depend on it. Network size seems to affect the value of average transaction la-
tency, with larger networks having bigger average transaction latency.

Analysis of transaction sending rate impact to network throughput was preceded with
testing Iroha networks up to 50 nodes against increasing the transaction rate up to 200
transactions per second. All networks used block size of 50 transactions and all sent trans-
actions were distributed between all nodes in the network. Results shows the impact of
sending transaction rate to Iroha network throughput for networks consisting of 5, 10, 20,
30, and 40 peers. The network of 40 peers has a constant throughput below 5 transac-
tions per second for every transaction rate, but as seen in the previous section such a large
network does not work correctly and most of the transactions fail. For smaller networks
generally, the throughput is increasing with transaction sending rate, but all networks had
throughput below 40 transactions per second, which is less than a maximal block size.

Fig. 9. Impact of transaction sending rate to network throughput for Hyperledger Iroha



Performance and Scalability Evaluation of a Permissioned Blockchain 671

Analysis of block size impact to average transaction latency was done for two block
sizes: 10 and 50 transactions. The test was performed for three different network sizes:
5, 10, and 20 nodes. Each of the networks was tested against increasing the transaction
sending rate up to 200 transactions per second. Transactions were distributed equally to
all nodes in the networks.

Figure 10 shows impact of block size to average transaction latency in Iroha networks.
To find the relation between block size and average transaction latency each network
size had tested for different value of block size. After comparing appropriate pairs it is
easy to see that for most transaction sending rates average latency was significantly lower
for larger block size. Network with 20 nodes and block size equal to 50 has an average
latency below 5 seconds for most transaction sending rates, while the same network with
10 transactions in a block can have an average latency around 43 seconds. This is 9 times
bigger latency for 5 times smaller block.

Fig. 10. Impact of block size to average transaction latency for Hyperledger Iroha

To analyze the impact of block size on network throughput tests with 10 and 50 max-
imal number of transactions in a block were performed. The test was performed for three
different network sizes: 5, 10, and 20 nodes. Every network was tested against increas-
ing the transaction sending rate up to 200 transactions per second. Transactions were
distributed equally to all nodes in the networks.

Figure 11 shows block size impact to network throughput in Iroha networks. To find
the relations between block size and network throughput networks must be compared
in pairs: The same network sizes with different block sizes. For all networks depicted
in figure 11 it is easy to notice that smaller block size causes the network throughput
decrease. It is noticeable especially for bigger transaction sending rates.

This subsection describes the difference in the average transaction latency of Iroha
networks for two cases:

– Network traffic distributed equally. Transactions are sent to every node in a network.
– Network traffic distributed to a single node that processes all transactions sent to the

network.



672 Arnold Woznica and Michal Kedziora

Fig. 11. Impact of block size to network throughput for Hyperledger Iroha

Figure 12 shows the impact of network traffic distribution to Iroha average transaction
latency. All tests were performed by increasing transaction sending rate up to 200 transac-
tions per second. The maximal transaction number in a block was 50. Each network size
is tested with transactions sent to one node and distributed among all nodes in the net-
work. For a network with 20 nodes traffic directing to a single node increases the average
transaction latency for all transaction sending rates. For smaller networks such behavior
is similar, but noticeable for higher transaction sending rates.

Fig. 12. Impact of network traffic distribution to average transaction latency for Hyperledger Iroha

Analysis of network traffic distribution to network throughput This subsection de-
scribes the difference in network throughput of Iroha networks for two cases:



Performance and Scalability Evaluation of a Permissioned Blockchain 673

– Network traffic distributed equally. Transactions are sent to every node in a network.
– Network traffic is distributed to a single node that processes all transactions sent to

the network.

Figure 13 shows the impact of network traffic distribution on the Iroha network through-
put. All tests were performed by increasing the transaction sending rate up to 200 transac-
tions per second. Maximal block size is 50. Each network size is tested with transactions
sent to one node and distributed among all nodes in the network. In figure 13 there is no
strict correlation between the impact of transaction distribution to network throughput,
but for transaction sending rate over 80 tps the throughput is higher for equal distribution
of transactions between peers.

Fig. 13. Impact of network traffic distribution to network throughput for Hyperledger Iroha

Analysis of network size to transaction latency To analyze the relationship between
network size and network average transaction latency of Iroha networks, networks with
nodes number up to forty were tested. Each network was tested for increasing sending
transaction rates up to 200 transactions per second. All transactions sent to the network
were distributed equally against all peers in the network. Maximal transaction quantity in
the block was equal to 50.

Figure 14 shows the impact of Iroha network size to the average transaction latency
in the network. To show the relation between network size and its average transaction
latency, results are shown for different transaction sending rates: 20, 60, 100 transactions
per second. Figure 14 shows that average latency increases after network size exceeds 30
nodes. Between 10 and 30 nodes average transaction latency is generally constant and
below 10 seconds. For a small Iroha network consisting of 5 nodes average transaction
latency is the smallest.



674 Arnold Woznica and Michal Kedziora

Fig. 14. Impact of network size to average transaction latency for Hyperledger Iroha

Analysis of network size to transaction throughput To analyze the relationship be-
tween network size and network throughput of Iroha networks, networks with nodes
quantity up to forty were tested. Each network was tested for increasing sending trans-
action rates up to 200 transactions per second. All transactions sent to the network were
distributed equally against all peers in the network. Maximal transaction quantity in the
block was equal to 50.

Figure 15 shows that networks under small transactions sending rate(20 tps) have
generally constant throughput when their size is between ten and thirty nodes. For high
transaction sending rate(100 tps) throughput gets lower with network size increase. For
network size exceeding 30 nodes throughput is very small(around 2-3 tps) regardless of
transaction sending rate.

Fig. 15. Impact of network size to network throughput for Hyperledger Iroha



Performance and Scalability Evaluation of a Permissioned Blockchain 675

4.3. Hyperledger Sawtooth performance evaluation

This section contains test results and analysis of Hyperledger Sawtooth. Table 1 contains
the parameters values for which benchmarking was done. This network was tested up to
30 nodes, as for more nodes network did not work at all. The network was tested for a
block consisting of at most 50 transactions. The platform was tested for transaction send-
ing rate increasing with every round starting with 10 and finishing with 100 transactions
per second.

Table 1. Sawtooth performance evaluation results for network of 5 nodes and network traffic dis-
tributed among all nodes

sending rate[tps] max latency[s] min latency[s] avg latency[s] throughput[tps] Failed [%]
10 4.81 0.41 2.5 7.3 0
20 5.22 0.42 2.99 13.9 0
30 2.82 0.41 1.74 24 0
40 2.81 0.42 2.34 27.4 0
50 6.23 1.61 3.91 26.5 0
60 8.26 0.61 4.9 25.1 0
70 9.02 0.62 7.37 2 67
80 NaN NaN NaN NaN 100
90 6.23 4.62 5.35 1.4 67

100 8.02 5.42 6.7 2.4 49

Result shows that even small Sawtooth networks consisting of 5 peers only have a
problem with successful transaction processing when network traffic is distributed among
all participants. Networks with 20 nodes and more fail to process almost all transactions
when the transaction sending rate exceeds 40 transactions per second. Similar results are
in the scenario with a single node handling all transactions sent to network small net-
works (5 and 10 nodes) process almost all transactions successfully. For larger networks,
transaction failures happens for smaller transaction sending rate. For example with a net-
work consisting of 20 nodes shows that after rounds with 100% transaction failures(for
80 and 90 transactions per second) there is still a chance that in the next round network
will process all transactions correctly.

There are multiple possible explanations why benchmarking of Hyperledger Sawtooth
platform results in so many transactions failing including benchmark and platform prob-
lems:

– Hyperledger Caliper lets defining multiple nodes to which transactions are being sent,
but only one validator which is used to check whether the transaction is added to
the ledger. Due to the probabilistic implications of the PoET consensus algorithm,
transactions can be included in other nodes, which are not yet in sync with the defined
validator, therefore the transactions fail after some time.

– It was observed that right after sending transactions to a ledger there was an error
message while checking the transaction state. There might be a bug in the Sawtooth
adapter of the Hyperledger Caliper project. In the logs produced by peers, the net-
work seemed to be in sync(as no attempts to synchronize with other peers were seen).



676 Arnold Woznica and Michal Kedziora

Maybe due to that error, Caliper is not able to verify the positive rest of the transac-
tions and mark them invalid, although they are added to the ledger. In the next round
of transaction sending, the rate network could add a new block.

– In some cases where transaction failures were 100% peer logs were constantly show-
ing attempts to synchronize ledgers state for multiple peers. For some reason the
network could not reach agreement on blocks ordering and remain unsynchronized,
therefore the validator could not have added blocks in his private ledger. It might be a
bug in fork resolver of Hyperledger Sawtooth v1.0.5 or message exchange protocol.

– Transaction processor responsible for processing transactions might be non-deterministic.
– Block size has a big impact on the performance for Hyperledger Iroha, bigger block

size can decrease average latency and increase throughput.
– Analysis of network traffic distributions shows that it is better to equally distribute

transactions in the Iroha network.

5. Conclusions

This paper shows the performance evaluation of three different consensus algorithms used
in private blockchain networks and implemented in existing solutions. Each chosen con-
sensus algorithm is based on a different principle. Hyperledger Iroha implements the YAC
consensus, which is a voting-based Byzantine Fault Tolerant algorithm. Hyperledger Saw-
tooth implements the PoET algorithm which is proof-based consensus with probabilistic
finality. Hyperledger Fabric v1+ abandons the standard state-machine replication protocol
and introduces a new execute-order-validate architecture with Kafka Ordering service to
improve performance of the platform compared with standard vote-based protocols.

Performance evaluation and scalability assessment were done by varying different
sets of parameters such as block size, transaction sending rate, network traffic distribu-
tion, and network size. Performance evaluation was done based on average transaction la-
tency, network throughput, and transaction failure rate. Scalability was assessed based on
changes in transaction latency and throughput with increasing network size. Test results
let to study the impact of a particular parameter on the blockchain network performance
and show how they can be adjusted to improve performance. Performance measurements
were gathered by Hyperledger Caliper, which is a dedicated benchmark platform for Hy-
perledger solutions. Hyperledger Caliper does not support the newest Hyperledger plat-
form versions. The main conclusions are as follows: Hyperledger fabric was found to be
the most deterministic regarding its performance results. Minimal transaction latency was
in all cases between 0.2-0.4 seconds. The average latency of fabric platforms grows lin-
early with increasing sending rate. Throughput grows to a saturation point after which
it is constant. Smaller fabric networks have smaller average latency and higher through-
put than bigger networks with the same transaction sending rate. Tests show that adding
endorsing peers to the channel decreases throughput and increases the average latency,
while adding additional peers without an endorsing role does not have an impact on la-
tency and throughput changes. Network size depends on the number of endorsing peers.
Scalability analysis shows that adding new endorsing peers decreases the performance of
the blockchain network. Test cases did not show any significant impact of block size on
latency or throughput for Hyperledger fabric. The failing transaction might be caused by
Caliper timeouts rather than network problems which can not commit the transaction fast



Performance and Scalability Evaluation of a Permissioned Blockchain 677

due to high overload. Minimal latency in Hyperledger Iroha according to experiments not
depend on network size and transaction sending rate. For all sending rates it was around
4 seconds. Both the minimal and average latency is almost constant and does not depend
on the transaction sending rate. Scalability analysis has shown that Hyperledger Iroha
network performance worsens for networks which size exceeds thirty nodes. Hyperledger
Sawtooth fails in many tests. Possible failures might be the result of: a bug in Caliper
SawtoothAdapter used, a bug in PoET CFT implementation of Sawtooth v1.0.5, or bug in
transaction processor handling ’Simple’ transactions. Due to those failures further inves-
tigation must be done. Maximal used CPU power during the test was 15%, all network
components were started and managed by a single docker container. It might suggest that
the docker could not use all available power to properly manage nodes. Hyperledger Fab-
ric is the most adult platform among all Hyperledger platforms and is used already in
many production systems.

References

1. Bamakan, S.M.H., Motavali, A., Bondarti, A.B.: A survey of blockchain consensus algorithms
performance evaluation criteria. Expert Systems with Applications 154, 113385 (2020)

2. Caliper, H.: Hyperledger caliper architecture. Electronic Article. url: https://hyperledger.
github. io/caliper/docs/2 Architecture. html (visited on 03/10/2019) (2019)

3. Cruz, Z.B., Fernández-Alemán, J.L., Toval, A.: Security in cloud computing: A mapping study.
Computer Science and Information Systems 12(1), 161–184 (2015)

4. De Angelis, S., Aniello, L., Lombardi, F., Margheri, A., Sassone, V.: Pbft vs proof-of-authority:
applying the cap theorem to permissioned blockchain. In: Italian Conference on Cyber Security.
p. 11 pp. (01 2017)

5. Dhillon, V., Metcalf, D., Hooper, M.: The hyperledger project. In: Blockchain enabled applica-
tions, pp. 139–149. Springer (2017)

6. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A framework for
analyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on
Management of Data. pp. 1085–1100. ACM (2017)

7. Feng, L., Zhang, H., Chen, Y., Lou, L.: Scalable dynamic multi-agent practical byzantine fault-
tolerant consensus in permissioned blockchain. Applied Sciences 8(10), 1919 (2018)

8. Gorenflo, C., Lee, S., Golab, L., Keshav, S.: Fastfabric: Scaling hyperledger fabric to 20,000
transactions per second. arXiv preprint arXiv:1901.00910 (2019)

9. Group, H.A.W., et al.: Hyperledger architecture volume 1: Introduction to hyperledger business
blockchain design philosophy and consensus (2017)

10. Huang, K., Chen, Y., Jia, H., Lan, J., Yan, X., Wang, Z.: Fast multicast scheme with secure
network coding in cloud data centers. Computer Science and Information Systems 13(2), 531–
545 (2016)

11. Jovanović, B., Milenković, I., Bogićević-Sretenović, M., Simić, D.: Extending identity man-
agement system with multimodal biometric authentication. Computer Science and Information
Systems 13(2), 313–334 (2016)

12. Kedziora, M., Kozlowski, P., Szczepanik, M., Jozwiak, P.: Analysis of blockchain selfish min-
ing attacks. In: International Conference on Information Systems Architecture and Technology.
pp. 231–240. Springer (2019)

13. Li, W., Sforzin, A., Fedorov, S., Karame, G.O.: Towards scalable and private industrial
blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Con-
tracts. pp. 9–14. ACM (2017)



678 Arnold Woznica and Michal Kedziora

14. Moser, M., Eyal, I., Sirer, E.G.: Bitcoin covenants. In: International Conference on Financial
Cryptography and Data Security. pp. 126–141. Springer (2016)

15. Nasir, Q., Qasse, I.A., Abu Talib, M., Nassif, A.B.: Performance analysis of hyperledger fabric
platforms. Security and Communication Networks 2018 (2018)

16. Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in blockchain. Journal of
Information processing systems Vol. 14, No. 1, pp. 101-128, Jan. 2018 (2018)

17. Performance, H., Group, S.: Hyperledger blockchain performance metrics,
https://www.hyperledger.org/HLWhitepaperMetricsPDFV1.01.pdf

18. Rüsch, S.: High-performance consensus mechanisms for blockchains (2018)
19. Sousa, J., Bessani, A., Vukolic, M.: A byzantine fault-tolerant ordering service for the hyper-

ledger fabric blockchain platform. In: 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). pp. 51–58 (June 2018)

20. Sukhwani, H.: Performance modeling & analysis of hyperledger fabric (permissioned
blockchain network). Duke University (2018)

21. Sukhwani, H., Martı́nez, J.M., Chang, X., Trivedi, K.S., Rindos, A.: Performance modeling
of pbft consensus process for permissioned blockchain network (hyperledger fabric). In: 2017
IEEE 36th Symposium on Reliable Distributed Systems (SRDS). pp. 253–255. IEEE (2017)

22. Sukhwani, H., Wang, N., Trivedi, K.S., Rindos, A.: Performance modeling of hyperledger fab-
ric (permissioned blockchain network). In: 2018 IEEE 17th International Symposium on Net-
work Computing and Applications (NCA). pp. 1–8. IEEE (2018)

23. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and optimizing hyper-
ledger fabric blockchain platform. In: 2018 IEEE 26th International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). pp.
264–276. IEEE (2018)

24. Turki, H., Salgado, F., Camacho, J.M.: Honeyledgerbft: Enabling byzantine fault tolerance for
the hyperledger platform

25. Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In:
Camenisch, J., Kesdoğan, D. (eds.) Open Problems in Network Security. pp. 112–125. Springer
International Publishing, Cham (2016)

26. Wang, R., Ye, K., Meng, T., Xu, C.Z.: Performance evaluation on blockchain systems: A case
study on ethereum, fabric, sawtooth and fisco-bcos. In: International Conference on Services
Computing. pp. 120–134. Springer (2020)

Arnold Woznica received his M.Sc. degree in Computer Science from University of Sci-
ence and Technology, Wroclaw, Poland in 2019. His research area of interests encompass
blockchain systems and software engineering.

Michal Kedziora received the Ph.D. degree in Computer Science from the Wroclaw Uni-
versity of Science and Technology, Wroclaw, Poland, in August 2014, and the M.S. and
Engineer degree in Computer Security from the University of Technology in Wroclaw,
Poland, in December 2006. In 2017 he finished postdoc at University of Wollongong,
Australia. He was working as a Visiting Researcher at University of Technology Sydney,
Australia (2019) and Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
(2020).

Received: May 07, 2021; Accepted: January 25, 2022.


