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Abstract. Compactly supported orthogonal wavelet filters are extensively applied 

to the analysis and description of abrupt signals in fields such as multimedia. 

Based on the application of an elementary method for compactly supported 

orthogonal wavelet filters and the construction of a system of nonlinear equations 

for filter coefficients, we design compactly supported orthogonal wavelet filters, 

in which both the scaling and wavelet functions have many vanishing moments, 

by approximately solving the system of nonlinear equations. However, when 

solving such a system about filter coefficients of compactly supported wavelets, 

the most widely used method, the Newton Iteration method, cannot converge to 

the solution if the selected initial value is not near the exact solution. For such, we 

propose optimization algorithms for the Gauss-Newton type method that expand 

the selection range of initial values. The proposed method is optimal and 

promising when compared to other works, by analyzing the experimental results 

obtained in terms of accuracy, iteration times, solution speed, and complexity. 

Keywords: compactly supported orthogonal wavelets, the least-squares method, 

Gauss-Newton methods, LMF method. 

1. Introduction 

In signal analysis, modeling and processing, wavelets with compact support property 

and orthogonality are widely used. The advantages of wavelets with compact support 

property are: 1) when transforming truncated signals into finite-length signals, due to 

the infinite time-domain waveform length of compactly supported wavelet, the 

transformed signals are of finite length, i.e., there are no truncation errors; 2) FIR is the 
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filter of compact-supported wavelets, which can make computation decreased to get 

favorable real-time property. Furthermore, orthogonal wavelets are useful to extract 

signal features for pattern recognition when applying in signal decomposition. The 

orthogonality reflected in digital image processing means that the original image's total 

energy is equal to the wavelet domain. So constructing compactly supported orthogonal 

wavelets plays an essential role in wavelet analysis.  

Several researches to construct compactly supported orthogonal wavelets for general 

purposes were proposed, due to the several application advantages in multimedia 

technology. In [1], a framework for designing the compactly supported orthogonal 

wavelets in the time-domain was proposed, while an approach to design the compactly 

supported orthogonal wavelets from filter banks in poly-phase also having vanishing 

moments was proposed in [2]. Han et al. [3] constructed a family of compactly 

supported symmetric orthogonal complex wavelets with dilation 4 and the shortest 

possible supports to their orders of vanishing moments. Hiroshi Toda et al. [4] proposed 

a new type of orthonormal wavelet basis having customizable frequency bands. Its 

frequency bands can be freely designed with arbitrary bounds in the frequency domain. 

In [5, 6], a series of compactly supported orthogonal wavelet bases with various features 

were constructed based on the structure of orthogonal conjugate filters. 

There are also some works for matched compactly supported orthogonal wavelets. A 

design for matched wavelets and matched scaling function was proposed in [7], which 

was done in the time-domain and did not have assumptions on the template function. In 

[8], the problem of designing the compactly supported orthogonal wavelets for finite-

length signals was firstly addressed. In [9], a novel approach was presented to design 

orthogonal wavelets matched to a signal with compact support and vanishing moments. 

It provided a systematic and versatile framework for matching an orthogonal wavelet to 

a specific signal or application.  

Many researchers were interested in the study of constructing compactly supported 

orthogonal wavelets with B-splines. He, T. and T. Nguyen[10] gave an approach to 

prove Daubechies’ result on the existence of spline type orthogonal scaling functions 

and to evaluate Daubechies scaling functions. Tung Nguyen[11] presented a method to 

construct orthogonal spline-type scaling functions by using B-spline functions. To 

induce the orthogonality and remain property of compact support, a class of polynomial 

function factors to the B-splines' masks was multiplied. In [12], Yang Shouzhi et al. 

used orthonormalization procedure so that splines become orthogonal scaling functions. 

Then to make them have the property of compact support, the weighted average method 

was used to eliminate the denominator of the two-scale symbol. Gupta, K.L. et al. 

developed a simple procedure to generate the compactly supported orthogonal scaling 

function for higher-order B-splines and multiplied the mask of B-spline with a 

polynomial function that satisfied all the conditions as the mask of B-spline to obtain 

orthogonality [13]. 

Wavelet transform, as a useful analytic tool for unstable signals, is also widely 

applied to artificial intelligence, such as computer classification and recognition, 

artificial synthesis of music and language, medical imaging and diagnosis and so on. 

Especially, wavelet transform performs well in boundary processing and multi-scale 

edge detection. Some researchers are devoted to computer vision field. [14] used UNet 

method to preprocessing under the guidance of medical knowledge. Then, multi-scale 

receiving field convolution module was used to extract features of the segmented 

images with different sizes. [15] proposed a novel click-boosted graph ranking 
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framework for image retrieval, which consists of two coupled components. [16] used an 

adopted TextRank to extract key sentences and a template-based method to construct 

questions from key sentences. Then a multi-feature neural network model was built for 

ranking to obtain the top questions. 

Wavelet transform is not only used in signal and image processing, speech 

recognition and synthesis, but also in digital image encryption algorithms. In the field of 

digital copyright protection, how to encrypt and protect digital information often 

involves the encryption and concealment of digital images and their watermark 

information, as well as the encryption and concealment of video and audio and their 

watermark information. In terms of the confirmation of digital rights, ledgers and 

whole-process records are open in blockchain. Digital copyright works are distributedly 

stored in network nodes by providing decentralized distributed technology. Now 

blockchain plays a significant role in digital copyright protection, but there are also 

some limitations of blockchain in the aspects of privacy protection, data processing and 

data storage. There are many researchers devoted to the study of privacy protection and 

data security based on cloud computing and blockchain. The enhanced secure access 

schemes for outsourced and a secure deduplication scheme proposed in [17-20] can 

effectively protect local data. [21] proposed one secure data integrity verification 

scheme for cloud storage. [22-24]  proposed a secure blockchain-based schemes for IoT 

data credibility, a secure data storage and recovery in industrial blockchain network 

environments and a blockchain‐based scheme to protect data confidentiality and 

traceability.  

Except for the case of order one, B-splines of orders greater than one are not 

orthogonal. Methods that can make wavelets obtain orthogonality must be applied to 

construct compactly supported orthogonal wavelet and scaling filters. However, when 

constructing the compactly supported orthogonal wavelets for general purposes, 

applying other methods to get orthogonality makes construction complicated. Therefore, 

we construct the compactly supported orthogonal wavelet filters by solving nonlinear 

equations about filter coefficients with optimization methods and obtaining a series of 

wavelet filters with different linear phases and multiresolution properties. 

We construct compactly supported orthogonal wavelet filters based on an elementary 

method in [25]. Bi-scale equation and the similarity between orthogonality condition 

and the formula       

 
      

 
 
 

   are used to construct a system of nonlinear 

equations about filter coefficients of compactly supported orthogonal wavelets. We 

derive a system of nonlinear equations about filter coefficients using double-scale 

equation and properties of wavelet and scaling filters. Most of the existing methods for 

solving the system of nonlinear equations are Newton Iteration Method and its 

improved forms. However, Newton Iteration Method has a fatal shortcoming -- 

dependence of the solution on the initial values. That is, if the initial values are not 

correctly selected, likely, the solution of the system of nonlinear equations will not be 

obtained. The least-square method can expand the selection range of initial values, and 

sometimes for the same initial values, the Newton iteration method may not converge to 

the correct solution, but the least square method can [26]. Based on the Gauss-Newton 

method for the least-square problem, we propose optimization algorithms to solve the 

system of nonlinear equations. When the given initial values of filter coefficients vary, 

solutions to the system of nonlinear equations are different. Thus, we can obtain a series 

of compactly supported orthogonal wavelets with various features. 
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Our contributions in constructing compactly supported orthogonal wavelet filters are:  

1. deriving system of nonlinear equations about filter coefficients of compactly 

supported orthogonal wavelets. We derive a system of nonlinear equations 

about filter coefficients in the case of L=1, L=2 and L=3, then we can obtain 

compactly supported orthogonal wavelets filters with the length of 4, 6 and 8;  

2. proposing optimization algorithms to solve a system of nonlinear equations 

derived. Based on the Gauss-Newton type method's traditional algorithms, we 

propose optimization algorithms: 1) Basic Gauss-Newton method; 2) Damping 

Gauss-Newton method under Wolfe criterion; 3) Gauss-Newton method with 

QR decomposition; 4) LMF-Dogleg method that adds Dogleg method for trust-

region subproblem into LMF method.  

In terms of accuracy, iteration times, and complexity of algorithms, we analyze 

approximate solution results of equations to draw conclusions. We analyze solutions 

obtained by algorithms of Basic GS method, Damping GS method, GS method with QR 

decomposition, LMF method, and LMF-Dogleg method to obtain the conclusion. We 

conclude that the compactly supported orthogonal wavelet bases obtained by the basic 

Gauss-Newton method are optimal.  

The remaining of this article is structured as follows. Section 2 introduces the related 

concepts and properties of wavelet, the elementary method for constructing compactly 

supported wavelet filters, and related algorithms for solving the least-square problem. 

Systems of nonlinear equations about filters coefficients are derived in section3. Section 

4 proposes optimization algorithms based on the Gauss-Newton method, and 

approximate solution results and analysis are presented in section5, and finally, 

concluding remarks and future directions are given in Section 6. 

2. Preliminaries 

We present: 1) related concepts and properties of wavelets; 2) an elementary method in 

[25] is used to construct compactly supported orthogonal wavelet filters in section3; 3) 

traditional algorithms of Gauss-Newton type method for the least-square problem are 

used to propose optimization algorithms for solving a system of nonlinear equations in 

section4.  

2.1. Related Concepts and Properties 

The following concepts, properties, and theorems are used to construct compactly 

supported orthogonal wavelet filters in section3. 

Definition 1. (Two-scale Equation) 

               

 

      

 

        (1) 
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        (2) 

Equations (1) and (2) are named two-scale equation      and      are standard 

orthogonal basis functions in scale space    and wavelet space    respectively, and the 

expansion coefficients are 

                  

                  

The two-scale equation describes the intrinsic and essential relationship between the 

basis functions of two adjacent scale spaces      and   , or adjacent space   and 

wavelet space  . 

Definition 2. (Low-pass Filter) 

     
 

  
    

    

 

 (3) 

     is the corresponding coefficient of low-pass filter. 

Definition 3. (High-pass Filter) 

     
 

  
    

    

 

 (4) 

     is the corresponding coefficient of high-pass filter. 

Theorem 1.      and      are   -periodic functions, and satisfy 

                    (5) 

                      (6) 

Theorem 2. 

1) 

   

 

       

 

   (7) 

2) 

        

 

   (8) 

3) 
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 (9) 

4) 

     
 

   

   (10) 

2.2. An Elementary Method for Constructing Compactly Supported 

Orthogonal Wavelets 

We construct compactly supported orthogonal wavelets based on an elementary 

proposed in [25]. Bi-scale equation and the similarity between orthogonality condition 

and the formula       

 
      

 
 
 

   were used to construct a system of nonlinear 

equations about filter coefficients of compactly supported orthogonal wavelets. The 

process of construction is as follows: 

Let 

     
 

  
    

    

 

   

    

                            

and for the properties of      , there is 

        
 

 
   

 

 

   

          

   

   

 

   

          

 

   

       

namely  

           

 

   

      

    
 

 
   

 

 

   

           

   

   

            

(11) 

To calculate      using formula 11, values of         or      must be given first. In 

[25],      is calculated by giving the values of     , and values of      are derived by 

using similarity between       

 
      

 
 
 

   and the orthogonality condition 

                   . Generally, let 
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When L is the general case, 
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(13) 

2.3. The Least-Squares Problem (LS)[27] 

Definition 4.  Giving a set of experimental data                  and a functional 

model       , remaining quantity       is                                . The 

least-squares problem is 
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Definition 5.  The Newton equation for solving the least-squares problem is 

   
             

     (15) 

where 

                              

                  

 

   

   

                    

(16) 

The methods of solving the least-squares problem can also be used to get 

approximate solution               
  of a system of nonlinear equations 

                         

2.4. Gauss-Newton Method 

Definition 6.  Gauss-Newton Equation 

  
         

      (17) 

The advantage of the Gauss-Newton method to solve the system of nonlinear 

equations lies is that it does not need to calculate the second derivative of     [27]. So 

the minimum point    in the linear least-squares problem with respect to   can be 

obtained by computing the value of        
    

    
   . 

The following is the traditional algorithm of the Gauss-Newton method: 

Algorithm 1. Gauss-Newton Method to Solve LS[27] 

Step 1. Give            ; 

Step 2. if the termination condition is satisfied, stop the iteration; 

Step 3. solve   
        

    to obtain   ； 

Step 4. compute             ，     ，go back to Step 2. 

2.5. QR Decomposition of    

To reduce the solution sensitivity caused by the rounding error in solving LS with the 

basic Gauss-Newton method, and improve the feasibility of the solution process and 

accuracy of the final solution, in [27], QR decomposition of    were used to obtain   . 

Solving the Gauss-Newton equation is equivalent to solve 
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     . 

First, QR decomposition is used to obtain  

      
  

 
   (18) 

where         is an orthogonal matrix,          is the upper triangular matrix 

with non-zero diagonal elements and            is a zero matrix.  

Then partition    to get  

      
   

  
      (19) 

where   
   

           
   

         . 

And let 

  
     

  
    

  
    

     
  
  

 
   

 

, (20) 

so 

             
       

      

           
  

 
     

      

                           . 

(21) 

   is the solution of the least-squares problem if and only if    is the solution of 

       . 

2.6. LMF Method 

Definition 7.  LMF Equation 

    
             

    (22) 

To solve the situation that   
    is singular in the iteration process with the Gauss-

Newton method, Levenberg proposed the LMF equation to obtain   , where     . 

LM method is a trust region method, and the value of    can be modified in iterations 

with the idea of the trust region method. LMF method solves the least-squares problem 

with the following algorithm: 
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Algorithm 2. LMF Method to Solve LS [16]  

Step 1. Give                   ; 

Step 2. if the termination condition           is satisfied, stop the iteration; 

Step 3. solve     
             

    to obtain   ; 

Step 4. compute    with    
   

   
; 

Step 5. if        ，        ；else if        ，     
  

 
；else        ； 

Step 6. if     ，       ；else           ,         go back to Step 2. 

 

 

And 

                  , 

                  
 

 
  

          ， 

     
      

(23) 

2.7. Dogleg Method 

Powell proposed the Dogleg method to solve the trust-region subproblem in the LMF 

method, since the direction   
   obtained from the LM equation is affected by the value 

of   , which makes solution speedy varied greatly. The algorithm of the Dogleg method 

is: 

Algorithm 3. Dogleg Method to Solve Trust Region Subproblem 

Step 1. Give           ; 

Step 2. if    
      ，     

  , and output   , stop the iteration; 

Step 3. compute    
   

    

     
    

; if      
       ， 

   
  

   
   

  
  ，and output   ; 

Step 4. solve the unary quadratic equation 

   
       

            
   

   
        

       
    

       
  to obtain  

（take the solution greater than 0）; 

Step 5. compute             
      

  ，and output   , stop the iteration. 

 

And   
   is Gauss-Newton direction, i.e. 

  
       

    
    

   ，  
      

   . (24) 
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3. Construction of a system of nonlinear equations 

Based on the method presented in subsection 2.2, we derive a system of nonlinear 

equations about filter coefficients of compactly supported wavelets in the case of L=1, 

L=2 and L=3 to obtain filters with the length of 4, 6, and 8. In subsection 2.2,         

can be presented as  

             
 

 
      

  
 

      
 

 
 
    

     
 

 
 
 

   

   

  
  
 

      
 

 
         

 

 
    

When the value of L is given,         can be presented as  

           

 

   

      

to obtain values of     , which are used to construct a system of nonlinear equations 

about     . Derivations of values of      in the case of L=1, L=2, and L=3 are as 

follows: 

3.1. L=1 

When L=1, let 

            
 

 
      

 

 
    

 

 
  

      

 
 
 

 
 

 
             

 
 

 
                               

 
 

 
         

 

 
                      

 
 

 
 

 

 
     

 

  
                         

 
 

 
 

 

 
     

 

  
                          

 
 

 
 

 

  
     

 

  
      

then we have values of      in the case of L=1, 

               
 

 
 
 

  
    

 

  
   (25) 
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3.2. L=2 

When L=2, let 

             
 

 
      

 

 
    

 

 
      

 

 
    

 

 
 

  
      

 
 
 

   
      

 
 
 

    
 

 
    

 

 
      

 

 
    

 

 
    

 

 
 

 
 

  
                                           

 
 

  
                                                   

                           

 
 

  
                                                   

                                      

 
 

  
                                                    

 
 

  
                                

 
 

 
 

 

  
       

  

  
      

 

  
      

  

  
      

 
 

 
 

  

   
     

  

   
      

 

   
        

then we have values of      in the case of L=2, 

                     
 

 
 
  

   
    

  

   
   

 

   
   

(26) 

3.3. L=3 

When L=3, let 
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then we have values of      in the case of L=3, 
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Then use formula (11) and theorem 2.2 to conduct a system of nonlinear equations 

about filter coefficients      in the case of L=1, L=2 and L=3 as follows:  
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when L=3, 

 
 
 
 
 
 
 

 
 
 
 
 
 
  

    
    

    
    

    
    

    
   

                                   
    

    
                          

                          
   

    
                     

               
  

    
           

      
 

    

                          

  

 

Compactly supported orthogonal wavelet filters with the length of 4, 6, and 8 can be 

obtained by approximately solving the abovementioned three systems of nonlinear 
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equations with filter coefficients     . In the following section, we propose 

optimization algorithms for the approximate solution of the system of nonlinear 

equations. 

4. Optimization Algorithms 

To obtain optimal compactly supported orthogonal wavelet bases by solving the system 

of nonlinear equations constructed in section3, we propose optimization algorithms of 

variants of the Gauss-Newton method. When the dimension of the system of nonlinear 

equations is small, the Gauss-Newton type method can locally converge to the solution 

of a system of nonlinear equations fast. Since the upper dimension of the nonlinear 

system constructed in section 3 is only 8, we propose the Basic Gauss-Newton method, 

Damping Gauss-Newton method and QR decomposition Method based on GN method, 

and Dogleg method based on LMF method.  

4.1. Basic Gauss-Newton Method 

The basic Gauss-Newton method refers to the Gauss-Newton method on     , as its 

most significant advantage, is that the algorithm is simple and easy to be implemented. 

The basic Gauss-Newton method solves the least-squares problem with the following 

algorithm:  

Algorithm 4. Basic Gauss-Newton Method to Solve LS 

Step 1. Give            ; 

Step 2. if the termination condition           is satisfied, stop the iteration; 

Step 3. solve   
        

    to obtain   ； 

Step 4. compute           ，      ，go back to Step 2. 

4.2. Damping Gauss-Newton Method. 

The damping Gauss-Newton method refers to the Gauss-Newton method with line 

search. We use the inexact line search under the Wolfe criterion to obtain   , namely let 

                        , where   is the minimal nonnegative integer satisfying 

the following inequality: 

                      
     (28) 

Compared with the basic Gauss-Newton method, the damping Gauss-Newton 

method has higher precision due to line search to find the step size and is relatively 

more complex. The algorithm of the damping Gauss-Newton method to solve LS is as 

follows:  
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Algorithm 5. Damping Gauss-Newton Method to Solve LS 

Step 1. Give            ; 

Step 2. if the termination condition           is satisfied, stop the iteration; 

Step 3. solve    
        

    to obtain   ; 

Step 4. give                  ，  =0; 

Step 5. if the current    satisfies                       
   ，stop the 

iteration; 

Step 6. or else      ，go back to Step5; 

Step 7. compute       ; 

Step 8. compute             ，      ，go back to Step 2. 

4.3. Gauss-Newton Method with QR Decomposition. 

Based on QR decomposition of   ,    can be obtained by solving the equation     
   , which reduces the solution sensitivity caused by the rounding error in solving LS 

with the Gauss-Newton method, and improves the feasibility of the solution process and 

the accuracy of the final solution. The QR decomposition iteration method is used to 

solve the least-square problem with the following algorithm: 

Algorithm 6. Gauss-Newton Method with QR Decomposition to Solve LS 

Step 1. Give           ； 

Step 2. if the termination condition           is satisfied, stop the iteration; 

Step 3. compute the QR decomposition of   ; 

Step 4. compute      
    

  ; 

Step 5. solve the upper triangular equation          to obtain   ; 

Step 6. compute           ，      ，go back to Step 2. 

4.4. LMF-Dogleg Method 

Based on the LMF method, we propose the LMF-Dogleg method that uses Dogleg 

method to solve the subproblem of selecting    in the LMF method. LMF-Dogleg 

method is used to solve the least-square problem with the following algorithm: 

Algorithm 7. LMF-Dogleg Method to Solve LS 

Step 1. Give                   ; 

Step 2. if the termination condition           is satisfied, stop the iteration; 

Step 3. if    
      ，     

  , and output   ; 

Step 4. compute    
   

    

     
    

; if      
        and    

  

   
   

  
  ,output   ; 

Step 5. solve the unary quadratic equation 
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 to 

obtain  （take the solution greater than 0）; 

Step 6. compute             
      

  ，and output   ; 

Step 7. update   : compute    
   

   
; if        ，         ；else if         

    ，        ;        ; 

Step 8. if     ，       ; else           , and      ，go back to  step 

2.  

 

5. Analysis 

To obtain the optimal compactly supported orthogonal wavelet bases with lengths of 4, 

6, and 8, we implement the optimization algorithms proposed in section 4 by MATLAB 

to solve the system of nonlinear equations derived in section3. Giving two sets of initial 

values of     , we obtain different solutions of the three systems of nonlinear equations. 

Then we analyze the approximate solution results to obtain the best compactly 

supported orthogonal wavelet bases constructed based on the elementary method 

proposed in [8]. We remain to solve precision        ，trust region radius     , 

and       unchanged, and only make the initial values of      vary. The initial 

values and solutions are presented as follows: 

1. When L=1, let the initial values   
   

           and           respectively. The 

solving results are presented in Fig.1, which gives two sets of graphs 

corresponding to different initial values and explicitly indicate the solution's 

structure. Furthermore, the data of two tables in Fig.1 are presented to analyze 

the accuracy of algorithms. 

2. When L=2, let the initial values   
   

               and               
respectively. The solving results are presented in Fig.2, where it is plain that 

five curves of solution are almost coincident. 

3. When L=3, let the initial values   
   

                   and                   
respectively. The solving results are presented in Fig.3. It can be seen from the 

two graphs that solution curves of different algorithms are almost coincident 

except for the LMF. The detailed analyses about this phenomenon are discussed 

as follows.  

The selection of initial values and optimization algorithms affects the accuracy and 

solving speed of approximate solutions, as can be seen in Fig.1, Fig.2, and Fig.3 that the 

structure of the solution varies with algorithms and initial values. Therefore, we analyze 

the solution results and figure out under what circumstances the method can be applied 

to obtain optimal compactly support orthogonal wavelet bases. We analyze the solution 

results on the accuracy, iteration times (of different cases presented in Table1), solution 

speed, and algorithms' complexity. The accuracy of the approximate solutions is 

analyzed based on the degree of coincidence between the solution results and the 

constant terms in the original equation group (the checking method is to substitute the 

solution results into the left side of the system of nonlinear equations and compare the 

values obtained with the right side). 
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Table 1. Data in the table are iterations of different solving processes in Fig.1, Fig.2, and Fig.3, 

given by MATLAB programs. They are collected to measure the solving speed and complexity of 

different algorithms 

Initial Values 

Algorithms 
L=1.(a) L=1.(b) L=2.(a) L=2.(b) L=3.(a) L=3.(b) 

Basic GN 8 6 11 5 8 8 

Damping GN 8 6 11 5 11 8 

GN with QR  8 6 11 5 8 8 

LMF 9 6 10 7 18 11 

LMF-Dogleg 8 6 10 5 7 10 

 

Fig.1. To analyze the influence of variations about initial values of filter coefficients on 

approximate solution results. Among the initial values, solving precision        , trust-region 

radius     , and       remain unchanged, and only the initial filter coefficients are variables. 

The initial values of filter coefficients of (a) are          , and           of (b) 

 

Fig.2. Solving precision        , trust region radius     , and       remain unchanged. 

The initial values of filter coefficients of (a) are              , and               of (b). It can be 

seen in (b) that five curves of solution are almost coincident, and compared with (a), the structure 

of solution in (a) are basically tallies (b) 

Analysis of the solution speed is based on the solution process's iteration times, 

which is presented in Table 1 (given by the MATLAB program). The iteration times are 

the number of iterations used until the termination condition           is satisfied. 
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The solution results of (a) in each figure show that when using various methods to 

approximate the solution, the difference between the structure obtained and the iteration 

coefficient is significant; the results of (b) in Fig.1, Fig.2, and Fig.3 relatively show a 

small or even no difference between most of them. Accordingly, the results in the 

chart(a) in each figure serve as group1, and results in chart(b) serve as group2 to 

analyze the accuracy and solve the speed of different algorithms.  

The features of initial values selected in the group1 are: 1) there is only one 0 

element; 2) the rest elements are all 1. We can see from Fig.1, Fig.2, and Fig.3 that 

iteration times of LMF are more than other algorithms: 1) when L=1 and 2, the number 

of iterations of the Gauss-Newton method is less than or equal to the LMF-Dogleg 

method; 2) when L=3, iterations times of the LMF-Dogleg solution is lower than the 

Gauss-Newton method. After checking the results in group1, we obtain conclusions: 1) 

when L=1 and 2, the accuracy of the Gauss-Newton method is better than that of the 

LMF method and LMF-Dogleg method; 2) when L=3, LMF-Dogleg method, the LMF 

method, and damping Gauss-Newton method are similar in accuracy and higher than the 

basic Gauss-Newton method. In addition, the structure of approximate solution results 

of the LMF method is different from that of other methods. 

 

Fig.3. The initial values of filter coefficients of (a) are                   and                   of 

(b). Solving precision        , trust region radius     , and       remain unchanged. It 

can be seen in the two charts that curves of solutions are almost coincident except for the LMF 

The feature of initial values selected in the group2 is that half of the elements of      
are 0, and the others are all 1. The solution results show that the accuracy of the group2 

is higher than group1. Therefore, the initial values selected in group2 can be regarded as 

close to the exact solution. We can see from these three tables: 1) When L=1 and 2, only 

the results of LMF methods are different from others, and the number of iterations is 

higher or equal to others; 2) When L=3, the relation of iteration times is: LMF > LMF-

Dogleg > Gauss-Newton type method. The checking results show that in three cases, the 

LMF method has the lowest accuracy; 3) When L=3, the LMF-Dogleg method and 

damping Gauss-Newton method are more accurate than other methods, which are 

similar to group1. 

Synthesizing the above analysis, we can see that although the differences between 

initial values have effects on the solution results, in most cases, the algorithms in this 

paper can converge to the solution when approximately solving the system of nonlinear 

equations. After checking, we find that these effects are not noticeable: the difference of 
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precision is only 0.001, and the difference of iteration times on L=1 and L=3 is 

minimal. 

In addition, compared with the Newton Iteration method, it is more efficient to solve 

the system of nonlinear equations about filter coefficients by the least square method, 

and the solution process is relatively stable and efficient. Moreover, the efficiency of the 

LMF method is inferior in all aspects, and as with the improved LMF method, the LMF-

Dogleg is superior to the LMF method in all aspects of analysis. The Gauss-Newton 

method was superior to the LMF-Dogleg method when L=1 and L=2, and slightly 

inferior to the LMF-Dogleg method and Gauss-Newton method when L=3, but the 

difference between the three methods was very small. In addition, the LMF-Dogleg 

method and damping Gauss-Newton method are more complicated than the basic 

Gauss-Newton method, and in the process of the actual execution of the program, the 

cost of time and space is more than the basic Gauss-Newton method. However, the 

precision and iterative coefficients are almost identical. We can see the basic Gauss-

Newton method is easy to implement and has high precision. Therefore, we can 

conclude that the wavelet filter bases that are constructed by solving a system of 

nonlinear equations about filter coefficients with the basic Gauss-Newton method are 

optimum. 

6. Conclusions and Future Work 

We construct compactly supported orthogonal wavelet filters with different linear 

phases and multiresolution properties by solving the systems of nonlinear equations 

about filter coefficients. We drive these systems of nonlinear equations about filter 

coefficients of wavelets using bi-scale equation and similarity between orthogonality 

condition and the formula       

 
      

 
 
 

  . To approximately solve these 

systems of nonlinear equations, we propose optimization algorithms of the Basic Gauss-

Newton method, Damping Gauss-Newton method, Gauss-Newton method with QR 

decomposition, and LMF-Dogleg method. We then analyze the solution results by these 

algorithms on the accuracy, iteration times, solution speed, and complexity of 

algorithms and conclude that the wavelet filters are constructed by a solving system of 

nonlinear equations about filter coefficients with basic Gauss-Newton method are 

optimal. 

The general form of a system of nonlinear equations was not be given in this paper. 

As the derivation has reached 16 power when L=4, the construction is too complicated, 

and we cannot guarantee the correctness of the nonlinear system's constant term. 

Therefore, we only construct compactly supported wavelet filters in the cases of L=1, 

L=2, and L=3. Nevertheless, we obtain some laws : 

1. There are 2L+2 unknown numbers and 2L+3 equations in the system of the 

nonlinear equation; 

2. The general simplified result is:         
 

 
                    

   , 

where    is a coefficient. 

As future work, we will attempt to find the general laws between the filter 

coefficients, and construct a system of nonlinear equations about them, then design a 

general program that can output the filter coefficients only by giving the value of L. In 
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this way, we can improve the efficiency of constructing compactly supported orthogonal 

wavelet filters with various features, which are widely applied to signal analysis and 

processing in multimedia and other fields. 
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