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Abstract. Despite a vast application of temporal point processes in infectious 

disease diffusion forecasting, ecommerce, traffic prediction, preventive 

maintenance, etc, there is no significant development in improving the simulation 

and prediction of temporal point processes in real-world environments. With this 

problem at hand, we propose a novel methodology for learning temporal point 

processes based on one-dimensional numerical integration techniques. These 

techniques are used for linearising the negative maximum likelihood (neML) 

function and enabling backpropagation of the neML derivatives. Our approach is 

tested on two real-life datasets. Firstly, on high frequency point process data, 

(prediction of highway traffic) and secondly, on a very low frequency point 

processes dataset, (prediction of ski injuries in ski resorts). Four different point 

process baseline models were compared: second-order Polynomial 

inhomogeneous process, Hawkes process with exponential kernel, Gaussian 

process, and Poisson process. The results show the ability of the proposed 

methodology to generalize on different datasets and illustrate how different 

numerical integration techniques and mathematical models influence the quality 

of the obtained models. The presented methodology is not limited to these 

datasets and can be further used to optimize and predict other processes that are 

based on temporal point processes. 

Keywords: temporal point process, Hawkes process, Poisson process, highway 

traffic prediction, ski injury prediction. 

1. Introduction 

Nowadays, one of the most popular research areas is focused on modelling event 

sequences. Event sequencing has become extremely popular in a wide range of 

applications such as road traffic estimation [1], epidemiology prediction [2], network 

activities [3], bioinformatics [4], e-commerce, etc. Event data carry information about 

event occurrence. Additionally, event data can also provide information about classes of 

events, types of events, participants, etc. This type of point process is known as a 

marked point process.  
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A point process is extremely useful in modelling traffic congestion and traffic event 

occurrences, e.g. arrival of vehicles, pedestrian movement, etc. [8]. Simulating highway 

traffic and predicting highway congestion is one of the main problems connected with 

point process modeling [9].  

If compared with time series, event occurrences are treated as random variables 

generated in an asynchronous manner, which makes them fundamentally different from 

the time series where equal and fixed time intervals are assumed. This property makes 

them useful in a wide variety of applications where discretizing events to a fixed interval 

would result in poor prediction performances and high computational cost. 

Generally, there are two types of point process models: temporal (univariate) point 

process and spatial-temporal (multivariate) point process. In the case of the univariate 

point process, the objective is to model temporally correlated event occurrences, 

whereas in spatial-temporal point process the event occurrences are correlated in space 

and time. Generally, multivariate point process is mostly used in the analysis of protein 

patterns [5] and financial market predictions [6]. The general formulation of the point 

processes makes them available to model event occurrences, both continuous or 

discontinuous (with jumps). Additionally, the point process can be further generalized 

by stochastic differential equations to stochastic point process.  

The main idea behind different types of point process models is hidden in modelling a 

conditional intensity function (CIF). A CIF can be interpreted heuristically as the 

expected number of events that are going to occur in an infinitely small timestamp (dt). 

CIF can be modelled as a constant (homogeneous process) or as a function of time 

(inhomogeneous process). Learning an intensity function from a given dataset presents 

one of the most popular subjects of research [7].  

In this paper, we present a data-driven approach for learning different types of CIFs 

used in temporal point process models. Our approach is based on the implementation of 

numerical integration methods for linearization of negative maximum likelihood (neML) 

in order to backpropagate derivatives of neML.  

We tested our methodology on two real-life datasets that consisted of exact 

timestamps. The first dataset included highway toll passes recordings, and was a high-

frequency dataset. The second dataset included timestamps when ski injuries occurred, 

and was a low-frequency dataset. Our methodology shows that it can be successfully 

used for various types of CIFs. Furthermore, four different baseline models based on 

neML scores: second-order Polynomial inhomogeneous process, Hawkes with 

exponential kernel, Gaussian process, and Poisson process were compared. The 

proposed methodology was evaluated on several metrics, amongst which is the 

minimization of negative log likelihood loss for demonstration of how well models fitted 

conditional intensity functions, Akaike information criteria (AIC), and the mean 

absolute error (MAE) for evaluating the quality of prediction for future time events. 

To summarize, the contributions of this work are as follows: 

 We presented a novel framework for learning different type of CIF in temporal point 

process based on implementation of one-dimensional numerical integration 

techniques for linearization of neML. 

 The proposed method can be used with any kind of one-dimensional numerical 

integration technique. 

 The method is tested on two real world datasets with high frequency and low 

frequency occurring events. 
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 The obtained results showed satisfactory performances on both datasets with respect 

to MAE, log likelihood and AIC. 

The remainder of the paper is structured as follows. In section 2 the related work is 

reviewed. Background methodology, point process and Ogata’s modified thinning 

algorithm are presented in section 3. A novel methodology for learning point process is 

presented in section 4. Experimental setup and results of real-world applications are 

presented in sections 5 and 6, respectively. The conclusions are drawn in section 7. 

2. Related Work 

We structure the discussion of the related work into two broad, previously mentioned, 

categories: intensity-based approaches and intensity-free approaches. The intensity-

based approaches present methods where a point process is modelled by different 

functional forms of CIFs [10]. Intensity-free approaches present methods where a point 

process is modelled with some type of unsupervised machine learning algorithms. 

Intensity-based approaches present the oldest approaches in point process modelling. 

They rely on a functional form that completely depends on the CIF. The Poisson process 

presents the simplest point process where conditional intensity function has a constant 

value [11]. The more complicated variant of this process is observed when the CIF is 

modelled as a product of kernels [12]. Recent research proposed different variants of 

modelling CIF by deep neural networks [7, 13]. Xiao et al. [13] presented an interesting 

approach of modelling CIF by a recurrent neural network. However, in this paper 

authors assume that integral in negative maximum likelihood is correlated only with the 

current timestamp. Even though this strong assumption cannot be justified by theoretical 

properties of point process models, the obtained results were significantly better 

compared to well-known baseline models. Chen et al. [14] and Zhang et al. [15] 

presented an interesting approach for modelling dynamics by deep neural networks. 

Moreover, the authors presented an interesting example where the point process was 

modelled by a differential equation and solved using the Euler method. Besides, the 

authors implemented the backpropagation technique for reducing memory complexity 

during the training phase.  

Intensity-free approaches are based on modelling point processes by unsupervised 

learning techniques [16]. When compared to intensity-based approaches these methods 

can obtain better results, but they are more prone to overfitting due to smaller datasets or 

large expressive powers of the model. Variational autoencoders (VAE) present 

unsupervised machine learning algorithms that are mostly used for point process 

modelling. The Action Point Process variational autoencoder (APP-VAE) presents a 

variational auto-encoder that can capture the distribution over the times and categories 

of action sequences [17]. The APP-VAE obtained state-of-the-art results on the 

MultiTHUMOS and Breakfast datasets. A declustering based hidden variable model that 

leads to an efficient inference procedure via a variational autoencoder for solving 

multivariate highly correlated point process is presented by [18]. Besides VAE, 

generative adversarial networks (GANs) have recently been proposed as a method for 

describing event occurrences [19]. The authors proposed an intensity-free approach for 

point process modelling that transforms nuisance processes to a true underlying 
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distribution by using Wasserstein GANs. Experiments on various synthetic and real-

world data substantiate the superiority of the proposed point process model over 

conventional ones. Compared to intensity-free approaches such as the GANs and VAEs, 

intensity approaches can provide information that is more explainable and interpretable 

in the case when CIF function is in linear form. 

Applications of intensity-based point processes can be found in a wide variety of 

areas [35-37]. Point process are useful in medical care and health care. Liu et al. [28] 

presented an EM (expectation maximization) based point process for modelling of drug 

overdoses with heterogeneous and missing data. Additionally, a daily living activity 

prediction via combination of temporal point process and neural networks is presented 

in [29]. Besides medical care, point processes are also used in a wide variety of 

problems related to traffic [32-34]. A novel framework for modelling traffic congestion 

events over road networks based on spatio-temporal point process in combination with 

attention mechanism is presented in [30]. Motagi et al. [31] developed a self-exciting 

temporal point process to analyse crash events data and classify it into primary and 

secondary crashes. This model uses a self-exciting function to describe secondary 

crashes while primary crashes are modelled using a background rate function. 

The model presented in this paper belongs to the class of intensity-based approaches. 

Compared with the standard intensity-based approaches, our model has more expressive 

power, whereas compared with intensity-free approaches it is less prone to overfitting. 

Moreover, our model can be easily applied to any type of conditional intensity functions, 

and linearization term can be also applied to very deep neural networks. 

3. Framework 

Based on the methodology proposed in this paper, we implemented a general framework 

for learning point processes. The framework consists of three distinct parts: Data 

cleaning and processing, model and hyperparameter selection, evaluation and simulation 

part. The framework is presented in Fig. 2. 
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Fig 2. Framework for learning point processes   

Data cleaning and preprocessing part consists of the methods that are used for 

cleaning and transforming raw data prior to processing and analysis. It is an important 

step that involves reformatting data, making corrections to data and making time 

sequences of occurred events. The transformation used in this part depends on problem 

formulations and raw data formats. Additionally, during this part the dataset is split on 

training, validation, and test set. 
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The first step in model selection and hyperparameter tuning step is to choose the 

point process model. In this framework the decision maker must choose between four 

different kinds of models: The Poisson temporal point process, the Gaussian point 

process, the Poisson polynomial process and the Hawkes process. The choice of a model 

primarily depends on the way the events are generated. Therefore, it is advisable to plot 

approximations of CIF with respect to moving windows and choose the model that best 

fits to it.  

After model selection, the integration step and integration method must be chosen. In 

this framework, three different kinds of integration rules are presented: Implicit Euler, 

Trapezoidal, Simpsons and Gaussian quadrature method. Based on the integration rule, 

the integration step must be finely tuned in order to reduce the approximation error of 

the integral. Depending on the frequency of events, the integration step must be small 

and sufficiently large when event frequency is high and low, respectively. After model 

selection, the model is trained on training set. 

The validation of integration step is applied with respect to log likelihood metric on 

the validation set. If the decision makers are satisfied with the obtained performances of 

the selected and validated models, they can proceed to the evaluation and simulation 

phase. 

In evaluation and simulation part, the model is simulated and the results of 

simulations are used for testing the model on test set. Besides, log likelihood metric, 

mean absolute error is also used to evaluate model performances. Additionally, in 

combination with simulation, the obtained models can be further used in order to predict 

occurrence of the following events or to summarize some important statistical measures 

that can provide useful information to the decision maker. 

4. Experiments 

4.1. Experimental setup 

In this section, we briefly present experimental setup, along with a detailed description 

of datasets and procedure for training and evaluation. 

Datasets. The presented methodology was tested on two different datasets: a high 

frequency events dataset - traffic prediction on highway toll dataset, and on low 

frequency events dataset - prediction of ski injuries in ski resort Kopaonik. Therefore, in 

experiments we provided the methodology performance to learn event generation from 

two different types of datasets. 

In the case of high frequency events dataset, the sequence of cars arriving at the ramp 

toll on the E 75 highway was taken as a concrete example of interest. Highway European 

Route E 75 is part of the International E-road network. The observed part connects two 

large Serbian cities - Belgrade and Niš. More precisely, the goal was to model the 

process of arrivals on the busiest ramp toll located at Niš from the Belgrade direction. 

The average time between two passes in one day is about 20 seconds, with a caveat that 
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the time between two passes is highly dependent on the time of the observed day. 

Standard 70/10/20 train, validation, and test splits were chosen respectively. 

As for the low frequency point processes dataset, the observations of ski injuries in 

ski resort Kopaonik were taken as a concrete events of interest. Ski resort Kopanik is the 

biggest ski resort in Serbia. The dataset consists of records of ski injuries for the period 

from 2005 to 2020. Training and validation were done for period prior to 2020, and the 

test and evaluation were done for the year 2020.  

Models. Four different well-known point process models were compared: Poisson 

temporal point process, Gaussian point process, Poisson, Polynomial point process, and 

Hawkes process. Additionally, each of these processes was combined with three distinct 

integration rules: Implicit Euler, Trapezoidal, and Simpsons.  

Implementation: All defined models were implemented in Pytorch, an optimized 

tensor library for deep learning using GPUs and CPUs implemented in Python [22]. To 

run our experiments, we used a PC with the following configuration: Intel i9 CPU 

9900K: 16 threads, 3.60GHz, 64 GB DDR4-2133, GPU RTX 3070 GPU 8GB GDDR6. 

Additionally, we provided the public repository with available implementation of the 

presented machine learning framework for learning point process.   

Training. Due to heterogeneous nature of our benchmark datasets, both in the 

number of samples and frequency of the events, it was observed that we could get better 

results by fine-tuning the number of epochs (training time) and framework architecture 

(base model selection, integration rule, integration step) independently for both datasets. 

Validation dataset was used to choose hyperparameters (integration step, learning rate, 

etc.). Additionally, early stopping procedure evaluated on validation set was applied for 

obtaining best generalization performances of trained models. 

Optimization. The Adam optimizer was used in order to fit the parameters of point 

processes. After hyperparameter tuning it was showed that all the models should be 

trained by 200 epochs, with a constant learning rate of 0.001, and integration step of 30. 

Each model was trained with the purpose to minimize negative log likelihood in order to 

reconstruct the true underlying event generation process. 

Evaluation metrics. The models were evaluated on two key benchmark tasks. 

Firstly, we presented how well the models fitted real conditional intensity functions on 

the test set, or in the other words - how well the models performed minimization of 

negative log likelihood loss. Moreover, we evaluated Akaike information criteria (AIC) 

[27] to take in consideration model complexity. Secondly, using Ogata’s modified 

thinning algorithm and conditional intensity function learned during training, we 

evaluated models prediction performances. The predicted time events were separated 

into bins of 3 different sizes: 5 minutes, 10 minutes, and 15 minutes for highway toll 

dataset, and the bins of 5 days, 10 days, and 15 days for ski injuries dataset, 

respectively. Then, for each binned period the mean absolute error (MAE) was 

calculated between the number of the predicted events and real number of events in that 

period. The visualization of sliding window approach for point process performance 

evaluation is presented in Fig. 3. In the case of high frequency dataset, due to dense 

event generation process, events were slid by 1 minute (σ(t) = 1 min), whereas in the 

case of low frequency dataset events were slid by 1 day period (σ(t) = 1 day). 
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Fig. 3. Sliding window algorithm 

Statistical tests. One way to prove that the obtained results are statistically 

significant is to apply two-sided “Welch” t-test [26]. “Welch” t-test is a two-sample 

location test used to test the hypothesis that two populations have equal means. 

Compared to standard Student’s t-test, it is more reliable when two samples have 

unequal variances. One of the main conditions for applying t-test is samples 

independence assumption. Bearing in mind that the samples obtained by simulating 

point process are independent, first the time period is split in bins with fixed size. In 

each of these bins, the number of occurred events sampled from a point process model is 

counted and compared to the ground truth number of occurred events (absolute error 

(AE) is calculated). For each sample, the MAE error is calculated and samples obtained 

in this manner are completely independent from other samples, hence they can be used 

as inputs for two-sided “Welch” t-test. If the p-value in two-sided “Welch” t-test are less 

than 1% threshold, it can be stated that the means of the two groups (in this case MAE 

or two models) are unequal. If this is true, the results obtained by evaluation metrics are 

statistically significant. 

4.2. Results and discussion 

The prediction performances obtained by fitting different types of point process models 

with three distinct integration methods on highway car arrivals dataset are presented in 

Table 1. 

Hawkes model with trapezoid numerical integration techniques, had the smallest log 

likelihood loss, AIC and the smallest MAE obtained in the case of all bin sizes. 

Furthermore, despite small training data and stochastic nature of data generation (i.e., 

dependency on part of day) it can be concluded that on average, the error of Hawkes 

model is less than half car per minute compared to the real car arrivals events. In 

addition, compared to the Hawkes process, Polynomial process obtained the worst 

results, whereas the results of Poission process are satisfactory, bearing in mind that the 

conditional intensity function is constant. Moreover, in Table 2, the results of two-sided 

“Welch” t-test are presented. In all presented models, trapezoid integration rule was 

used. It can be observed that p-values for each pair of models are less than 1% (0.01) 

threshold. Therefore, it can be concluded that the prediction means of each pair of 

models are unequal and results presented in Table 1 are statistically significant. 
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Table 1. Results of models performances with three distinct integration methods on highway car 

arrivals dataset 

Bin_size Model Integration_ MAE NLL (test_set) AIC 

5 Hawkes Trapezoid 4.9 112.56 229.12 

Implicit_Euler 5.6 116.03 236.06 

Simpson 5.9 126.78 257.56 

10 Trapezoid 8.8 112.56 229.12 

Implicit_Euler 10.3 116.03 236.06 

Simpson 9.7 126.78 257.56 

15 Trapezoid 12.3 112.56 229.12 

Implicit_Euler 14.07 116.03 236.06 

Simpson 14 126.78 257.56 

5 Gaussian PP Trapezoid 6 178.85 363.7 

Implicit_Euler 5.9 216.44 438.88 

Simpson 5.7 156.25 318.5 

10 Trapezoid 11.5 178.85 363.7 

Implicit_Euler 11.3 216.44 438.88 

Simpson 11.1 156.25 318.5 

15 Trapezoid 17.2 178.85 363.7 

Implicit_Euler 16.6 216.44 438.88 

Simpson 15.4 156.25 318.5 

5 Polynomial Trapezoid 30.8 670.65 1347.3 

Implicit_Euler 63.4 756.04 1518.0

8 

Simpson 364 1206.34 2418.6

8 

10 Trapezoid 61.7 670.65 1347.3 

Implicit_Euler 185.3 756.04 1518.0

8 

Simpson 729.3 1206.34 2418.6

8 

15 Trapezoid 92.6 670.65 1347.3 

Implicit_Euler 336 756.04 1518.0

8 

Simpson 1094.

3 

1206.34 2418.6

8 

5 Poisson - 9.1 142.12 287 

10 Poisson 17.7 142.12 287 

15 Poisson 26.6 142.12 287 
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Table 2. Results of two-sided “Welch” t-test 

Bin_size Model 1 Model 2 t-statistic  p-value 

5 

Hawkes Gaussian PP -11.68 0.002 

Hawkes Poisson -78.19 0 

Gaussian PP Poisson -66.6 0.001 

10 

Hawkes Gaussian PP -45.04 0.001 

Hawkes Poisson -325.95 0 

Gaussian PP Poisson -291.207 0 

15 

Hawkes Gaussian PP -52.47 0.001 

Hawkes Poisson -347.21 0 

Gaussian PP Poisson -303.74 0 

 

The results obtained by Hawkes model on highway car arrivals dataset are visualized 

in Fig 4. Firstly, it can be observed that the real and predicted conditional intensity 

functions are plotted with blue and green lines, respectively, by varying length of sliding 

window (Fig. 4a – 1 min, Fig. 4b – 5 min, Fig. 4c – 10 min). Additionally, the real and 

simulated timestamps of car arrivals were visualized as red dots. It can be concluded that 

despite being trained on just 70% of data, the model was pretty successful in predicting 

the real conditional intensity function. Moreover, the simulated car arrival events can 

imitate the real world application in the same manner. 

In Table 3, the results of models performances on ski injuries dataset are presented. 

In the same manner, four different point process models performances with respect to 

three different numerical integration methods are showed. Gaussian point process model 

with Implicit Euler numerical integration techniques, had the smallest log likelihood 

loss, AIC, and MAE. The results of two-sided “Welch” t-test are presented in Table 4. 

The trapezoid integration rule was used in Hawkes model, whereas Implicit Euler rule 

was used in Gaussian point process. Based on the small p-values, it can be concluded 

that the prediction means of each pair of models are unequal and these results are 

presented in Table 1 and are statistically significant.  

Again, the Polynomial process obtained the worst results. The Gaussian point process 

on average achieved MAE of 1.6 in the period of 5 days, which means that the Gaussian 

point process is going to predict on average 1.6 injuries more or less compared to the 

real number of injuries. Based on this, it can be emphasized that it is necessary to fit 

different point process models in order to find the one that best explains the true 

underlying distribution of event generation. 

In addition, the results obtained by Gaussian point process on ski injuries dataset are 

visualized in Fig 5. Firstly, it can be observed that the real and predicted conditional 

intensity functions are plotted with blue and green lines, respectively, by varying length 

of sliding window (Fig. 5a – 5 days, Fig. 5b – 10 days, Fig. 5c – 15 days). Additionally, 

the real and simulated timestamps of ski injuries were visualized as red dots. It can be 

observed that real and predicted conditional intensity functions look very similar, and 

timestamps of the simulated events correspond to the timestamps of the real events. 
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(a) 

(b)

(c) 

Fig 4. Visualization of how conditional intensity function predicted by Hawk’s point process 

model fitted the real intensity function 
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Table 3. Experimental results - ski injuries dataset 

Bin_size Model Integration MAE NLL (test_set) AIC 

5 Hawkes Trapezoid 3.2 76.20 156.4 

Implicit_Euler 3.3 78.81 161.62 

Simpson 4 77.82 159.64 

10 Trapezoid 4.8 76.20 156.4 

Implicit_Euler 6.2 78.81 161.62 

Simpson 8 77.82 159.64 

15 Trapezoid 7.6 76.20 156.4 

Implicit_Euler 10 78.81 161.62 

Simpson 10 77.82 159.64 

5 Gaussian PP Trapezoid 3.8 99.64 205.28 

Implicit_Euler 1.6 75.42 156.84 

Simpson 2.8 88.56 183.12 

10 Trapezoid 5.8 99.64 205.28 

Implicit_Euler 3.8 75.42 156.84 

Simpson 5.4 88.56 183.12 

15 Trapezoid 9.6 99.64 205.28 

Implicit_Euler 4.9 75.42 156.84 

Simpson 7.3 88.56 183.12 

5 Polynomial Trapezoid 5.1 68223.36 136452.7

2 

Implicit_Euler 4.6 22480.22 44966.44 

Simpson 46 4262.03 8530.06 

10 Trapezoid 9.8 68223.36 136452.7

2 

Implicit_Euler 6.6 22480.22 44966.44 

Simpson 102.

4 

4262.03 8530.06 

15 Trapezoid 14 68223.36 136452.7

2 

Implicit_Euler 8 22480.22 44966.44 

Simpson 134 4262.03 8530.06 

5 Poisson - 3.1 142.00 286 

10 Poisson 6.4 142.00 286 

15 Poisson 12.3 142.00 286 
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Table 4. Results of two-sided “Welch” t-test 

Bin size Model 1 Model 2 t-statistic  p-value 

5 

Hawkes Gaussian PP -18.98 0.003 

Hawkes Poisson -87.71 0.001 

Gaussian PP Poisson -103.91 0 

10 

Hawkes Gaussian PP -15.87 0.002 

Hawkes Poisson -70.51 0.001 

Gaussian PP Poisson -88.08 0.001 

15 

Hawkes Gaussian PP -39.28 0.002 

Hawkes Poisson -103.03 0 

Gaussian PP Poisson -153.47 0 

5. Conclusion 

In this paper, we propose a new machine learning approach methodology for learning 

temporal point process based on the implementation of one-dimensional numerical 

integration techniques. The likelihood function of the point process has an integral of the 

CIF given in the limits of data observation. Bearing in mind that the CIF can take any 

kind of mathematical form, in many cases this integral is analytically intractable. Due to 

this, in this paper, we present an approach to linearize this integral with standard 

numerical techniques and to backpropagate the derivative through it. The presented 

approach was successfully tested on real-life data. The main disadvantage of this 

approach lies in high computational cost that is connected with backpropagation of 

derivative through each integration step. Therefore, this approach should be used only in 

the cases when point processes with analytically tractable integrals cannot obtain 

satisfactory prediction performances.  

Furthermore, the methodology was evaluated on four different well-known point 

process models. In addition, we presented that different numerical techniques for 

integration can be successfully implemented in this framework. Moreover, we 

successfully simulated the obtained CIFs and compared them with the observed intensity 

functions. 

Further studies should address using deep neural networks (feed-forward and 

recurrent networks) as a CIF to better capture dependencies between event occurrences. 
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