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Abstract. Entropy-based network traffic anomaly detection techniques are 

attractive due to their simplicity and applicability in a real-time network 

environment. Even though flow data provide only a basic set of information about 

network communications, they are suitable for efficient entropy-based anomaly 

detection techniques. However, a recent work reported a serious weakness of the 

general entropy-based anomaly detection related to its susceptibility to deception 

by adding spoofed data that camouflage the anomaly. Moreover, techniques for 

further classification of the anomalies mostly rely on machine learning, which 

involves additional complexity. We address these issues by providing two novel 

approaches. Firstly, we propose an efficient protection mechanism against entropy 

deception, which is based on the analysis of changes in different entropy types, 

namely Shannon, Rényi, and Tsallis entropies, and monitoring the number of 

distinct elements in a feature distribution as a new detection metric. The proposed 

approach makes the entropy techniques more reliable. Secondly, we have 

extended the existing entropy-based anomaly detection approach with the 

anomaly classification method. Based on a multivariate analysis of the entropy 

changes of multiple features as well as aggregation by complex feature 

combinations, entropy-based anomaly classification rules were proposed and 

successfully verified through experiments. Experimental results are provided to 

validate the feasibility of the proposed approach for practical implementation of 

efficient anomaly detection and classification method in the general real-life 

network environment. 

Keywords: anomaly classification, anomaly detection, entropy, entropy 

deception, network behaviour analysis. 

1. Introduction 

The increasing complexity of modern networks is accompanied by constant changes in 

the security threat landscape. Signature-based intrusion detection methods are 

inefficient in detecting cryptographic traffic and zero-day attacks, while the intelligence 

put on the firewall does not protect from internal network usage. Therefore, network 

anomaly detection based on traffic pattern behaviour analysis is now recognized as a 

mandatory part of modern security analytics and protection solutions.  

Several studies show that there is a significant interest in implementing entropy-

based techniques for network behaviour analysis and anomaly detection 1. Their 
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efficiency is often demonstrated by using examples with heavily loaded anomalous 

traffic, such as intensive botnet or DDoS attacks. For attacks with less intensive traffic, 

such as SYN Flood, Port Scan or Dictionary attacks, the volumetric features do not 

provide sufficient information. Additional features must be used, such as the flow count 

and the degree of communication with other peers, the so-called behaviour features 2.  

In contrast to widely presented entropy-based anomaly detection methods, 

significantly fewer efforts have been done on entropy-based anomaly classification. 

Most authors dealing with anomaly classification propose supervised machine learning 

techniques, even if detection is based on entropy 34. With such an approach, training 

with the labelled dataset is required, while the simplicity for practical implementation as 

one of the main benefits of entropy-based approaches, is significantly diminished.  

One of the biggest weaknesses of entropy-based approaches is highlighted in 5, 

where the authors have shown the method to deceive flow-based detection systems by 

injecting additional spoofed network traffic during a DDoS attack. To the best of our 

knowledge, the proper solution to this problem has not been presented yet.  

The motivation behind our research was to fill the above-mentioned gaps in this 

research problem, namely the classification of the detected anomalies which is resilient 

to entropy deception. The research method was based on conducting a detailed 

behaviour analysis of various types of anomalies caused by security attacks and 

investigating how they affect the entropy of the observed features, using various entropy 

types. The main research goal is to propose the anomaly classification method as an 

extension to the existing entropy detection systems, which is improved with the 

protection mechanism against entropy deception.  

An important objective for the proposed solution is the feasibility for practical 

implementation in the general network environment. For this reason, only basic flow 

features have been chosen because they can be easily collected from network routers 

using NetFlow protocol 6 or similar industrial standards. The aggregation process is 

based on combinations of the basic flow attributes and additional so-called behaviour 

features which are calculated using the aggregation of the second degree. Accordingly, 

the presented research does not focus on specific attacks and particular use cases forcing 

the efficiency as high as possible by fine-tuning the parameters, but on providing a 

robust entropy-based method for both anomaly detection and classification that can be 

easily implemented in any type of the real-life network traffic.  

The rest of the paper is organized as follows: the second section discusses the most 

relevant scientific publications related to this research. The third section outlines the 

proposed methodology, while section four presents and discusses the experimental 

results. Finally, the paper is concluded by summarizing the main contributions and 

results, and by defining directions for further research. 

2. Related Work 

Due to the relative simplicity and application in real networks, entropy-based anomaly 

detection still attracts great interest in the research community 789, along with more 

complex methods such as classification, clustering, deep learning or statistical-based 

approaches 10. It often relies on the flow feature distributions, based on data taken from 
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offline datasets for research purposes, or on data collected from real networks in 

practical implementation 1112.  

A classical approach leverages the well-known Shannon entropy in the context of 

information theory 13. Feature selection and aggregation are used to generate 

distributions of all distinct elements and their aggregated metrics 14. A straightforward 

approach for DDoS attack detection is based on the volumetric feature, either using total 

byte and packet counts 15161718 1920 or using additionally derived features, such as 

average packets and bytes per flow 2122. However, volume-based metrics are 

insufficient for sophisticated attacks and less intensive anomalies.  

Lakhina et al. in 23 used entropy measurements to analyse the real traffic aggregated 

inside the research networks Internet2 in the US and Geant in Europe. Using 

additionally injected synthetic flows, they found significant advantages of using 

entropy-based features over the traditional volume-based approach. The authors in 24 

extended Lakhina’s work using unidirectional flows and host-level granularity, 

modelling the behaviour for outgoing and incoming traffic.  

The authors in 2 further contributed to better understand anomalous behaviour in a 

real network. They suggested the utilization of bidirectional data flows to avoid the 

biases arising from unidirectional flow analysis. Then, they analyzed the entropy of 

volumetric data, flow count, packet size distribution and host in/out-degree of 

communications with other hosts and reported a strong correlation of address and port 

features, emphasizing better detection abilities of behaviour features.  

In 3, the authors proposed the utilization of parametrized Tsallis entropy 25 to 

capture separately the regions with high and low activity in the feature distribution. 

They modelled 20 anomaly types and injecting artificial flows into real background 

traffic they trained a support vector machine (SVM) to classify the anomalies.  

In 26, entropy was used for profiling per-host behaviour in Internet traffic. Each of 

the source and destination IP addresses and ports was aggregated and the entropies of 

the three remaining features gave a three-dimensional entropy space with a total of 27 

behaviour clusters. It was shown that different anomalies fit into particular clusters with 

high accuracy.  

Bereziński et al. analysed realistic, synthetically generated botnet traffic injected into 

real flow data 4. They concluded that the parametrised Tsallis and Rényi entropy 27 

provide better entropy change detection, depending on the applied parameter. They also 

confirmed the poor performance of volume-based approaches.  

Giotis et al. in 28 presented an effective and scalable anomaly detection mechanism 

based on OpenFlow and sFlow data sources. The proposed architecture is modular and 

can accept any detection methods, such as statistical, data mining or machine learning 

anomaly detection. They validated the concept by adopting an entropy-based approach, 

using basic attributes from flow tuples, namely source and destination IP addresses and 

port numbers. Based on entropy changes of these four features, the proposed mechanism 

can identify the three most prominent network attacks, namely DDoS, port scan, and 

worm propagation. Using this classification method and taking advantages of SDN 

environments, they further contributed with an attack mitigation mechanism that 

identifies the attackers and protects the victim by blocking the attack.  

The usability of entropy-based techniques was put under question when the authors 

in 5 demonstrated a method to deceive entropy-based detection by injecting additional 

traffic that camouflage the entropy change caused by the attack. The method exploits 

the simplicity of the entropy approach that transforms the whole data distribution into a 
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single metric. This work reveals the weakness of entropy-based techniques but has not 

been addressed well in the scientific literature so far.  

Our previous work was focused on anomaly detection problem based on the entropy 

of flow features. In 29 we proposed architecture of network traffic anomaly detection 

system feasible for practical implementation, which includes data pre-processing, root-

cause analysis, machine learning decision process, and control mechanisms for 

correcting, fine-tuning, and training the system. In 30 we investigated possibilities to 

improve the anomaly detection process by finding the outliers in time series data points 

using unsupervised machine learning techniques.  

In this paper, we contribute to the above-mentioned research problems by providing a 

protection mechanism against deceiving the existing entropy-based anomaly detection 

techniques, further extended with a comprehensive network traffic anomaly 

classification method, which are the main novelties in our research.  

Similar to most of the related previous work we also use bidirectional flows which 

are shown that provide more reliable information for the anomaly detection process, 

such as recognition of asymmetric traffic with no responses. However, our research is 

primarily based on the flow-count and behaviour features only, since the volumetric 

features have higher variation and generate more false positive alarms. We have 

analysed the characteristics of Shannon, Tsallis, and Rényi entropy types, pointing out 

their advantages and drawbacks. A developed method can accept any entropy types, but 

it is demonstrated and validated using Shannon entropy.  

3. Proposed method 

This section presents the problem analysis and the most relevant findings. The feature 

selection process is formalized and generalized defining the aggregation key features 

and calculated behaviour features and the feature annotation is proposed accordingly. 

All the entropy types are analysed in terms of changes in data distributions and their 

ability to detect anomalous behaviour. This analysis leads to our main contributions - 

the method for the protection against entropy deception and detection technique 

improved with the anomaly classification rules using a multivariate analysis of entropy 

results, which is based on the patterns in the way the features are affected by different 

anomalies in network communications. In contrast to similar works in this research area 

which are mostly based on supervised machine learning techniques, our approach is 

especially suitable for practical implementation in real-life network environments. 

3.1. Flow feature selection 

Original raw flow records, the so-called flows, are unidirectional, carrying the total 

packet and byte counts in the direction from the source to the destination. Combining 

two unidirectional flows from both directions into a single bidirectional flow offers 

more information about the communication pattern, and this is confirmed to be more 

useful in anomaly detection 24.  

In the client-server communication model, which is considered in an ordinary 

network operation, the client initiates communication as a source in the bidirectional 
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flow, choosing a random source port to access the server on a fixed destination IP 

address and port number. The source and destination IP addresses and port numbers, as 

well as the protocol type, identify the flow, representing identification features, also 

known as a flow tuple. The packet and byte numbers in each direction are used as a 

metric for volume, representing volumetric features. In this paper, we use short labelling 

for the source and destination IP address with capital letters S and D, the source and 

destination ports with lowercase letters s and d, and the protocol with the letter P. The 

source and destination packet and byte counts are labelled as sP, dP, sB and sB 

respectively. More formally, we can introduce a set of identification features I and a set 

of volumetric features V: 

 I = {S, D, P, s, d} (1) 

 V = {sP, dP, sB, dB} (2) 

Entropy calculation is based on data aggregation, which is the process of grouping 

flows based on the value of one or more flow features during a certain period, called 

epoch. For each distinct aggregated element, the so-called aggregation key, all related 

flows are counted into a flow number, labelled as f, while the volumetric features are 

summarized into total packets and bytes for both directions separately. 

The flow identification features are the most meaningful to be used as the 

aggregation key. Having in mind that the protocol feature takes just a few distinct 

values, mostly TCP, UDP and ICMP, aggregation by this feature would not provide 

useful information. A set of aggregation features is therefore defined as follows: 

 Φ = {S, D, s, d} (3) 

It should be noted that the aggregation can be done using more than one feature, 

altogether creating a complex aggregation key, or more formally, using features from 

any set of the power set of Φ, except an empty set. To annotate the complex aggregation 

key, we will use feature labels in the following order: S, D, s, and d, separated by the 

character ‘.’. Therefore, a total of 15 aggregation keys are available: 

 A = {S, D, s, d, S.D, S.s, S.d, D.s, D.d, s.d, S.D.s, S.D.d, S.s.d, D.s.d, S.D.s.d} (4) 

The straightforward aggregation will result in the distribution of flow count and the 

sum of source/destination packets/bytes of each distinct aggregated element. We will 

label these distributions using the feature label followed by the aggregation key in 

squared brackets. For instance, the distribution of the flow count feature (f), aggregated 

by all distinct pairs of source IP addresses (S) and destination ports (d) is labelled as f 

[S.d]. The flow count feature is a useful metric not only because the attacks generate a 

lot of malicious flows but it also influences normal traffic and increases its flow 

numbers due to exhaustion of the internal memory (flow cache) of the flow probes 31.  

At this point, we will generalize the concept of the in-degree and out-degree features, 

used in 2632, which is defined by a total number of distinct source hosts per each 

destination host and a total number of distinct destination hosts per each source host, 

labelled as S[D] and D[S], respectively. Taking into consideration any other identifying 

features that are not used in the aggregation key, such as source and destination ports, 

we can additionally count the distinct occurrence of these features per aggregated 

element. Since they represent the communication behaviour of the main aggregated 

elements, we will call these additional features behaviour features. More formally, for 
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the set of aggregation features Φ and the set of aggregation keys , a set of available 

behaviour features is: 

  = Φ  \ {} (5) 

Robust anomaly detection with a novel classification method proposed in this paper 

heavily utilizes behaviour features as the main source for network behaviour analysis 

along with the flow count feature. To briefly illustrate the usability of this approach, let 

us consider a DDoS amplification attack, where many source IP addresses send packets 

to a single destination host, all using the same source port, such as the UDP port number 

53 used by DNS amplification attacks 33. This unusual network behaviour can be 

detected by counting the number of distinct source IP addresses (S) for each element 

aggregated by the destination IP address and the source port (D.s), labelled as S[D.s]. 

The same stands for a port scanning scenario, which can be captured by counting the 

occurrence of distinct destination port (d) in aggregation with the source and the 

destination IP address (S.D), i.e. d[S.D].  

3.2. Entropy calculation 

In anomaly detection techniques entropy is used to present the level of randomness in a 

data distribution. The changes in a data structure in a distribution obtained from the 

aggregation process will change the entropy value. If the entropy change is significant, 

it is considered as unusual behaviour in network communication or an anomaly, which 

often indicates security threats.  

In many researchers the well-known Shannon entropy 13 is used, which is defined by 

the following equation: 

              
 
       

 

     
 (6) 

In the general case, N is a total number of elements in the distribution of feature 

values, while p(xi) is an empirical probability, calculated by the relative contribution of 

element xi with value mi in the total sum of all values, M:  
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Rényi 27 and Tsallis 25 entropies involves an additional parameter , where positive 

values put more weight on the highest values in the distribution (peak), while negative 

values favourite elements with low values in the distribution (tail): 
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In this paper, we use a scaling factor to normalize the entropy to a value of 1 for fully 

randomized distribution. The scaling factor for Shannon and Rényi entropy is         

and for Tsallis entropy it is               . With such a scaling, the Shannon 

entropy always provides values between 0 and 1, as well as Rényi and Tsallis entropies 
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with positive parameter , while the negative parameter  results in entropy values 

above 1.  

3.3. Entropy changes detection 

Over time, the aggregation and entropy calculation process generates many time series 

of entropy values for each feature. With normal network traffic, the entropy values are 

stable with minor deviations, while in the presence of an anomaly, some features are 

dramatically affected with significant entropy change (drop or increase). To detect these 

changes in the time series entropy values, a margin of accepted entropy deviation needs 

to be calculated first. A commonly used approach is based on the Exponential Moving 

Average (EMA) technique for short trend prediction 34 or taking maximum and 

minimum values from the sliding time window of some recent epochs. Both techniques 

can be used, but the rest of the presented research is based on the EMA prediction 

technique since it can be fined tuned to adapt more accurately and provides a baselining 

useful for data visualization and analysis.  

With this approach, a predicted value in epoch n, denoted as Ĥn, is calculated 

recursively, taking into account the previously predicted value Ĥn-1 and the newly 

calculated entropy value Hn-1 in epoch n-1: 

 Ĥn = (1-h) Ĥn-1 + hHn-1 (10) 

The coefficient h represents the degree of weighting decrease, the so-called 

smoothening factor, which falls in the range between 0 and 1. A lower value for h 

gives a stronger influence of the previously predicted value Ĥn-1, resulting in smoother 

baselining values, while at higher values for h the predicted values faster adopt and 

follow recent data Hn-1 in the observed data sequence.  

Some entropy time series can regularly vary their values more than the others. To 

identify significant entropy changes, we propose to analyse these relative variations in 

the context of the baselined standard deviation (S), using the same EMA approach as 

follows: 

 Ŝn = (1-s) Ŝn-1 + s Sn-1 (11) 

Finally, the range of acceptable entropy values considered as normal is defined by 

lower and upper thresholds, as measures of acceptable deviation from the baselined 

entropy value Ĥn as follows: 

              (12) 

where 

                 (13) 

                (14) 

and kt is the multiplication factor that makes the range wider, the so-called threshold 

factor. For any entropy value Hn that falls out of the threshold range Tn in epoch n, an 

alarm is triggered as an indication of an anomaly.  
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With proper tuning of parameters h,s and kt, the above-mentioned technique 

efficiently detects significant changes in the observed time series values. We have 

empirically concluded that the optimal baselining trend is achieved by the following 

smoothing coefficient values of h=0.1 and s=0.05, while the threshold factor was set 

to kt=4, which accurately captured the anomalies, while still eliminating most of the 

false positive alarms.  

Some authors claim that parametrised Tsallis and Rényi entropy outperform the 

Shannon entropy in terms of the better detection of peaks or tails in the feature 

distributions 34. We believe that their conclusions are tightly related to the applied 

detection methods, data and features used in the experiments, and accordingly, this 

conclusion cannot be simply generalised. For that reason, in this paper, we analyse and 

compare the Shannon, Rényi, and Tsallis entropies from two main aspects: the ability to 

detect anomalies and sensitivity to deception. For Rényi and Tsallis entropies, we will 

use a fixed value of the parameter (+2 and -2), which is shown to provide optimal 

performances 4.  

To better understand the behaviour of each entropy type, we will consider a 

reciprocal distribution of 100 elements, given by the function 1/x, where the distribution 

starts with values 100, 50, 33, 25, and ends with a long tail of value 1. According to our 

experiments, this distribution roughly approximates a deviation of flow feature values in 

real network traffic, which is also reported in 3. Gradually increasing the peak of the 

distribution, from the value of 100 to 1000, the entropy is changed in the way presented 

in Fig. 1. The Shannon entropy, as well as parametrised entropies with the positive 

parameter, results in decreased values, while the negative parameter leads to an 

entropy increase. On the other hand, increasing the tail of the distribution up to 1000 

new elements with value 1 involves more similarities in the data, and consequently, the 

entropies approach to value 1, which is shown in Fig. 2. In all cases, the Rényi entropy 

with positive parameter gives the lowest entropy values, while Tsallis entropy gives 

much higher values (in a range from 1.7 to 106), which are not shown since they are out 

of the scale used in the chart. It is worth highlighting that the entropy with lower values 

leaves less space to detect a drop, especially when the standard deviation is higher. This 

is the case with the Rényi entropy with a positive parameter, which is more sensitive to 

the regular variation of data (highest slope in Fig. 1) and also provides the lowest 

values. 

 

 Fig. 1. The entropy change given by the increase of the distribution peak. 
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Fig. 2. The entropy change given by the increase of the distribution tail. 

It should be highlighted that features with smaller standard deviation generally 

provide more distinguished changes, which gives better detection ability. Also, more 

randomized distribution and the entropy values near 1 generally leave more space for 

entropy drop and its detection. From the figure presented above, it should be concluded 

that the Rényi +2 entropy type gives the lowest values, and in case of higher standard 

deviation, there will be not enough space to detect changes.  

3.4. Protection against entropy deception 

In entropy-based approaches, anomalies are usually detected by features that generate a 

peak in the data distribution. This peak will make the entropy drop or increase with 

regards to entropy type and parameter . Anyhow, the authors in 5 have shown that 

every entropy change caused by a peak in a distribution can be suppressed by adding 

more elements of the average value in the distribution to make data more even. The 

same effect can be also achieved using a value equal to 1 for each added element, but 

much more elements are needed in this case. With this method, attackers can 

camouflage the attack by generating spoofed traffic in parallel to the attack, and 

effectively deceive the entropy-based detection systems.  

To provide a protection mechanism to this entropy deception, we analyzed the effect 

of entropy suppression on different entropy types, as well as on different features. The 

previously mentioned reciprocal distribution with peak values of 200, 500, and 1000, 

gives the average data values equal to 5, 9, and 13, respectively. The number of 

elements needed to suppress these peaks using these average values according to 5, as 

well as reference value equal to 1 for each entropy type, is given in Table 1. The Rényi 

entropy with positive parameter  (‘Rényi +2’) and Tsallis entropy with negative 

parameter  (‘Tsallis -2’) require the highest number of injected elements using the 

average value. However, this number is much higher for ‘Rényi +2’ entropy when 

adding elements at the end of distribution using a value equal to 1.  
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Table 1. The number of elements needed to deceive entropy. 

 

The results from Table 1 lead to the conclusion that the deception of one entropy type 

does not necessarily mean that the other entropy types are deceived too. This 

expectation is confirmed in Table 2 which shows the ratio of entropies before and after 

a deception in our base reciprocal distribution with a peak of 1000 and adding elements 

with average values 13. When nulling one entropy type (in rows), the other entropies (in 

columns) are below or above the initial values.  

Table 2. Relative differences in deceiving different entropy types. 

 

The entropy deception method proposed in 5 addresses only one feature distribution, 

while other features are not considered. Like the analysis of different entropy types, we 

can generally expect that different features are differently affected by spoofed traffic. 

This disbalance especially holds when injecting new elements in a behaviour feature 

distribution using average value, since the spoofed flows with aggregation attributes 

must be repeated using distinct values of behaviour feature. The easiest approach is to 

use full randomization of all attributes in the spoofed traffic, which would produce the 

elements with a value of 1 at the end of the feature distributions. However, this would 

significantly increase the number of distinct elements in a feature distribution, which is 

the case with the “Rényi +2” entropy in Table 1 with 15.200 new elements. It is also 

noteworthy that it is relatively easy to generate spoofed traffic to the targeted victim 

network, but this traffic will be highly asymmetric, mostly with no reply in opposite 

direction. 

According to the previous analysis, we propose a protection method against entropy 

deception attempts, which relies on the detection of spoofed injected traffic that 

camouflage the attacks, based on the following principles: 

 Prefer the entropy type which requires more injected elements to deceive the entropy 

(such as ‘Rényi +2’) 

 Use the number of distinct elements in a feature distribution as a new detection 

metric, named as a distribution length. To the best of our knowledge, this metric has 

not been used in the scientific literature so far. 

200/5 200/1 500/9 500/1 1000/13 1000/1

Shannon 34 275 97 935 143 2135

Tsallis +2 53 280 130 1185 206 2750

Rényi +2 82 1135 207 5275 365 15200

Tsallis -2 38 45 265 166 694 348

Rényi -2 24 28 125 98 273 195

Peak / averageEntropy

type

Shannon Tsallis +2 Rényi +2 Tsallis -2 Rényi -2

Shannon 0% -4% -27% 220% 3%

Tsallis +2 7% 0% -17% 153% 2%

Rényi +2 16% 4% 0% 67% -2%

Tsallis -2 22% 5% 18% 0% -5%

Rényi -2 12% 2% -8% 108% 0%

Peak=1000, average=13Entropy

type
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 Monitor the flow count of asymmetric traffic (traffic with no reply) as an indication 

of spoofed traffic.  

The experimental results that validate the proposed protection method are presented 

in Section IV. 

3.5. Multivariate analysis – a taxonomy of communication patterns  

To identify the class of the anomaly as an indication of a particular type of security 

threats in addition to its detection, we propose a multivariate analysis of entropy values, 

which involves the observation and mutual analysis of many features. To better 

investigate the behaviour of different anomalies in terms of aggregation keys and the 

corresponding features, we have analysed the normal network behaviour and the 

communication characteristics of the most prominent network security attacks.  Based 

on this analysis, we have defined flow-based taxonomy of communication patterns, 

which is further used for anomaly classification. 

Security threats usually follow the client-server model, but the magnitude of some 

communication characteristics is much higher. DDoS amplification attacks utilize 

services such as DNS or NTP on servers that are not properly configured, the so-called 

open servers 33. The attacker sends a large number of small queries with a spoofed 

source IP address of the targeted host, and all servers reply to it, generating traffic of a 

much higher magnitude. In October and November 2016, two websites within the 

network of the University of Belgrade were attacked by NTP and DNS amplification 

attacks respectively. A single UDP source port number was used as a source of the 

attack (123 for NTP and 53 for DNS), but the destination port for the DNS attack was 

fixed to HTTP, while the NTP used a random destination port. In both cases, more than 

1000 open servers generated up to 4Gbps traffic for 20 to 30 minutes, bringing down 

not only the attacked web servers but also disrupting other services due to the overload 

of the uplink of the entire national research and education network AMRES. The 

intensity of the attacks was easily detected and mitigated by the NetFlow Analyser tool 

using volumetric statistics only (bytes, packets, and flows) 35. However, to detect less 

intensive attacks that may remain under the radar, the communication pattern with other 

features must be analysed.  

On the other hand, many security threats start much earlier, before real damage is 

caused. Network scan is looking for an open service on the network, generating flows 

from a single source IP address and usually an arbitrary source port toward a fixed 

destination port on many hosts over an enterprise network 36. Port scan is a method for 

determining which ports on the single host are open, producing many flows with a 

different destination port and a fixed destination IP address 36.  

Once a host is located with the open TCP port requiring authentication, such as port 

22 for SSH or 3389 for Microsoft Remote Desktop, the attacker can perform brute-force 

password-guessing activities, trying commonly used phrases by a dictionary attack 37. 

The footprint of this traffic structure is characterized by too many short flows with one 

or two packets transferred between two fixed IP addresses, using multiple source ports 

and a single destination port.  

All the above-mentioned network behaviours have a very specific communication 

pattern marked by single or multiple sources and destination IP addresses and port 

numbers involved. These characteristics can be simply described using label ‘1’ for 
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single or ‘N’ for multiple occurrences of identification features in the order from the 

source IP address (S) and source port (s) to the destination IP address (D) and 

destination port (d), in form of ‘Ss-Dd’. In this way, previously analysed anomalies can 

be categorized as follows: 

 DNS amplification DDoS   N1-11 

 NTP amplification DDoS   N1-1N 

 Port scan    1N-1N 

 Network scan, worm propagation  1N-N1 

 Dictionary attack    1N-11 

This classification and labelling can be further generalized to cover all 16 

permutations of labels of ‘1’ and ‘N’ for source and destination IP addresses and ports. 

With this generalized approach, network scan with a fixed source port is related to the 

communication pattern of class 11-N1, while a distributed SYN flood attack falls into 

the class NN-11 since the attack is performed from many source IP addresses and port 

numbers to a single destination IP address and TCP port number.  

Regular network traffic can be also described with the introduced labelling of the 

communication patterns. A client can initiate many connections to a certain server, 

which falls into the 1N-11 class, while public servers, which are used by many clients, 

fall into the class NN-11. Additionally, DNS, SMTP, and HTTP proxy services follow 

the 1N-N1 pattern, acting as a client establishing communications with many other 

servers.  

Along with the protection against entropy deception, another main goal in this 

research has been to extend the existing entropy-based anomaly detection approaches 

with a classification method using a multivariate analysis of different flow count and 

behaviour features, which is easy to implement in real-life networks. It is achieved by 

identifying a unique signature of the anomalous behaviour by analysing entropy 

changes of many observed features and developing rules for their classification. These 

classification rules are developed based on the analysis of the experimental results, and 

therefore they are analysed and presented in the next section, along with the validation 

of our findings. 

3.6. System complexity 

Calculating entropy values, with EMA prediction and standard deviations, is not a 

complex process once the distributions are generated by the aggregation process. 

However, many aggregation tasks need to process a great number of flow records, 

which are both CPU- and memory-intensive processes. Each flow record needs to be 

matched with all aggregation keys separately, counting or summarizing the 

corresponding values of the remaining features. Additionally, calculating behaviour 

features requires second-degree aggregation to count all distinct data-point occurrences.  

The complexity of the algorithm highly depends on its implementation. The most 

efficient solution is achieved by using an unordered associative array (hash-map in 

Java), which in most cases has O(1) complexity in time, while the worst-case 

complexity is O(log n) when using balanced search trees, which are created only for a 

small number of entries sharing the same hash-map key. However, the complexity in the 

memory space is O(n) in all cases. With such implementation in Java programming 
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language, processing a dataset of one million flow records on a desktop computer and 

generating a total of 208 data distributions for all possible aggregation keys and feature 

combinations (including volumetric features), we have achieved a high processing 

speed of 30.000 flows per second consuming a total of 8 GB of RAM. 

The root cause analysis requires keeping raw flow records data for at least one 

(previous) epoch, while a long history is always beneficial depending on the available 

storage space. An efficient method can be achieved by using the compressed text of 

binary files, while the more flexible solution for practical usage can be based on a 

NoSQL database, such as Elasticsearch. 

Another concern relating to the real-time aggregation process and data storage is a 

high rate of incoming flows, such as tens of thousands per second. A solution to this is 

to use a flow sampling technique, processing only a statistical fraction of the flow data 

stream while rejecting the rest. Some information will be lost in that case, but a 

sufficient amount of data (up to the processing limit) is taken into account, resulting in a 

fairly good statistical approximation.  

4. Evaluation  

4.1. Datasets used  

To validate the proposed approach we have chosen two labelled datasets, namely the 

CICIDS2017 dataset 38 and the CTU-13 dataset 39, each consisting of several flow data 

traces taken from real network communications and a controlled laboratory 

environment.  

The CICIDS2017 dataset is one of the latest and most complete publicly available 

flow-based labelled datasets. It includes the most common attack scenarios, covering 

the profiles of Web-based, Brute force, DoS, DDoS, Infiltration, Heartbleed, Bot, and 

Scan attacks, each in a different file named according to the weekday when the dataset 

was created. A total of 80 flow-based features related to network communications were 

generated by processing real traffic with simulated attacks.  

The CTU-13 dataset consists of 13 independent parts, each with internally controlled 

legitimate traffic, traffic generated by a real botnet network, and a large portion of the 

so-called background traffic, taken from the Czech Technical University network, in 

which minor ‘noise’ anomalies were intentionally retained. We have used the CTU-13 

dataset and model communication patterns using synthetically generated anomalies to 

analyse their effect on each feature. Then the classification rules are validated by 

investigating minor ‘noise’ anomalies in the real background traffic from another trace 

in the same dataset. 

Since our research is based on pure flow data that can be easily collected from the 

routers and used in real-life network environments, both datasets were slightly 

modified. At first, only the basic flow features were kept. Then, following the usual 

practice of flow configuration on network devices to avoid burst traffic load, long-

lasting flows were proportionally fragmented into short equivalent flows, with the 

maximum duration of 60 seconds, which was set as the default epoch period.  
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4.2. Validation of the protection against entropy deception 

Validation of the protection method against entropy deception is demonstrated on the 

CICIDS2017 dataset, using the trace named ‘Friday afternoon’. It contains a PortScan 

attack when an attacker is trying to establish connections to many destination ports on a 

remote victim system to find vulnerabilities. In this case, a single source port is used 

during this process, which is described by the 11-1N communication pattern. Using the 

source and destination IP addresses as the aggregation key, the destination port 

behaviour feature d[S.D] generates a quite random distribution with the entropy value 

close to value 1 and a small standard deviation for all entropy types, shown in Fig. 3. 

However, during the attack, in three series from epoch 112 till epoch 145, significant 

entropy drops are noticeable for all entropy types. The margin of acceptable deviation 

calculated by the EMA technique is too narrow and not shown.  

We will demonstrate a deception mechanism on the second attack only, which occurs 

from epoch 129 till 131 with an average value in data distribution equal to 4, while the 

first and last attacks are left unchanged for comparison purpose. To deceive the 

Shannon entropy, an entropy value of 0.84 during the attack needs to be increased above 

the threshold value of 0.98, which requires a total of 3,000 new elements with an 

average value of 4. This is achieved by generating 3,000 series of 4 synthetic flows, 

where those 4 flows have unique source and destination IP addresses and distinct 

destination port number. For that reason, a total of 12,000 synthetic flows was generated 

and added to the dataset to deceive the Shannon entropy during this attack. Fig. 4 

demonstrates that the Shannon, Rényi -2, and Tsallis +2 are successfully deceived, 

while Rényi +2 and Tsallis -2 are also affected, but still not sufficient to avoid detection. 

To camouflage the Rényi +2 entropy in this case, a total of 22,500 series of 4 synthetic 

flows need to be generated, which requires a total of 90,000 new spoofed flows during 

each of these epochs.  

 

Fig. 3. The entropy of the d[S.D] feature – the original dataset. 
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Fig. 4. The entropy of the d[S.D] feature – deceiving the Shannon entropy in epochs 129-131. 

In parallel to entropy calculation, as a control mechanism to detect this deception 

attempt, we propose to monitor a total number of elements in feature distributions. 

Fig. 5 presents a total number of elements that need to be added to the d[S.D] feature 

distribution to deceive all entropy types. It is obvious that the injected traffic 

significantly exceeds the regular values and the, especially for Rényi +2 entropy type, 

which is far above the presented scale. The threshold can be based on a fixed value or 

dynamically applied using the EMA technique. It noteworthy that this metric is not 

affected by the other two anomalies which are not deceived.  

  

Fig. 5. The length of the d[S.D] feature distribution with spoofed traffic. 

 

Fig. 6. The entropy of the d[S.s] feature, deceiving the feature d[S.D]. 
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Even such a huge number of added elements for deceiving the d[S.D] feature is not 

enough to completely deceive the d[S.s] feature for all entropy types, which is shown in 

Fig. 6. To deceive the d[S.s] feature many more elements need to be injected, which is 

even easier to detect with the proposed metric.  

4.3. Anomaly modelling 

Entropy-based network traffic anomalies detection is efficient if the anomalous traffic is 

intensive enough to cause a significant spike in data distribution and change the entropy 

values for the observed feature. However, our attention is attracted by the fact that 

different types of anomalies leave different footprints in the entropy of the 

corresponding features. To better analyse this behaviour and provide a key instrument 

for the anomaly classification based on the proposed multivariate analysis, we have 

modelled characteristic anomalies for each of the 16 communication pattern classes 

(from 11-11 to NN-NN). 

For each anomaly model, we have generated a modified dataset, combining flows of 

normal network traffic with the synthetically generated flows representing modelled 

anomalous behaviour. Normal traffic was extracted from the CTU-13 dataset, the trace 

named ‘51’, with around one million flow records collected during four hours. We 

additionally removed smaller ‘noise’ anomalies and obtained a stable traffic structure 

with no significant deviations over time. This traffic is not used to test anomaly 

detection accuracy but rather as ground truth for the analysis of which features are 

affected by different anomalies, even those of small intensity.  

Anomalies have been modelled by synthetic traffic using a flow generator software, 

developed by Bereziński 4 and slightly modified following our dataset format. Starting 

very modestly with only 25 anomalous flows per epoch, the intensity gradually 

increased producing a total of 50, 100, 200, 500 and 5000 flows per epoch. Small 

random variations were involved to present a stochastic traffic nature more realistically. 

It should be mentioned that the last anomaly burst was extremely huge to check whether 

the entropy of some features was completely immune to the anomaly. Moreover, this 

burst was repeated twice. The first traffic burst had 5000 purely random and mostly 

unique values of the aggregation feature (labelled in the model with ‘N’). The second 

burst had the same amount of flows, but containing 10 times fewer distinct elements, 

each of them repeated 10 times on average. With this method, having a DDOS attack as 

an example described by the N1-1N model, the source port and destination IP address 

were fixed in the corresponding synthetic flows, while the source IP address and 

destination port numbers were randomized. The generated synthetic flows for each 

modelled anomaly class were injected separately into the dataset with the normal traffic, 

starting from epoch 80 in short series of three epochs, increasing the intensity every 20 

epoch.  

4.4. The entropy of anomaly models 

The experiments were conducted for each of the 16 anomaly models separately, starting 

from 11-11 up to NN-NN, aggregating by all aggregation keys defined by Equation 4. 
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Calculating the total flow count and all behaviour features, a total of 103 feature 

distributions were generated for each model. As the result, a total of 1648 series of each 

entropy type were calculated. Volumetric features, such as the source and destination 

byte and packet counts, have not been used since they are efficient only for DDoS and 

similar volume-intensive attacks, but useless for many other attacks, such as Port Scan, 

Network Scan or Dictionary attack.  

It is already highlighted that the entropy is changed due to a spike or a long tail in 

feature distribution. Having as an example the N1-1N model, which relates to DDoS 

NTP amplification attacks 35, both the destination IP address and the source port 

number are unique during the attack and they are good candidates for the aggregation 

key to capturing a spike in distribution. On the other hand, the source IP address and the 

destination port, which relates to the label ‘N’ in the N1-1N model, can be used in the 

aggregation key to detecting a long tail of the distribution. Using the Shannon entropy 

these two characteristic cases are demonstrated in Fig. 7 and Fig. 8 for the feature f[s] 

and S[d] respectively.  

 

Fig. 7. The Shannon entropy and the N1-1N model - the flow count feature aggregated by the 

source port (f[s]). 

 

Fig. 8. The Shannon entropy and the N1-1N model - the source IP address feature aggregated by 

the destination port (S[d]). 
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regular traffic are lower (around 0.55) and using a highly randomized destination port 

number as an aggregation key produces many elements with only one occurrence in the 

feature distribution. 

The high sensitivity of the feature f[s] on the observed anomaly, demonstrated in 

Fig. 7, is used to further validate the feasibility of the protection method against entropy 

deception on low-rate attacks. The increase of the distribution length with the spoofed 

traffic to deceive all entropy types of the f[s] feature, presented in Fig. 9, can be easily 

detected. Only a deception of the smallest and barely noticeable anomaly around epoch 

100 (with 25 synthetic flows only) can not be detected due to a high number of data 

elements in the distribution of the feature f[s] since the source port is highly randomized 

in regular network communications.  

 

Fig. 9. Protection against entropy deception - the length of the f[s] feature distribution with 

spoofed traffic applied on the N1-1N model. 
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Table 3. Number of detected anomalies in N11N model by different entropy types 

 

The thorough analysis of all experimental results is summarized in Table 4, which 

describes entropy changes for flow count and behaviour features using each aggregation 

key (shown in rows) and each anomaly model (shown in columns). The label ‘X’ in the 

table denotes the entropy change caused by a peak in the feature distribution, while the 

label ‘o’ denotes the entropy changes due to a tail of the distribution. The results are 

equal for all entropy types which confirms already demonstrated similar detection 

ability of all entropy types. Therefore, in the rest of the paper, we will consider the 

results of the Shannon only, where the labels ‘X’ and ‘o’ related to entropy drop and 

increase respectively. The length of the labels expresses the detection efficiency of the 

observed features, where more characters in the label reflect a higher efficiency, while 

only one character indicates a low detection ability useful only in case of extremely 

intensive anomalies. More precisely, one character is used when the feature is affected 

only by two of the most intensive synthetic anomalies in our reference dataset (the last 

two anomalies in Fig. 7), two characters for anomalies of moderate intensity, while the 

label with three characters is used for the most sensitive features able to detect even the 

low-rate anomalies (two left most anomalies in Fig. 7).  For example, the previously 

mentioned features f[s] and d[S] for the N1-1N model can detect most of the generated 

anomalies and, therefore, they can be considered as very sensitive and are labelled with 

‘XXX’ and ‘ooo’ respectively.  

Even a brief look at the table reveals that the entropies of different features behave 

differently for different anomaly models, while some of them are not affected by a 

particular anomaly at all (the empty cells in the table). More importantly, how the 

entropies are affected by the modelled anomalies follows a very specific periodic 

pattern. It can be observed that the entropy drop (marked with ‘X’) occurs only when all 

identification features in the aggregation key have a single occurrence in the anomaly 

model (marked with ‘1’ in the anomaly model label). In this case, entropy is always 

affected for the flow count feature (such as f[S.s] in the first four columns), while the 

behaviour features are affected only when it corresponds to mark ‘N’ in the anomaly 

model label (such as D[S.s] in 11-N1 and 11-NN models, and d[S.s] in 11-1N and 11-

NN models). An increase in entropy values (marked with ‘o’) occurs when at least one 

identification feature in the aggregation key has many occurrences in the anomaly 

model (marked with ‘N’ in the anomaly model label) since this element will produce 

many new elements in the distribution tail. It should be noted that when the source port 

feature is used in the aggregation key, it can result only in an entropy drop, and not in an 

increase. The reason for this lies in the behaviour of the regular network, where a source 

host as a client initiates connections using a random source port number so that the 

corresponding distribution is already randomized.  

N11N Shannon Renyi +2 Renyi -2 Tsallis +2 Tsallis -2

f[S] 3 2 4 3 3

S[D] 3 2 4 2 4

d[D] 6 6 6 6 6

S[s] 6 6 5 5 6

d[s] 5 4 5 4 6

S[d] 5 3 4 3 4

f[S.d] 3 2 3 3 3

S[D.s] 6 6 5 5 6
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Table 4. Entropy changes of the flow count and behaviour features affected by the anomaly 

models. 

 
 

The described behaviour, i.e. how the entropy of different features is affected by 

different anomaly models, is the key reason for the clear periodic pattern noticeable 

from the table. This is also the explanation of why some features are very effective in 

detecting some anomalies while being completely useless for others. This finding is 

consistent with the previous research 32628 but covers the full feature set and all the 

anomaly models. Moreover, it reveals that behaviour features or complex aggregation 

key for some anomaly models outperform commonly used flow count feature of basic 
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flow attributes. For instance, the authors in 28 classify a DDoS attack by detecting 

entropy decrease in the flow count of destination IP address and port number. This 

corresponds to our NN-11 anomaly model and features f[D] and f[d], which are 

sensitive only to the most intensive anomalies, while behaviour feature S[D] can detect 

less intensive anomalies (up to 10 times in our experiment). The difference in the metric 

performances is more obvious in the case of port scan attack, defined by the 11-1N 

model (using fixed source port) and the 1N-1N model (using random source port). In 

both cases the best performance is achieved using behaviour features d[S], d[D] and 

d[S.D], marked with ‘XXX’ label in Table 4.  

This periodic pattern in the feature sensitivity to different anomalies leads to an 

important conclusion that each anomaly model has a unique footprint of triggered 

entropies, which is used in the development of the classification rules, as explained 

further in the text.  

4.5. Classification rules 

The aim of the proposed multivariate analysis is, firstly, to select the right features to 

ensure the most efficient detection of anomalies, and secondly, to accurately classify a 

detected anomaly to identify more precisely a potential security threat. Several methods 

for feature selection, including feature correlation, are proposed in the literature 232. In 

our approach, Table 4 reveals which feature is the most appropriate for which anomaly 

type. More importantly, a unique pattern of how the features are triggered by different 

anomalies can be recognised and used for defining the rules that classify an anomaly 

into an appropriate model.  

Due to feature correlation, it is possible to minimize the set of features while keeping 

the ability in anomaly detection and classification. This could be done in several 

different ways so that the following principles are used to select the optimal rules for 

anomaly recognition and classification, based on the results from Table 4: 

 Prefer the most efficient features (‘XXX’ or ‘ooo’). 

 Prefer features affected by the minimal number of models. 

 Prefer features with a simpler aggregation key. 

 Use the ‘Not affected’ rule to differentiate feature behaviour from another model 

(empty cells in the table). 

 Use the ‘Not decrease/increase’ rule to differentiate feature behaviour from another 

model (make a difference between ‘X’ and ‘o’ cells in the table) 

 Select model identified by the smallest number of unique features first, then proceed 

with others. 

By applying these principles to the results from Table 4, the following classification 

rules are jointly defined in the columns of Table 5, where all conditions must be 

satisfied to match the anomaly model given by the rows.  
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Table 5. Anomaly models identification and classification rules. 

 

For example, the 1N-N1 model, related to the horizontal port scan attack using many 

source port numbers, is affected by the feature D[S.d] but not by the feature D[s.d], 

which primarily identifies the similar 11-N1 model. 

Defined classification rules include a minimal set of features, which is important for 

performance optimization since aggregation is a CPU and memory consuming process. 

However, in an anomaly detection process, it is useful to keep more features, even if 

they are correlated and redundant, to minimize false alarms. 

4.6. Classification rules validation  

The classification ability and the usefulness of the methodology presented in this paper 

are demonstrated on real network data taken from the dataset CTU-13. More precisely, 

data trace named ‘43’ was used, where intensive botnet traffic was excluded from the 

dataset, keeping a large portion of real-life background traffic with several anomalies of 

smaller intensity. Using only the flow count and behaviour features, the most 

characteristic results are presented below.  

The entropy of the flow count feature aggregated by the source IP addresses (f[S]), 

shown in Fig. 10, reveals several smaller anomalies, including some minor deviations 

which generate false positive alarms.  

The entropy of other features, such as destination port behaviour feature with the 

same aggregation key, namely d[S], illustrated in Fig. 11, shows that a part of the 

anomalies has disappeared, indicating the presence of different anomaly types in the 

traffic over time.  

 

Anomaly

model

Affected 

(decrease)

Affected 

(increase)

Not 

affected

Not 

decreased

1 11-11 f[D.s] S[D.s], d[D.s]

2 11-1N f[s], d[S.D]

3 11-N1 D[s.d] S[s.d]

4 11-NN d[s], D[S.s]

5 1N-11 f[S.D] d[S.D]

6 1N-1N d[S.D] f[s]

7 1N-N1 D[S.d] D[s.d]

8 1N-NN D[S], d[S] d[s]

9 N1-11 S[D.s] d[D.s]

10 N1-1N S[D.s], d[D.s]

11 N1-N1 S[s.d], D[s.d]

12 N1-NN S[s], D[s], d[s]

13 NN-11 s[D] d[D] d[S]

14 NN-1N d[D] S[s] d[S]

15 NN-N1 S[d], D[d] S[s]

16 NN-NN d[S], S[d] S[s]
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Fig. 10. The CTU-13 dataset, trace 43, regular traffic, feature f[S]. 

 

Fig. 11. The CTU-13 dataset, trace 43, regular traffic, feature d[S]. 

On the other hand, the entropy applied to the partition of the traffic, filtered by the 

protocol field, reveals new anomalies in different epochs. For TCP traffic only, the 

entropy of the destination port behaviour feature aggregated by the source IP addresses 

is shown in Fig. 12, while the entropy for the ICMP traffic using only the flow count 

feature aggregated by the source and the destination IP addresses are shown in Fig. 13. 

These less intensive anomalies were masked by the total traffic, but taking only a 

smaller portion of the traffic into account, the entropy changes become obvious and 

relevant. A small entropy deviation around epochs 100 in the total traffic had been 

barely noticeable in Fig. 11 and subject to suspicion as a  false positive alarm until it 

was analysed for TCP traffic only (Fig. 12). These cases clearly demonstrate that data 

filtering into smaller parts is a simple method to achieve better detection sensitivity and 

efficiency. 

 

Fig. 12. The CTU-13 dataset, trace 43, TCP traffic only, feature d[S]. 
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Fig. 13. The CTU-13 dataset, trace 43, ICMP traffic only, feature f[S.D]. 

The results of entropy analysis of the CTU-13 data trace named ‘43’ using the 

proposed classification rules in different epochs for the most severe anomalies are 

presented in Table 6.  

Table 6. Verification of anomaly classification rules using real network traffic. 

 

 

All detected anomalies follow the unique signature presented in Table 4 and can be 

properly classified by the developed rules. Only the TCP anomaly in epochs 51–57 

presents a combination of two similar anomaly models: 1N-1N and 1N-11. A drill-down 

analysis of raw data has confirmed that the anomaly consists of flows with a larger 
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number of distinct destination ports according to the 1N-1N model, while one of them 

occurs more frequently, following the 1N-11 model. This is the case that demonstrates 

the feasibility of the proposed method to identify multi-vector attacks, combining two or 

more anomaly models. Raw data forensic is still needed for root cause analysis to 

mitigate the attack and proactively protect the victim.  

4.7. Comparison with machine learning approaches 

Entropy-based network traffic anomaly detection in many aspects completely differs 

from the machine learning methods, which makes it difficult and even impossible to 

directly compare their performances. For that reason, we rather discuss their general 

characteristics and leave a decision on which one is better for specific use-cases.  

The main difference lays in the fact that entropy-based detection operates on the time 

interval level, detecting anomalies in epochs, while machine learning detection methods 

provide detection granularity on the data level, classifying each data point as normal or 

anomalous. This fundamental difference implies the following consequences:  

 Anomalies detected using the entropy-based approach require further root-cause 

analysis to extract the information about the attackers, victims and services used.  

 The entropy-based approach does not require training with a labelled dataset, as 

opposed to supervised machine learning, which makes it attractive for general 

purpose application in real-life networks with any kind of traffic unknown in 

advance. 

 The entropy-based approach requires less processing power than most of the other 

techniques, which makes it attractive for real-time application. 

 Performance metrics used in machine learning (Accuracy, Precision, Recall, ROC 

curve etc.) take into account individual labelled data and, therefore, they are 

inconvenient for application in the entropy-based approach. 

As previously stated, the motivation behind our research has been to extend the 

anomaly detection technique with the classification method, for practical use in a 

general network environment. The entropy-based approach was chosen having in mind 

the above-mentioned characteristics. Anomaly detection is based on the data obtained 

by NetFlow or similar protocols, which are industry standards and the most convenient 

way to collect information about the network traffic structure. Flow data collected from 

network routers provide only basic information about communication peers (IP 

addresses, protocol, and port numbers), duration and total bytes and packets transferred. 

Enriched with flow count and behaviour features obtained in the aggregation process, 

this basic information appears to be sufficient for entropy calculation. Our experimental 

results confirm that this approach is efficient when the traffic structure is significantly 

changed during the attack, while it is useless for other attacks whose communication 

characteristics cannot be distinguished from regular traffic. In this work, we have solved 

the entropy deception problem, as a main weakness of the existing entropy detection 

methods. 

On the other hand, machine learning approaches to network behaviour analysis rely 

on other communication details, such as TCP flags and window size, packets length, 

packet inter arrival time, jitters and their statistical parameters (average, min, max, 

standard deviation). Obtaining these data is based on processing raw traffic on the 
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packet level, which requires direct access to network traffic and demanding data 

processing, especially for real-time application.  

The CICIDS2017 dataset was generated in this way and the authors originally used it 

for anomaly detection based on supervised machine learning 38. For each simulated 

attack, they achieved very high detection performances using various features and the 

following metrics: Precision (Pr - the ratio of the correctly detected attacks to all 

triggered alarms), Recall (Rc - the ratio of the correctly detected attacks to all attacks), 

and F-Measure (F1 - the harmonic mean of the Precision and Recall).  

We have reproduced their experiment with the same dataset named “Thursday 

morning”, which consists of Brute Force, Cross Site Scripting (XSS) and SQL Injection 

web attacks. We have also used Random Forest (RF), Multilayer Perceptron (MLP), and 

Naive-Bayes (NB) machine learning algorithms, and the same features used by the 

authors in 38, namely the initial TCP window size in both directions and the total bytes 

transferred from the source to destination.  

In our reproduced experiments in the Weka software, using 70% of training and 30% 

of testing data randomly chosen from the dataset, we have generally confirmed their 

results, especially in terms of the Recall performance metrics.  

Furthermore, we have performed a deeper investigation of raw data, which has 

revealed that most attack flows used the initial TCP window size of 29,200 and 28,960 

bytes from the source and destination directions, respectively. Since the TCP window 

can take an arbitrary value even in attack communications, we wanted to check the 

detection capability of the machine learning algorithms when these values were 

changed. For this reason, we manually increased the initial TCP windows of attack 

flows in the testing dataset by 3%, 10% and 30% and repeated the experiments. From 

Table 7, which summarises the results, it is obvious that the Random Forest algorithm 

dramatically lost the detection capability even with small changes of 3%, while the 

Multilayer Perceptron algorithm was not able to detect any attack at all. Only the Naive-

Bayes algorithm was more resilient to the initial TCP window value changes, but its 

performance was the lowest. 

Table 7. Supervised machine learning performance evaluation 

 

The above example demonstrates that some machine learning algorithms, which are 

based on such specific feature values, can be easily deceived with just a small variation 

in the attack scenario. Rather than just presenting a pure performance measurement, 

Alg. Dataset Precision Recall F1

RF Original 0.850 0.981 0.911

Modified, 3% 0.176 0.037 0.061

Modified, 10% 0.176 0.037 0.061

Modified, 30% 0.176 0.037 0.061

MLP Original 0.771 0.840 0.804

Modified, 3% 0.000 0.000 N/A

Modified, 10% 0.000 0.000 N/A

Modified, 30% 0.000 0.000 N/A

NB Original 0.132 0.909 0.230

Modified, 3% 0.132 0.908 0.230

Modified, 10% 0.123 0.842 0.215

Modified, 30% 0.123 0.842 0.215
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which can be misleading, we suggest further analysis of raw data and the meaning of the 

features in the context of the applied machine learning algorithms.  

5. Conclusions 

In this paper, we have presented a comprehensive method for entropy-based network 

traffic anomaly classification empowered by a novel protection mechanism against the 

deception of entropy detection capabilities. We contribute to the research topics in 

several directions.  

Firstly, we have compared the ways how the Shannon, Tsallis and Rényi entropies 

respond to changes in feature distribution caused by spoofed traffic injected to deceive 

the entropy detection systems. We have found that a total number of elements in 

distribution, so-called a distribution length, is an efficient metric to detect entropy 

deception attempts. If deception is applied, a distribution length is much longer, 

exceeding the threshold, either fixed or dynamically calculated. We have shown that the 

Rényi entropy with positive parameter  is the most resilient to deception since it 

requires the largest amount of spoofed traffic. However, this entropy type provides the 

lowest entropy values, and for some features with higher data variation, it is not suitable 

to detect entropy drops. 

Secondly, we have formalized and generalized the concept of aggregation and 

behaviour features, which better represents the network traffic structure using only basic 

flow attributes. Based on these features, we have modelled 16 anomaly models, 

associate with a wide range of security attacks. Extensive experiments were conducted 

for all anomaly models using full features set, calculating the Shannon, Tsallis and 

Rényi entropies, with both positive and negative parameter. Contrary to the widely 

accepted belief that the parameterized Tsallis and Rényi entropies outperform the 

Shannon entropy, we have shown that there is no significant difference in anomaly 

detection capability between these entropy types. The right choice of entropy type rather 

depends on the specific network traffic, its variety and deviations, used features and 

other parameters and characteristics, including the resilience to deception.  

Thirdly, the conducted experiments confirmed that each anomaly model leaves a 

unique signature in the behaviour, indicating how entropies of different features are 

affected. Based on the multivariate analysis of different features, the original anomaly 

classification rules have been developed, which is another novel contribution presented 

in this paper. The efficiency of the anomaly classification method is validated through 

the presented experimental results.  

Finally, but not less important, we believe that our work contributes in many respects 

to a better understanding of the entropy-based network behaviour analysis and anomaly 

detection, despite many papers in this research field. Based on the comprehensive 

experimental results and the conducted analysis, we have also concluded that supervised 

machine learning methods used for network behaviour analysis involve significant 

limitations for efficient practical use in real-time. Consequently, the proposed method 

based on the entropy of the basic flow data seems to be more feasible for practical 

implementation and general use. In this context, unsupervised machine learning, with 

no training required, could be a promising alternative solution.   
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Therefore, our further work will be oriented towards unsupervised machine learning, 

along with testing the concept and performances in various real-time network 

environments. This includes a classical approach using external data collection and 

processing system, as well as data plane programmability techniques on modern 

software defined networking architecture.  
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