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Abstract. Nowadays, using the consensus of collectives for solving problems plays
an essential role in our lives. The rapid development of information technology has
facilitated the collection of distributed knowledge from autonomous sources to find
solutions to problems. Consequently, the size of collectives has increased rapidly.
Determining consensus for a large collective is very time-consuming and expen-
sive. Thus, this study proposes a vertical partition method (VPM) to find consensus
in large collectives. In the VPM, the primary collective is first vertically partitioned
into small parts. Then, a consensus-based algorithm is used to determine the con-
sensus for each smaller part. Finally, the consensus of the collective is determined
based on the consensuses of the smaller parts. The study demonstrates, both theoret-
ically and experimentally, that the computational complexity of the VPM is lower
than 57.1% that of the basic consensus method (BCM). This ratio reduces quickly
if the number of smaller parts reduces.
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1. Introduction

Rapid development in information technology has facilitated the use of distributed knowl-
edge from autonomous sources to find solutions to problems [1]. One such example
is social networks. Social media platforms, such as Twitter, Facebook, Instagram, and
Wikipedia, have revolutionized communication among individuals, groups, and organi-
zations. Exploiting the data generated from social network sites is helpful for both indi-
viduals and organizations, such as businesses for marketing, sales, customer support, and
public relations. One example of knowledge created by collectives of users is Wikipedia.

⋆ This is an extended version of the article titled “A New Approach to Determine 2-Optimality Consensus for
Collectives”. In: Fujita H., Fournier-Viger P., Ali M., Sasaki J. (eds) Trends in Artificial Intelligence Theory
and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science, vol
12144, Springer.
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It is currently the most extensive online encyclopedia collection, with over 54 million arti-
cles available in more than 312 languages. Data from social media are considered sources
of knowledge [2], and organizations and individuals are increasingly looking for ways to
benefit from the collective intelligence of these sources [3]. Another example is Internet
of Things (IoT). It has given rise to large amounts of continuous data collected from the
physical world [4], [5]. IoT has pervasively penetrated most areas of human life, such as
homes, cities, industry, organizations, agriculture, hospitals, and healthcare [6], [7], [8].
Its applications collect data for their aims, such as decision making, system performance
boosting, optimal management of resources [9]. This leads to the continuous growth of
collectives [10].

The rapid development of other fields has also contributed to the increase in the size
of collectives; one such field is biology, where technological advances have allowed re-
searchers to gather unprecedented amounts of data. The amount of biological data is
rapidly increasing. Over the last decade, the amount of produced data has doubled al-
most every seven months [11]. Advances in computational sciences and communication
technologies have allowed biologists to share data [12].

Consensus determination has a significant role in computer science, automatic control,
social sciences, and biology [13], [14], [15], [16]. Consensus determination is based on
collective members’ knowledge states. However, the knowledge states in a collective are
often inconsistent; thus, consensus determination is complex [17]. The Consensus method
is an efficient tool to solve this problem [18].

Consensus determination is an NP-hard problem [16], [18], [19], and many heuristic
algorithms have been used to find consensus for different knowledge structures [18], [20].
The complexity of most such algorithms is O(n2) or larger [16], [18], [19]. For large col-
lectives, determining consensus is very time-consuming and expensive. This study con-
siders determining consensus for large collectives.

This study is an expanded version of our earlier conference paper [21]. In that paper,
we proposed an algorithm for determining the 2-Optimality consensus for a large binary
collective, the vertical partition method (VPM). First, this method vertically divides the
collective into many small parts. Second, it uses a brute-force algorithm to determine
the optimal consensuses of these parts. Finally, these consensuses are used to determine
the consensus of the whole collective. The approach reduces the time complexity of the
brute-force algorithm, and the optimal consensuses of the smaller parts can be used to find
consensus in a collective. An experiment showed that the VPM is 99.94% and 99.89%
faster if we vertically partition the collective into three and two parts. However, this was
only a case study with a binary collective and brute-force algorithm. The two most fun-
damental problems of the VPM have not been solved. The first is the computing of the
computational complexity of the VPM. The second is proving the efficiency of the VPM-
for determining consensus in large collectives in general. In this study, we deal with these
two problems. The contributions of this study are as follows:

– We propose the VPM and develop a general mathematical model for the VPM.
– The computational complexity of the VPM is computed as a function of the collective

sizes of the smaller parts.
– We prove that the computational complexity of the VPM is lower than 57.1% that of

the BCM. This ratio reduces quickly if the number of smaller parts reduces.
– The efficiency of the VPM was measured experimentally through a case study.
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The remainder of this paper is organized as the following. We present some related
concepts of this study in Section 2. In Section 3, the VPM is described. The computa-
tional complexity of the VPM is calculated in Section 4. The capability of the VPM is
demonstrated in Section 5. In Section 6, we investigate the efficiency of the VPM through
a case study. Finally, conclusions and future work are shown in Section 7.

2. Related works

Nowadays, collective intelligence is attracting researchers from many fields, such as biol-
ogy [13], computer science [22], and automatic control [23].

In computer science, the consensus problem has been investigated in distributed com-
puting [13], multi-agent systems [25], [26], IoT [27], etc. In recent years, collective
intelligence has become a promising research area, attracting increasing interest from
researchers and organizations. Axiomatic, optimization, and constructive methods have
been used to address the consensus problem.

The axiomatic method was first proposed by K. Arrow under seven conditions [27]. It
employs simple structures, such as partial order linear order. Nguyen introduced a set of
ten postulates for consensus choice functions [17]. However, no consensus choice func-
tions satisfy all postulates concurrently. The postulates 1-Optimality and 2-Optimality
have an important role because if one consensus satisfies one of these two postulates, it
will satisfy most of the others.

The constructive method solves consensus problems based on the structure of ele-
ments and the relation between elements. The relation between elements may be a dis-
tance function or preference relation between elements. Many structures of elements have
been investigated, such as n-tree [13], ordered partitions [20], disjunction and conjunction
Structures [29], binary vectors [30], and ontology [31], [32]

The optimization approach defines consensus choice functions, which are usually
based on optimality rules. Optimality rules include the global optimality rule, Condorcet’s
optimality rule, and maximal similarity rules [18].

Let U denote a finite set of objects that represent all potential knowledge states of the
same subject. Symbol 2U denotes the powerset of U, which includes the set of all subsets
of U. Let

∏
k(U) be a set of all k-element subsets of set U for k ∈ N (where N is the set

of natural numbers), and let ∏
(U) =

⋃
k∈N

∏
k

(U)

A set X ∈
∏
(U) is called a collective. The macrostructure of the set U is a distance

function d : U × U → [0, 1] that satisfies the nonnegative, reflexive, and symmetrical
conditions. Pair (U,d) is called the distance space [18].

For a given collective X ∈
∏
(U), the consensus of X is found by:

– Postulate 1-Optimality if: d(x∗, X) = miny∈Ud(y,X)

– Postulate 2-Optimality if: d2(x∗, X) = miny∈Ud2(y,X)

where x∗ is the consensus of X , d(x∗, X) is the sum of the distances from x∗ to collective
members, d2(x∗, X) is the sum of the squared distances from x∗ to collective members.
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The postulates 1-Optimality and 2-Optimality have an important role in finding con-
sensus. Determining consensuses that meet one of the two postulates are often NP-hard
problems [16], [18], [19]. For example, the Kemeny ranking is an NP-hard problem, even
for only four votes [14], [33]. Heuristic algorithms have been applied for this task. Over
104 algorithms and combinations have been introduced [14], and their complexities are
often O(m2) or larger.

Consensus determination of large collectives is widespread in medicine and bioinfor-
matics. Many consensus problems must be solved in these two fields, such as gene pre-
diction, protein structure prediction, and disease-related gene ranking. One example is the
consensus ranking. A large collective of gene lists of regulation, expression, correlation,
interaction can be extracted from data mining results, such as disease-related genes and
protein-protein interactions, and disease-related genes. Thus, it is important to rank such
data. Given m rankings of n elements, the complexities of the algorithms are O(n3m),
O(mn+ n2), and O(n2m) [34]. The second example is determining consensus for DNA
structure. In [35], algorithms were introduced to determine the 2-Optimality consensus
for this structure. The last example is the multiple structure alignment problem. The com-
plexity of the best algorithm to solve this problem is O(n2k2), where k is the maximum
length of n proteins [36].

For group decision making (GDM) problems, many consensus algorithms have been
proposed for various knowledge structures. Many algorithms have been introduced for
hesitant fuzzy linguistic structures. In [37], the authors proposed a new method for mea-
suring the difference between two hesitant fuzzy linguistic term sets. Based on this mea-
sure, an algorithm was proposed to resolve the hesitant linguistic GDM problem’s con-
sensus problem. This algorithm obtains optimally adjusted individual opinions in hesitant
linguistic GDM. Its computational complexity is O(mn2), where n is the number of ex-
perts, and m is the number of alternatives to be assessed. In [38], Wu and Xu first defined
a new consistency measure. A new algorithm was then presented to improve the consis-
tency index for a given hesitant fuzzy linguistic preference relation. It has a computational
complexity of O(mn2). In [39], the concept of a possibility distribution was introduced.
The authors proposed some aggregation operators, such as the hesitant fuzzy linguistic
weighted average operator and the hesitant fuzzy linguistic ordered weighted average op-
erator, based on the possibility distributions. A consensus measure was then defined, and
a consensus reaching process was presented. The complexity of this algorithm is O(n2).

The consensus problem has also been of interest in economic [40], [41], [42]. Algo-
rithms for investment strategy design for a multiagent system that supports investment
decisions on the stock market were presented in [41]. Based on decisions generated by
agents, the supervisor agent uses a consensus method to generate a satisfactory rate of
return and reduce the level of risk associated with investing in a financial instrument. The
complexity of this algorithm is O(nm2), where n is the size of the set of decisions and m
is the number of decision elements.

3. Vertical Partition Method (VPM)

The basic consensus method (BCM) directly determines consensus based on the primary
collective X [15]. In other words, it determines consensus based on the knowledge states
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of all members in the collective X. If the collective size is large, the VPM is often very
time-consuming and expensive.

Instead of using the algorithm to determine the consensus based on the collective
X as the BCM, the VPM applies the algorithm for smaller parts of the collective X to
reduce the computational complexity. First, the primary collective is vertically partitioned
into small parts. Then, a consensus-based algorithm is applied to determine consensus for
each smaller part. Finally, the consensus of the collective X is determined based on the
consensuses of the smaller parts. The procedure of the VPM is illustrated in Fig. 1.

Fig. 1. Schema of the VPM.

Let a large collective X contain n members, where the length of each member is m.
The VPM with k parts to determine consensus for the collective X is described as follows:

– Step 1: Use the vertical partition to divide the collective X into k disjointed parts
X1, X2, ..., Xk that satisfy the following:

U1 ∪ U2 ∪ . . . ∪ Uk = X

U1 ∩ U2 ∩ . . . ∩ Uk = ∅

|length(Xi)− length(Xj)| = 1 or |length(Xi)− length(Xj)| = 0

for 1 ≤ i, j ≤ k.
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– Step 2: Determine consensuses for X1, X2, . . . , Xk as C(X1),
C(X2), . . . , C(Xk), respectively.

– Step 3: Determine consensus C(X) by combining C(X1), C(X2), ..., C(Xk) se-
quentially:

C(X) = C(X1)C(X2)...C(Xk)

Note that the number of smaller parts k is a natural number that satisfies:

2 ≤ k ≤ ⌊m
2
⌋ (1)

Under this condition, the VPM is very general and flexible.

4. Computational Complexity of the VPM

Let CV PM(m,m1,m2, ...mk) represent the computational complexity of the VPM,
where m,m1,m2, . . . ,mk are the lengths of X,X1, X2, . . . , Xk, respectively. We can
calculate CV PM(m,m1,m2, ...mk) based on the computational complexity of the steps.

Let O(g(m)) represent the computational complexity of partitioning the collective
X into smaller parts, O(f(l)) represent the computational complexity of determining
consensus for a smaller part with length l, and O(h(m)) represent the computational
complexity of generating consensus for the collective X by combining the consensuses
of parts X1, X2, . . . , Xk. The computation of CV PM(m,m1,m2, ...mk) is detailed as
follows:

– In step 1, the collective X with the length of m is vertically partitioned into k smaller
parts X1, X2, . . . , Xk. The computational complexity of this task is O(g(m)).

– In step 2, the complexity of finding the consensuses of k smaller parts Xi (i = 1, k)
is computed as the following:

O(f(m1)) +O(f(m2)) + ...+O(f(mk))

The difference between the lengths of members of any two smaller parts is not larger
than 1. The length of the smaller parts Xi (i = 1, k) are ⌊m

k ⌋ or ⌊m
k ⌋+1. The number

of smaller parts with the length ⌊m
k ⌋ is k−(m−k×⌊m

k ⌋), and the number of smaller
parts with the length ⌊m

k ⌋+ 1 is m− k × ⌊m
k ⌋. We have

O(f(m1)) +O(f(m2)) + ...+O(f(mk))

= (k − (m− k × ⌊m
k
⌋)×O(f(⌊m

k
⌋)) + (m− k × ⌊m

k
⌋ ×O(f(⌊m

k
⌋) + 1)

– In step 3, the complexity of generating consensus for the collective X by combining
the consensuses of X1, X2, ..., Xk is O(h(m)).

Thus

CV PM(m,m1,m2, ...mk) = O(g(m)) + (k − (m− k × ⌊m
k
⌋)×O(f(⌊m

k
⌋))
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+(m− k × ⌊m
k
⌋ ×O(f(⌊m

k
⌋) + 1) +O(h(m))

O(g(m)) = O(m) and O(h(m)) = O(m) are linear functions; thus, in the case of
large collective, do not consider them:

CV PM(m,m1,m2, ...mk) = (k − (m− k × ⌊m
k
⌋)×O(f(⌊m

k
⌋))

+(m− k × ⌊m
k
⌋ ×O(f(⌊m

k
⌋) + 1)

(2)

5. Efficiency of the VPM

The efficiency of the VPM is measured by comparing its computational complexity with
that of the BCM. Denoting p = ⌊m

k ⌋, we have m = kp + r (0 ≤ r < k) where r is the
remainder in the division of m by k. Thus, X1, X2, . . . , Xk include:

– (k − r) parts have p columns;
– r parts have (p+ 1) columns.

We have

CV PM(m,m1,m2, ...mk) = (k − r)×O(f(p)) + r ×O(f(p+ 1)) (3)

Because 2 ≤ k ≤ ⌊m
2 ⌋ (from (1)) and p = ⌊m

k ⌋, we have

p ≥ 2 (4)

The BCM directly calculates consensus based on all knowledge states of X . By
CBCM(m) we denote the computational complexity of the BCM. We have

CBCM(m) = O(f(m)) (5)

Theorem 1. If the computational complexity of the BCM is O(m2), we have

CBCM > 1.75× CV PM

Proof.
The algorithm determining consensus has quadratic computational complexity.
From (4), we have

CV PM = (k − r)p2 + r(p+ 1)2

CV PM = kp2 + 2pr + 1 (6)

From (5), we get
CBCM = m2 = (kp+ r)2
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CBCM = k2p2 + 2kpr + r2 (7)

From (6) and (7), we have

CBCM

CV PM
=

k2p2 + 2kpr + r2

kp2 + 2pr + 1
=

k(kp2 + 2pr + 1)− (k − r2)

kp2 + 2pr + 1

=
k(kp2 + 2pr + 1)

kp2 + 2pr + 1
− k − r2

kp2 + 2pr + 1

= k − k − r2

kp2 + 2pr + 1
> k − k

kp2 + 2pr + 1
> k − k

kp2
= k − 1

p2

Thus
CBCM

CV PM
> k − k

p2
(8)

From (1) and (4), we have k ≥ 2 and p ≥ 2. From (8), we get

CBCM

CV PM
> k − 1

p2
≥ 2− 1

22
= 1.75

Or
CBCM > 1.75× CPVM

From (8), we can see that CBCM
CV PM increases quickly if k increases. It reaches m

2m−1

when k = ⌊m
2 ⌋.

Theorem 2. If the computational complexity of the BCM is higher than O(m2), we have

CBCM > 1.75× CV PM

Proof.
Let us consider the case that the computational complexity of the BCM is (m3).
From (3), we have

CV PM = (k − r)p3 + r(p+ 1)3 (9)

From (5), we have

CBCM = m3 (10)

From Theorem 1, we have

1.75× ((k − r)p2 + r(p+ 1)2) < m2 (11)

Multiply both sides of (11) by m, we get

1.75× ((k − r)p2 + r(p+ 1)2)m < m3
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Or
1.75× ((k − r)p2m+ r(p+ 1)2m) < m3 (12)

Let us consider the left-hand side of the inequality (12). Because m = kp + r and
k > r ≥ 0, we have m ≥ kp.

Thus

1.75× ((k − r)p2m+ r(p+ 1)2m) ≥ 1.75× ((k − r)p2(kp) + r(p+ 1)2(kp)) (13)

Because k ≥ 2 and p ≥ 2 (from (1) and (4)), then kp > p+ 1. We have

1.75× ((k − r)p2(kp) + r(p+ 1)2(kp)) = 1.75× (k(k − r)p3 + r(p+ 1)2(kp))

≫ 1.75× ((k − r)p3 + r(p+ 1)3) (14)

From (13) and (14), we get

1.75× ((k − r)p2 + r(p+ 1)2)m ≫ 1.75× ((k − r)p3 + r(p+ 1)3) (15)

From (12) and (15), we have

1.75× ((k − r)p3 + r(p+ 1)3) ≪ m3

Or
1.75× CV PM ≪ CBCM

We proved that Theorem 2 is true if the computational complexity of the BCM is
O(m3).

Assume that 1.75× CV PM ≪ CBCM with the complexity of the BCM is O(mt)
for t > 3. We have

CBCM = mt (16)

CPVM = (k − r)pt + r(p+ 1)t (17)

1.75× ((k − r)pt + r(p+ 1)t) < mt (18)

We need to prove 1.75 × CV PM ≪ CBCM with the complexity of the BCM is
O(mt+1). In other words, we need prove that

1.75× ((k − r)pt+1 + r(p+ 1)t+1)m < mt+1 (19)

Multiply both sides of (18) by m, we get

1.75× ((k − r)pt + r(p+ 1)t)m < mt+1

Or

1.75× ((k − r)ptm+ r(p+ 1)tm) < mt+1 (20)
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Let us consider the left-hand side of the inequality (20). Because m = kp + r and
k > r ≥ 0, we have m ≥ kp. Thus

1.75× ((k − r)ptm+ r(p+ 1)tm) ≥ 1.75× ((k − r)pt(kp) + r(p+ 1)t(kp)) (21)

Because k ≥ 2 and p ≥ 2 (from (1) and (4)), we have kp > p+ 1. We have

1.75× ((k − r)pt(kp) + r(p+ 1)t(kp)) = 1.75× (k(k − r)pt+1) + r(p+ 1)t(kp)

≫ 1.75× ((k − r)pt+1 + r(p+ 1)t+1) (22)

From (21) and (22), we obtain

1.75× ((k − r)ptm+ r(p+ 1)tm) ≫ 1.75× ((k − r)pt+1 + r(p+ 1)t+1) (23)

From (20) and (23), we have

1.75× ((k − r)pt+1 + r(p+ 1)t+1) ≪ mt+1

It means that (19) was proved.

Theorem 3. The computational complexity of the BCM is O(mtnw). If t ≥ 2, for any
w ≥ 0, we have

CBCM > 1.75× CV PM

Proof.
From (3), we have

CV PM = (k − r)ptnw + r(p+ 1)tnw (24)

From (5), we have
CBCM = mtnw (25)

Thus

CBCM

CV PM
=

mtnw

(k − r)ptnw + r(p+ 1)tnw

=
mtnw

nw × ((k − r)pt + r(p+ 1)t)

=
mt

(k − r)pt + r(p+ 1)t

From Theorem (1) and Theorem (2), we get

=
mt

((k − r)pt + r(p+ 1)t)
> 1.75

Or

CBCM > 1.75× CPVM
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6. Application of the PVM

This section examines the efficiency of the VPM through a case study. Determining the
consensus for a binary collective is an NP-hard problem; applying the VPM can efficiently
deal with this situation.

Set U is described as U = {u1, u2, ..., uq} where each element is a binary vector of
length m. The size of U is 2m. Each set X ∈

∏
(U) is a collective that is represented as

X = {x1, x2, ..., xn}

where each element xi is a binary vector for 1 ≤ i ≤ n. Each element xi ∈ X is
represented as

xi = (x1
i , x

2
i , . . . , x

m
i ), xj

i = {0, 1}, 1 ≤ j ≤ m.

The brute-force algorithm is used to find the optimal consensus for collectives con-
taining binary vectors. This algorithm is unfeasible because its computational complexity
is O(n2m). In this study, the VPM using the brute-force algorithm with two and three
parts is investigated.

6.1. Algorithms

TwP algorithm
In this algorithm, the collective X is vertically partitioned into two parts: X1 and X2.

– X1 has n vectors, the length of vectors is ⌊m
2 ⌋.

– X2 has n vectors, the length of vectors is m− ⌊m
2 ⌋.

The brute-force algorithm is used to determine the 2-Optimality consensus for X1

and X2. Then, the 2-Optimality consensus of the collective X is determined. The TwP
algorithm is represented as follows.

ThP algorithm
In the ThP algorithm, the collective X is vertically partitioned into three parts: X1, X2,
and X3. Note that the difference between the lengths of any two smaller parts is equal to
0 or 1. The brute-force algorithm is used todetermine the 2-Optimality consensus for X1,
X2, and X3. Finally, the 2-Optimality consensus of the collective X is determined.

This algorithm is presented as the followings.
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6.2. Experiments and Evaluation

The TwP and ThP algorithms are the VPM using the brute-force algorithm. This section
estimates the ability of the TwP and ThP algorithms by experiments. The two algorithms
are examined both running time and consensus quality. We compare these two algorithms
to the basic heuristic and brute-force algorithms. The reason is that the basic heuristic
algorithm is the most common algorithm to find consensus for binary collectives, and the
brute-force algorithm is used to develop the TwP and ThP algorithms.

The significant level α is chosen as 0.05. Consensus quality of a heuristic algorithms
is calculated as follows:

CQ = 1− |d2(x∗, X)− d2(xopt, X)|
d2(xopt, X)

where x∗ is the 2-Optimality consensus found by the heuristic algorithm, and xopt the
optimal consensus found by the brute-force algorithm.

Consensus quality
The following experiment aims to evaluate the consensus quality of the algorithms

TwP and ThP. A dataset with 26 collectives is created randomly. Each collective includes
650 elements, and the element length is 22.

We run the basic heuristic, TwP, and ThP algorithms on the dataset. It generates three
consensus quality samples of the basic heuristic, TwP, and ThP algorithms. The samples
are represented in Table 1. In Fig.5., red, green, and black columns describes consensus
quality for the TwP, ThP, and basic heuristic algorithms, respectively.

The boxplots of these consensus quality samples are described in Fig.6. The medians
of the TwP, ThP, and basic heuristic algorithms’ consensus quality are 0.99925, 0.99780,
and 0.96590, respectively. The consensus quality sample of the basic heuristic algorithm
has the lowest level of closeness with each other.

We need to determine the distribution of these samples. The null hypothesis H0 for
this test is that the consensus quality sample is normally distributed. The Shapiro-Wilk
test is applied to find distributions of these samples. The p-value of the TwP algorithm’s
consensus quality sample is 0.0002. Because p-value < α, H0 is rejected. It indicates that
the consensus quality sample of the TwP algorithm is not normally distributed.

The similarity, p-values of the consensus quality samples of the algorithms ThP and
basic heuristic are less than the significant level (p-value=0.03077 and p-value=0.000002
for the consensus quality sample of the ThP and basic heuristic algorithms, respectively).
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Fig. 2. Consensus quality of the algorithms TwP, ThP, and basic heuristic.

Fig. 3. The boxplots of consensus quality of the algorithms TwP, ThP, and basic heuristic.
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Table 1. Consensus quality of the algorithms TwP, ThP, and basic heuristic.

It means that the consensus quality samples are not normally distributed. We compare
these three consensus quality samples. The hypotheses are declared as follows:

– H0: The medians of consensus quality of the algorithms TwP, ThP, and basic heuristic
are equal.

– H1: The medians of consensus quality of the algorithms TwP, ThP, and basic heuristic
are not equal.

Because three samples do not come from the normal distribution, the Kruskal-Wallis
test is applied to evaluate the hypotheses. We obtain p-value=2.7e-11. As p-value<0.05,
H0 is rejected. We can conclude that the medians of consensus quality of the TwP, ThP,
and basic heuristic algorithms are not equal.

From the output of the Kruskal-Wallis test, we realize that there is a significant dif-
ference between samples. However, we do not know which pairs of samples are different.
The Pairwise Wilcoxon test is used to calculate pairwise comparisons between samples
with corrections for multiple testing. The p-values are shown for each pair in the output
as follows:

– The p-value for the basic heuristic and ThP algorithms is 2.6e-08.
– The p-value for the basic heuristic and TwP algorithms is 1.4e-08.
– The p-value for the TwP and ThP algorithms is 0.024.
Since three p-values are less than 0.05, we can conclude that the difference in con-

sensus quality between the basic heuristic algorithm and the ThP algorithm, between the
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basic heuristic algorithm and the TwP algorithm, between the TwP algorithm and the ThP
is statistically significant.

The consensus quality of the TwP algorithm is 0.1% higher than that of the ThP algo-
rithm and 3.4% higher than that of the basic heuristic algorithm. The consensus quality of
the TwP algorithm is 3.3% higher than that of the basic heuristic algorithm.

Running time
The brute-force algorithm determines consensus based on the knowledge states of

all members in the collective. The brute-force is the BCM, and the algorithms TwP and
ThP are the VPM. They are developed based on the brute-force algorithm. The following
experiment aims to evaluate the running time of VPM by comparing the running time of
the brute-force, TwP, and ThP.

A dataset containing 15 collectives is randomly created. The vector length is 22 and
collective sizes are 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950,
and 1000. We perform the ThP, TwP, and brute-force algorithms on this dataset. Three
running time samples of the three algorithms are generated. They are represented in Table
2.

Table 2. Running time of the algorithms brute-force, TwP, and ThP (seconds).

The Shapiro-Wilk test is applied to specify the distribution of the samples. Their p-
values larger than α (p-value=0.601, p-value =0.7, p-value=0.739 for the running time
sample of the algorithms brute-force, TwP, ThP, respectively ). It means that these samples
come from the normal distribution. The hypotheses to compare the running time of these
algorithms are declared as follows:

– H0: The means of running time of the algorithms brute-force, TwP, ThP are equal.
– H1: The means of running time of the algorithms brute-force, TwP, ThP are not equal.

As the samples come from the normal distribution, we use the one-way ANOVA to
evaluate the hypotheses. We get p-value=2e-16, it means that the means of running time
of the brute-force, TwP, ThP algorithms are not equal.
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This result indicates that some of the sample means are different. However, we do not
know which pairs of samples are different. We use the Tukey HSD test for performing
multiple pairwise-comparison between the means of samples. The p-values are shown for
each pair in the output as follows:

– The p-value for the ThP algorithm and brute-force algorithms is 1e-12.
– The p-value for the TwP algorithm and brute-force algorithms is 1e-12.
– The p-value for the TwP algorithm and ThP algorithms is 0.99.
The difference in running time between the TwP algorithm and the ThP algorithm is

not statistically significant. The difference in running time between the brute-force algo-
rithm and others is statistically significant. The running time of the TwP, ThP algorithms
are equal to 0.01%, 0.003% that of the brute-algorithm, respectively.

7. Discussion

The basic heuristic algorithm is popular to find consensus for collectives in the literature.
The consensus quality of the algorithms TwP and ThP are 3.4% and 3.3% higher than that
of the basic heuristic algorithm, respectively. Besides, the VPM proved its effectiveness
in running time by experiments. The TwP and ThP algorithms’ running time is hugely
less than that of the brute-force algorithm if the collective is only partitioned into two
and three parts. The running time continuously reduces if the number of smaller parts
increases, satisfying (1). The VPM is an efficient tool to deal with large collectives.

8. Conclusions

In this study, we introduced the VPM to determine large collectives. We developed a
general mathematical model for the VPM. The computational complexity of the VPM is
computed as a function of the collective sizes of the smaller parts. We proved that the
computational complexity of the VPM is lower than 57.1% that of the BCM. This ratio
reduces quickly if the number of smaller parts reduces. Besides, The efficiency of the
VPM was measured experimentally through experiments.

In the future, we will investigate combining the VPM and parallel processing to in-
crease the efficiency of the VPM.
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