
Computer Science and Information Systems 19(1):379–396 https://doi.org/10.2298/CSIS210218063D

On the effectiveness of Gated Echo State Networks for
data exhibiting long-term dependencies

Daniele Di Sarli, Claudio Gallicchio, and Alessio Micheli

Department of Computer Science
University of Pisa

Pisa, Italy
daniele.disarli@phd.unipi.it

{gallicch,micheli}@di.unipi.it

Abstract. In the context of recurrent neural networks, gated architectures such as
the GRU have contributed to the development of highly accurate machine learning
models that can tackle long-term dependencies in the data. However, the training
of such networks is performed by the expensive algorithm of gradient descent with
backpropagation through time. On the other hand, reservoir computing approaches
such as Echo State Networks (ESNs) can produce models that can be trained effi-
ciently thanks to the use of fixed random parameters, but are not ideal for dealing
with data presenting long-term dependencies. We explore the problem of employ-
ing gated architectures in ESNs from both theoretical and empirical perspectives.
We do so by deriving and evaluating a necessary condition for the non-contractivity
of the state transition function, which is important to overcome the fading-memory
characterization of conventional ESNs. We find that using pure reservoir comput-
ing methodologies is not sufficient for effective gating mechanisms, while instead
training even only the gates is highly effective in terms of predictive accuracy.

Keywords: echo state networks, gated recurrent neural networks, reservoir comput-
ing.

1. Introduction

Several approaches are possible for learning functions over temporal domains. Recurrent
Neural Networks (RNNs) represent an effective neural architecture for temporal tasks,
with applications in many different domains [20]. When it comes to the training algorithm
for RNNs, we distinguish two major approaches.

The first approach is reservoir computing [21,31], in which the neural network is
studied as a dynamical system and involves the encoding of the input sequence and its
temporal features into a fixed size vector in the state space. The peculiar characteristic of
the reservoir computing approach is that the weights of the RNN are not trained: instead,
only the weights associated to a simple stateless readout layer get trained. This allows for
very fast and efficient trainings. A widely known instance of reservoir computing model is
represented by Echo State Networks (ESN) [17,16]. ESNs and other reservoir computing
models are tightly connected to the concepts of Markovian bias [30,11], fading-memory
[12], and contractivity [16], which are fundamental characteristics of their state dynamics.

On the other hand, the second and most popular approach involves training all network
weights by gradient methods, namely gradient descent. The flexibility of this approach al-
lowed the emergence of architectural variants which, while maintaining the computational

380 Daniele Di Sarli et al.

power of simple RNNs, can make training easier over data exhibiting long-term depen-
dencies [5]. Instances of such variants are LSTM [14] and GRU [7], which thanks to the
introduction of so-called gating mechanisms allow the network to remember or discard
from the internal state selected information about the input sequences (or, from the point
of view of the gradient computation, can alleviate the problem of gradient vanishing [5]).
While definitely effective in terms of predictive accuracy, gated network models still re-
quire gradient descent for training, which is often much more computationally expensive
than the reservoir computing approaches.

In recent years, there has been an increasing research interest regarding alternative so-
lutions for maintaining information over long time spans in recurrent models. An example
is the application of the Learning-to-Learn paradigm and neuronal adaptation to spiking
neural networks in the context of reservoir computing methodologies [29,2]. In this paper
we focus on the following question: can typical gating mechanisms be embedded within
efficient reservoir computing networks, and within what degree of effectiveness?

In ESNs, whose recurrent dynamics are completely untrained, it is not immediate to
extend the architecture with gate-like mechanisms. In this work we investigate whether it
is possible to extend the architecture of an ESN by introducing gating mechanisms, and
we analyze the results in terms of training efficiency and predictive performance. The goal
is to make progress towards efficient neural models which improve the predictive perfor-
mance with respect to the current reservoir computing state-of-the-art, while maintaining
most of the efficiency.

In short, we summarize here the key contributions of this work which are:

– the extension of the ESN architecture with the use of gating mechanisms, which we
denote as Gated ESN;

– the theoretical analysis of the conditions associated to the fading memory of the net-
work dynamics of the Gated ESN;

– a critical experimental analysis of the Gated ESN; and
– the suggestion of likely paths towards effective gated reservoir computing models.

Regarding the organization of the manuscript, it is laid out as follows: we start by
discussing a few related works in Section 2 before introducing, in Section 3, the two main
approaches from the state-of-the-art literature regarding RNN training, namely ESNs and
GRUs. In Section 4 we describe the model that we study (Gated ESN), and we provide
a theoretical analysis for the conditions related to memory and stability in Section 5.
Then, in Section 6 we report the methodology and the results regarding our experimental
analysis, whose implications are discussed in Section 7. Finally, in Section 8 we draw the
conclusions.

2. Related Works

The process of extending the architecture of ESNs with gating mechanisms has been first
investigated in our previous work [9] and, concurrently and independently, in [32]. The
two works share a similar idea, which consists of extending the state transition func-
tion of an ESN to include the same gating mechanisms of a GRU, while keeping all the
parameters in the gates untrained. Both works investigate the behavior of such network

On the effectiveness of Gated ESNs... 381

when trained by conventional reservoir computing techniques (as opposed to the typical
approach of training GRUs by using gradient descent).

While the underlying idea from [9] and [32] is similar, in [9] and in the current work
we also take care to (1) consider the fundamental details regarding the initialization strat-
egy, (2) perform an experimental evaluation over a dataset that makes it possible to eval-
uate more clearly the actual influence of the gates, and (3) perform a more extensive
evaluation of the competing reservoir computing models, which led to important insights
about the feasibility of the approach. Moreover, the current paper further extends our
previous work [9] to include (a) the development of a theoretical analysis of the state
dynamics in the proposed models, (b) the analysis and discussion of the agreement be-
tween the theoretical results and the experimental measurements, (c) the expansion of
the hyperparameter search for the experiments, (d) the collection and discussion of addi-
tional measurements for the activation of the gates, and (e) the reporting and discussion
of additional measurements regarding the weight matrices.

Finally, in the Gating ESN model [1] from earlier literature, it is employed a combina-
tion of many parallel instances of ESNs, each initialized with different hyperparameters,
and each trained separately on the same task. A gating network then learns to select which
instance to use for any given time-step. While the name of our proposed model may bear
similarity with the Gating ESN, the approaches are radically different: instead of instan-
tiating many different sub-models, we aim to enrich the dynamics of the state of a single
ESN by explicitly introducing gated units (cells) in the spirit of architectures such as GRU
[7] and LSTM [14].

3. Background

In this section we briefly describe the models that serve as the basis of our study: in
Section 3.1 we describe the Echo State Networks (ESNs), a reservoir computing approach
for modeling sequences, while in Section 3.2 we describe the popular approach of Gated
Recurrent Units (GRUs), representing one of several existing variants of gated RNNs.

3.1. Echo State Networks

Among the different instances of the general framework of RNNs, ESNs [16,17] represent
an efficient approach for sequence modeling thanks to the use of a distinctive perspective
for the study of the recurrent network. As reservoir computing models, in ESNs there is a
sharp distinction between the recurrent part of the network, which is referred to as reser-
voir, and the output layer, which is called readout. The reservoir is studied as a dynamical
system and is responsible for embedding the input sequence into a high dimensional state
space of fixed size. The key characteristic is that the reservoir does not get trained. In-
stead, the weights in the reservoir are initialized from a random distribution that allows to
meet a mathematical property for stability. We will discuss this property in the final part
of this section. The readout is typically implemented as a linear regression model. Since it
is the only part of the model that gets trained, it is possible to obtain closed-form solution
to the regression problem.

The architecture of an ESN has three main dimensions: the number of input units
(NU), the number of units in the reservoir (NR) and the number of output units in the

382 Daniele Di Sarli et al.

readout (NY). Then, the ESN can be applied to sequences u(1), . . . ,u(T) ∈ RNU of any
length T .

The state of the reservoir of the network at each time step t, which is denoted as
x(t) ∈ RNR , is computed as

x(0) = 0,

x(t) = tanh
(
Winu(t) + Ŵx(t− 1)

)
,

(1)

where Win ∈ RNR×NU is the input-to-reservoir weight matrix, and Ŵ ∈ RNR×NR is
the recurrent reservoir-to-reservoir weight matrix.

Instead of being tuned by a training process, the matrices Win and Ŵ are fixed after
being randomly initialized. As part of the random initialization process, Win is multi-
plied by a real scaling hyperparameter. The matrix Ŵ, instead, is initialized so that its
norm ∥Ŵ∥ or spectral radius ρ(Ŵ) (the largest eigenvalue in absolute value) meets the
conditions for stability given in [16]. We report a sufficient condition for stability at the
end of this section.

After the states for the input sequence have been collected, the output is computed as

y(t) = Woutx(t), (2)

with Wout ∈ RNY ×NR .

Leaky ESN – A simple but effective variant of the basic ESN is denoted as leaky ESN.
In the leaky ESN, the neurons in the reservoir are leaky-integrators [18] which act as
lowpass filters. Their leaking rate is considered a hyperparameter of the model, and as
such is chosen and fixed at model selection time. For a leaky ESN, the state transition
function of the reservoir is defined as

x(0) = 0,

x(t) = (1− a)x(t− 1) + a tanh
(
Winu(t) + Ŵx(t− 1)

)
,

(3)

where a ∈ R is the leaking rate, under the constraint that 0 < a ≤ 1.

Training – The characteristic of ESNs and its variants such as leaky ESNs is that the
weights in the reservoir are not trained. As such, the only parameters that need to be
optimized are those in the readout, i.e., the matrix Wout. Since the readout is limited to
a linear computation, a closed-form solution to the convex minimization of the error can
be obtained by algorithms such as ridge regression. In practice, first the input data is fed
to the reservoir and the Ntrain states that need to be classified are collected column-wise
into a matrix X ∈ RNR×Ntrain . Then, the readout is trained by finding a solution to the
following least squares problem:

min
Wout

∥WoutX−Ytg∥22. (4)

In Equation 4, Ytg ∈ RNY ×Ntrain indicates the column-wise concatenation of the target
vectors. A regularized solution to Equation 4 can be computed in closed-form as follows:

Wout = YtgX
T (XXT + λrI)

−1, (5)

where I is the identity matrix, and λr ∈ R+ is the regularization parameter which can be
chosen by model selection.

On the effectiveness of Gated ESNs... 383

Echo State Property – To guarantee the stability conditions that allow the untrained state
dynamics to encode meaningful representations of the data, the reservoir must meet the
so-called Echo State Property (ESP) [16,33]. The ESP is related to asymptotic properties
of the reservoir and intuitively states that, for sufficiently long input sequences, the state
in which the network ends up should only depend upon the input itself. In other words,
the initial conditions of the network should not influence its long-term dynamics. For
ESNs with hyperbolic tangent activation functions, a sufficient condition for the ESP is
∥Ŵ∥2 < 1 (see [16]).

3.2. Gated Recurrent Units

The problems associated to gradient descent training with backpropagation through time
over long input sequences [5] led to the development of gated RNN models such as LSTM
[14] and GRU [7]. The gates are simple mechanisms that are able to dynamically squash
to zero the individual components of the possibly multidimensional signal to which they
are applied. In the case of GRU, the state transition function contains two gates which
are called reset gate and update gate. The activations of such gates at time t are denoted
as respectively r(t) ∈ RNR and z(t) ∈ RNR . Informally, a gate is said to open or close
depending on the values of its activations, which vary in (0, 1).

Intuitively, the purpose of the gates in the GRU is to open and close to regulate the
flow of information within the state: the reset gate can zero out unnecessary information
from the previous state x(t − 1), while the update gate can merge information from the
previous state and the current candidate state h(t) into the new state x(t). More in detail,
the recurrent state x(t) of a GRU at a given time step t is computed as:

x(0) = 0,

r(t) = σ(Wr
inu(t) + Ŵrx(t− 1))

z(t) = σ(Wz
inu(t) + Ŵzx(t− 1))

h(t) = tanh(Winu(t) + Ŵ(r(t)⊙ x(t− 1)))

x(t) = z(t)⊙ x(t− 1) + (1− z(t))⊙ h(t).

(6)

Here, we have r(t), z(t),h(t),x(t) ∈ RNR , and in particular r(t), z(t) ∈ (0, 1) due to
the sigmoidal activation function.

From a given state of the GRU, a prediction can be obtained by means of any kind of
differentiable readout layer, such as a linear one. The whole model (including the behavior
of the gates) can be trained end-to-end by backpropagation through time.

4. Gated ESN

The capability of ESNs to discriminate between different input sequences depends on
the guarantees given by the ESP [16] described in Section 3.1. The ESP is related to
the fading-memory property of the ESN, i.e., in a properly initialized ESN any informa-
tion from the initial conditions of the reservoir will be asymptotically washed out with
time. It is easy to see how the fading memory property, if not properly controlled, can

384 Daniele Di Sarli et al.

r

h

z

1−

prev. state
x(t− 1)

input
u(t)

x(t− 1)

u(t)

reset gate

x(t− 1)

u(t)

update gate

u(t)

x(t− 1)

⊙

⊙

⊙

⊕
state
x(t)

x(t− 1)

Fig. 1. Depiction of the recurrent cell of Gated ESN (and Gated ESN RZ) for a generic
time step t. Symbols ⊙ and ⊕ respectively denote the elementwise product and the sum
of two vectors. While the architecture is identical to the one of a GRU, in Gated ESN the
parameters controlling the activations of r(t), z(t), and h(t) are not trained (hence only
the readout is trained, which is not depicted here). For Gated ESN RZ, instead, in addition
to the readout also the parameters controlling r(t) and z(t) are trained while the dynamics
of h(t) remain untrained

also represent a dramatic limitation by introducing a Markovian bias [11] in the model.
For example, imagine a task characterized by long input sequences in which the key in-
formation for performing correct predictions is often located near the beginning of the
sequences. In such cases, the Markovian bias may prevent the readout to access such in-
formation, thus reducing the learning capability of the model. One may argue that it is
always possible to optimize the amount of memory of the model (e.g., by increasing the
number of recurrent units) so that distant information will not be lost, however this strat-
egy does not allow to generalize to different sequence lengths. What is needed is a way
for ESNs to dynamically and selectively remember or forget parts of a sequence while
preserving their generalization capabilities.

We investigate whether it is possible to employ gating mechanisms in order to improve
the predictive performance of ESNs in such contexts. To this aim, we make use of a
gated architecture paired with a reservoir computing training methodology. In particular,
we define two models which only differ for their training method. In fact, both models
borrow the same state transition function of the GRU (Equation 6) as illustrated in Fig. 1.
However, in the first model the recurrent part is fully untrained, while in the second one
we make partial use of training for the gates. The whole model is illustrated in Fig. 2 by
showing its unfolding in time. The details of the recurrent cells for Gated ESN and Gated
ESN RZ are described in Sections 4.1 and 4.2.

On the effectiveness of Gated ESNs... 385

x(1) x(2) . . . x(T)0

u(1) u(2) u(T)

readout
y(T)

Fig. 2. Unfolding in time of the Gated ESN and Gated ESN RZ architecture for a sequence
of length T . Each state x(t) is computed by the recurrent cell illustrated in Fig. 1. Since in
this work we are concerned with the classification of a sequence given the last time step,
we only show that configuration.

Table 1. Schematic view of the different matrices involved in Gated ESN, Gated ESN RZ
and GRU. On the right we report whether a given matrix is tuned as part of the training
procedure

Matrix Shape Description
Trained?

Gated ESN Gated ESN RZ GRU
Wr

in NR ×NU input to reset gate – ✓ ✓
Ŵr NR ×NR reservoir to reset gate – ✓ ✓
Wz

in NR ×NU input to update gate – ✓ ✓
Ŵz NR ×NR reservoir to update gate – ✓ ✓
Win NR ×NU input to reservoir – – ✓
Ŵ NR ×NR reservoir to reservoir – – ✓
Wout NY ×NR readout ✓ ✓ ✓

4.1. Gated ESN

We denote the first variant as Gated ESN. This can be considered a pure reservoir comput-
ing model in the sense that its reservoir is fully untrained and its inner mechanics (which
resemble those of a GRU) are completely irrelevant for the training algorithm of the read-
out. In particular, all matrices in the reservoir (including those in the gates) are randomly
initialized and then rescaled according to the value of corresponding hyperparameters,
just like what happens in a standard ESN. The only parameters that get trained are those
in the linear readout, as highlighted in Table 1, with no difference with respect to what
happens in a standard ESN. In fact, the parameters of the readout can be obtained by ridge
regression.

4.2. Gated ESN RZ

We denote the second variant as Gated ESN RZ. The name comes from the fact that in
this case, the behavior of the reset and update gates (R and Z) is learned from the data.
Due to the multiple nonlinearities separating the output of the model with the parameters
of the gates, the training algorithm of choice is gradient descent with backpropagation
through time for both the parameters of the gates (Wr

in, Wz
in, Ŵr, and Ŵz) and, jointly,

386 Daniele Di Sarli et al.

those of the readout (Wout). The other matrices of the reservoir, namely Win and Ŵ, are
randomly initialized, rescaled and then kept fixed as in Gated ESN. A summary of which
are the matrices that get trained is available in Table 1.

5. Contractivity conditions of the gated reservoir

In this section we provide an analysis of the state dynamics for a gated reservoir. In partic-
ular, we seek conditions to escape from the inherent fading-memory behavior of conven-
tional reservoir computing approaches. To this end, we derive a bound that the reservoir
matrices must satisfy when the state transition function is non-contractive. The results
are insightful for the initialization and the analysis of such systems, as they enable us to
characterise the contractivity (and the resulting fading-memory regime) of such gated ar-
chitectures. We focus our analysis over the architecture of GRU, regardless of whether it
is trained (as, precisely, in GRU), untrained (as in Gated ESN) or partially trained (as in
Gated ESN RZ). Thus, the results apply to all these models after initialization and, where
applicable, training.

For ease of notation, in this section let us hide the explicit time dependency and denote
with u and x respectively a generic input vector and state vector. The state transition
function of the reservoir will be represented by the function τ : RNU × RNR → RNR .
Moreover, we denote with

(
∂y(x)
∂x

)
f(x)

the partial derivative of y with respect to x while

considering f(x) as a constant.
For the ESP to hold, it can be shown that it is sufficient for the state transition function

to be contractive. Contractivity is defined as:

∃C ∈ R, 0 ≤ C < 1, ∀u ∈ RNU , ∀x,x′ ∈ RNR :

∥τ(u,x)− τ(u,x′)∥ ≤ C ∥x− x′∥ ,
(7)

i.e. τ must be Lipschitz continuous with constant C < 1. Equation 7 can also be formu-
lated in terms of the derivative of τ , in fact:

∀C ∈ R, C ≥ 0, ∀u ∈ RNU , ∀x ∈ RNR :

τ is C-Lipschitz w.r.t. x ⇐⇒
∥∥∥∥∂τ(u,x)∂x

∥∥∥∥ ≤ C.
(8)

We now study the characterization of the asymptotic stability of the state dynamics
for a GRU. First, in Lemma 1 we show that for a GRU whose weights are within a given
bound, the contractivity of the state transition function is guaranteed. Then we use the
aforementioned bound to derive the main result of Proposition 1, which gives a necessary
condition for a state transition function that is non-contractive.

Lemma 1. Let τ be the state transition function of a GRU as defined in Equation 6, and
let zmax = maxt ∥z(t)∥∞. A sufficient condition for the contractivity of τ is:

∥Ŵ∥2
(
1 + ∥Ŵr∥2

)
+ 2∥Ŵz∥2 + zmax < 1. (9)

On the effectiveness of Gated ESNs... 387

Proof. We write the state transition function τ(u,x) as

r = σ(Wr
inu+ Ŵrx)

z = σ(Wz
inu+ Ŵzx)

h = tanh(Winu+ Ŵ(r⊙ x))

τ(u,x) = z⊙ x + (1− z)⊙ h,

(10)

Then we can compute the 2-norm of the partial derivative of τ with respect to x as follows:∥∥∥∥∂τ(u,x)∂x

∥∥∥∥
2

=

∥∥∥∥∥∂τ(u,x)∂h

∂h

∂x
+

∂τ(u,x)

∂z

∂z

∂x
+

(
∂τ(u,x)

∂x

)
h
z

∥∥∥∥∥
2

=
∥∥∥diag(1− z)

∂h

∂x

+ diag
(
(x− h)⊙ z⊙ (1− z)

)
Ŵz

+ diag(z)
∥∥∥
2

≤ ∥1− z∥∞

∥∥∥∥∂h∂x
∥∥∥∥
2

+ ∥(x− h)⊙ z⊙ (1− z)∥∞ ∥Ŵz∥2
+ ∥z∥∞

≤ ∥1− z∥∞ ∥Ŵ∥2
(
1 + ∥Ŵr∥2

)
+ ∥(x− h)⊙ z⊙ (1− z)∥∞ ∥Ŵz∥2
+ ∥z∥∞

≤ ∥Ŵ∥2
(
1 + ∥Ŵr∥2

)
+ 2∥Ŵz∥2 + ∥z∥∞

≤ ∥Ŵ∥2
(
1 + ∥Ŵr∥2

)
+ 2∥Ŵz∥2 + zmax.

(11)

where diag(v) (for a generic vector v) is the diagonal matrix with the entries of v on the
main diagonal, and ∥v∥∞ = maxi |vi| is the infinity norm of vector v.

Equation 11 provides an upper bound to the derivative of τ . From Equation 8 it follows
that when this bound is less than unity, τ is contractive. ⊓⊔

While the contractivity of the state transition function ensures that the ESP is satis-
fied, the whole idea of a gated architecture is for the state dynamics to not be restricted
to contractive trajectories. This would allow the network to relax the strong Markovian
bias discussed at the beginning of Section 4 and escape from the strict fading memory
behaviour. Then, the initialization strategy must ensure that the network is outside of a
strictly contracting regime. From the bound of Lemma 1 we can obtain a necessary con-
dition for having a non-contractive state transition function, as reported in Proposition 1.

Proposition 1. Let τ be the state transition function of a GRU as defined in Equation 6,
and let zmax = maxt ∥z(t)∥∞. If τ is non-contractive, then it holds:

∥Ŵ∥2
(
1 + ∥Ŵr∥2

)
+ 2∥Ŵz∥2 + zmax > 1. (12)

388 Daniele Di Sarli et al.

Proof. The statement follows straightforwardly from the result in Lemma 1 (by negation).
⊓⊔

In other words, the result in Proposition 1 states that if the GRU is outside of the
fading memory regime, then Equation 12 must be satisfied. We can use this bound as a
means to verify the contractivity conditions of the different models under consideration,
and possibly as a strategy for the initialization of the weights. Note that the presence of
the term zmax ∈ (0, 1) in Equation 12 suggests that a network on the edge of a strictly
contractive regime could be able to dynamically enter and exit such regime by means of
the activations of the update gate.

6. Experimental analysis

In this section we describe in detail the experimental evaluation of the gated models in-
troduced in Sections 4.1 and 4.2. In particular, we test our hypothesis (i.e., can gates
provide advantages to reservoir computing models?) on a Natural Language Processing
task which has been specifically chosen for the presence of long-term dependencies, and
thus for its potential to clearly highlight the effect of the gating mechanisms. Note that
the application of ESNs to Natural Language Processing tasks, whose data by their na-
ture can often include long-term dependencies, has been quite limited: to the best of our
knowledge there are only a few of such works [26,25,28,10].

6.1. TREC Dataset

We have chosen to empirically assess our model over real-world data exhibiting clear
long-term dependencies. A good fit for a dataset exhibiting these characteristics is the
TREC dataset for the Question Classification task1 [19], which is a commonly used bench-
mark for evaluating Natural Language Processing systems. The TREC dataset deals with
the task of classifying a number of input sentences, written in English, into one of 6
classes that indicate their broad topic (i.e. whether they ask about a person, a location,
a number, a human being, a description or an entity). The output classes are represented
in our models as one-hot encoded vectors. While the dataset also contains more detailed
fine-grained classes, here we only focus on the 6 commonly used coarse-grained classes.

To support our model validation methodology, the dataset has been split in three folds:
training, validation and test. The test fold is directly provided by the authors of the dataset
[19] and contains 500 labeled questions. The other fold provided by the authors of the
dataset, composed of 5452 labeled questions, was partially used for training and partially
for validation. In fact, we have split this fold by the commonly used “80/20 rule”, where
80% of the instances (chosen at random) are used for training and the other 20% for
validation. This yields a training set of 4362 questions and a validation set of 1090 ques-
tions, with similar class distributions between the two sets (we did not perform an explicit
stratification).

We have performed tokenization of the input questions, so that we could assign a
word embedding to each token. In particular, we represented each token by a pretrained
FastText embedding vector for the English language, with 300 dimensions [13]. Whenever

1 http://cogcomp.org/Data/QA/QC/

http://cogcomp.org/Data/QA/QC/

On the effectiveness of Gated ESNs... 389

Table 2. The total number of trainable parameters across the models is kept constant by
controlling the size NR of the state

ESN Gated ESN Leaky ESN Gated ESN RZ GRU
Trainable params 19386 19386 19386 19386 19386

NR 3230 3230 3230 29 20

a word that does not have a corresponding embedding in FastText is encountered, we use
a random vector of the same shape instead. This vector is different for each missing word.

6.2. Experimental methodology

All models have been selected after a randomized hyperparameter search of 60 iterations
by employing a hold-out validation set. Then, the selected models are retrained over the
union of the training and validation sets, and their performance on the test set is measured
and averaged across 10 trials, each with different random initializations of the parameters.
Where needed (i.e., when employing gradient descent), the data in the training set has
been shuffled.

To provide a fair and rigorous comparison, we made sure to keep the total number of
trainable parameters uniform between all models by controlling the number of recurrent
units, as shown in Table 2. In the literature this is a commonly used strategy for comparing
RNNs, since forcing the same number of units for all models would lead to misleading
results [8].

We point out that several architectural modifications can be introduced to significantly
boost the predictive performance of an ESN on this task, as shown in our previous work
[10]. For example, a bidirectional architecture [6,27] can easily help to capture most of the
important information in this task [10]. However, in this work we deliberately consider
only the simplest architectures in order to focus on the improvements brought by the gates.

All experiments have been carried out on a NVIDIA Tesla V100 GPU.

Initialization – All reservoir matrices for the ESN, Gated ESN and Leaky ESN have
been randomly initialized by sampling from U(−1, 1) and then rescaled according to the
hyperparameters. The same initialization scheme has been used for Gated ESN RZ; here
and in GRU, however, the entries for the matrices which are tuned by gradient descent are
directly sampled from U (−1/NR, 1/NR) without further rescaling.

Training algorithm – The pure reservoir computing models (i.e., ESN, Gated ESN,
and Leaky ESN) only involve the training of a linear output layer. For this reason, in
such cases we employ ridge regression. The Gated ESN RZ and the GRU are trained by
gradient descent. In Gated ESN RZ, we avoid the computation of the gradients associated
to the matrices that are kept fixed (Win and Ŵ).

6.3. Results

In Fig. 3 we have reported the predictive accuracy and training time for the investigated
variants of ESNs and for a fully trained GRU. Here we start our analysis with some

390 Daniele Di Sarli et al.

ESN

Gate
d ESN

Leak
y ESN

Gate
d ESN RZ

GRU
60

70

80

90

100

A
cc

ur
ac

y
(%

)

(a) Predictive performance. The highest accuracy is
reached by the fully trained model, while the basic
ESN is the baseline over which the improvements
are built

ESN

Gate
d ESN

Leak
y ESN

Gate
d ESN RZ

GRU
0

20

40

60

Tr
ai

ni
ng

tim
e

(s
)

(b) Training time. As soon as backpropagation
is used (last two bars), even if only partially, the
very fast training times of the pure reservoir com-
puting models grow significantly.

Fig. 3. Test set results for the experimental comparison on the Question Classification
task, with standard deviations. Left: Test set accuracy Right: Training times. The gates in
Gated ESN are able to improve the predictive performance of the ESN, but training their
parameters (Gated ESN RZ) seems necessary. Unfortunately, using backpropagation for
this training process drastically increases the training time.

general considerations, leaving to a later moment more specific considerations on the
results obtained by architectures with untrained or trained gates.The first three models
in Fig. 3a have a completely untrained reservoir and as such they all exhibit the same
number of recurrent units and trainable parameters. Nonetheless, a distinct difference in
predictive accuracy can be observed between these models, which hints at the importance
of more advanced reservoir state transition functions. The importance of reservoir com-
puting models is clearly highlighted when comparing the time required for training the
parameters (see Fig. 3b): the pure reservoir computing models (the first three, i.e., ESN,
Gated ESN, and Leaky ESN) provide a remarkable efficiency advantage with respect to
the other two (Gated ESN RZ and GRU).

As expected, the best performing model is the GRU, in which all the parameters are
trained by gradient descent and backpropagation through time. Also as expected, the ba-
sic ESN displays the lowest level of accuracy. While the number of trainable parameters
is the same in these two models, their striking difference in accuracy is due to their dif-
ferent biases with respect to the data. In the task under consideration, the most important
input words for producing a correct prediction are often located at the beginning of the
sentences: due to the fading memory property of the ESN, their contribution has a very
low influence on the final states of the network, which are those observed by the classifier
[10].

Untrained gates dynamics – For what concerns the improvements in predictive perfor-
mance brought by the Gated ESN architecture with untrained gates, it can be observed
from Fig. 3 that there is a significant increase in accuracy with respect to an ESN. How-
ever, the simpler model which uses leaky-integrator neurons (Leaky ESN) produces better
results. To better understand this trend, we take a step further in our analysis and in Ta-

On the effectiveness of Gated ESNs... 391

Table 3. Statistics about the activations of the gates for Gated ESN. Mean, standard de-
viation and maximum value are computed by aggregating across both the unit dimension
and the time dimension

r(t) z(t)
mean std. dev max mean std. dev max

0.4997 0.0761 0.9993 0.5000 0.0108 0.6488

Table 4. Average spectral radius and norm of the reservoir matrices after initialization
and training (where applicable). For different models, the matrices can have different size
(see Table 2). Also note that the value of a = 0.04 has been chosen by model selection in
U(0, 1)

State Reset gate Update gate
Model ρ(Ŵ) ∥Ŵ∥ ρ(Ŵr) ∥Ŵr∥ ρ(Ŵz) ∥Ŵz∥
ESN 1.35 76.38 – – – –
Gated ESN 5.30 297.92 0.28 15.70 0.06 3.37
Leaky ESN (a = 0.04) 0.02 1.16 – – – –
Gated ESN RZ 7.62 9.18 8.16 14.57 7.59 25.31
GRU 4.52 10.06 1.69 7.86 2.78 11.91

ble 3 we report the main statistics about the activations of the gates over time. According
to the measurements in Table 3 the gates (and especially the update gate) are not being
fully exploited. In fact, from Table 3 it can be inferred that the matrices in the update
gate have been rescaled by the procedure of model selection so that it behaves roughly
like a constant, in this case z(t) ≈ 0.5 · 1 ∀t. This can be deduced by observing the
low standard deviations for the gate activations. Thus, the behavior of the Gated ESN is
actually approximating on average the one of a Leaky ESN. In the upper part of Table 4
we have reported the average norm of the recurrent matrices for the different models. It
can be observed that Gated ESN tends to values of ∥Ŵ∥ that are significantly higher than
the other untrained models (ESN and Leaky ESN). This by itself brings Gated ESN well
within the bound provided by Proposition 1, which gives a necessary condition for the
non-contractivity of the state transition function and thus allows state dynamics that are
outside of the fading memory regime which is typical of ESNs. The values of ∥Ŵr∥ and
∥Ŵz∥ are made irrelevant for the bound by the higher-than-unity value of ∥Ŵ∥.

For completeness, in Table 4 we also report the average spectral radius of the matrices,
as it represents a reference parameter for the initialization of the recurrent matrices in
reservoir computing-based networks. Most networks (all except the Leaky ESN) exhibit a
value of ρ(Ŵ) > 1, which is noteworthy because for basic ESNs, ρ(Ŵ) < 1 represents
a traditionally used bound for the initialization of ESNs in practical applications (even
though it is not a sufficient condition for the ESP). This hints to the fact that the networks
are trying to escape from the fading memory regime implied by their contractive state
transition function, but in the case of the non-gated models it is impossible to dynamically
do so.

Trained gates dynamics – While using gates with untrained parameters appears to be
effective only to a limited extent, applying learning as in Gated ESN RZ drastically im-

392 Daniele Di Sarli et al.

proves the predictive performance (Fig. 3a). In particular, even though the training is only
applied to the parameters in the gates and the dynamics are still mainly determined by ran-
dom weights, the accuracy of Gated ESN RZ dominates over all pure reservoir computing
models. Moreover, in this case a relatively small size of the reservoir is sufficient to ob-
tain good performance (29 units instead of 3230, as indicated in Table 2). However, from
the measurements reported in Fig. 3b it is clear that the introduction of backpropagation
through time also causes a severe increase in the training time. This makes the approach of
training the gates via the specific algorithm of backpropagation through time unappealing
in practice, as the efficiency advantages coming from the reservoir computing approach
are vanishing.

Regarding the average matrix norms reported in the bottom part of Table 4, notice
how even though matrix Ŵ for the GRU is trained, it ends up having a very similar norm
to the one of Gated ESN RZ, in which Ŵ is untrained (10.06 for GRU versus 9.18 for
Gated ESN RZ). In addition, we can observe how both models respect the bound from
Proposition 1, i.e. the necessary condition for the non-contractivity of the state transition
function. This does not mean that the state transition function is never contractive. On the
contrary, it is likely that the recurrent dynamics are mainly contractive, which is needed
in order to provide meaningful data representations to the readout. However, in the case
of Gated ESN RZ, the untrained dynamics of the reservoir are able to occasionally exit
the contractive (i.e., fading memory) regime thanks to the activations of the gates, thus
allowing the network to relax its Markovian bias and to increase its memory capacity. The
same happens in GRU, even though by means of a fully adapted state transition function.

7. Discussion

We have shown how there exist tasks with particular characteristics such that simple
ESNs, despite their exceptional efficiency, do not compete in accuracy with the more
popular and expensive alternatives such as GRU. In such cases, a state transition function
that is able to give different weights to different parts of the input can have an important
impact on the predictive performance of the model.

Equipping the reservoir of the ESN with gating mechanisms while maintaining its
weights untrained does not appear to be sufficient for a meaningful increase in predictive
performance. What seems to be effective, instead, is maintaining a mostly untrained dy-
namics but injecting a training signal into the gates. The benefits of such approach are
twofold. On one hand, training only the gates allows to employ much smaller reservoirs
than what would be necessary in an ESN, and a reservoir of a given size can also gen-
eralize better with respect to longer sequences.2 On the other hand, the approach has the
potential of reducing the training time compared to what would be required for a GRU.

Currently, due to its relatively low efficiency the algorithm of backpropagation through
time is not suited to train the parameters of the gates. However, the constrained model that
we propose under the name of Gated ESN RZ has the potential for allowing the use of
less conventional training algorithms that may be more efficient in this case. One of the
problems with the use of backpropagation through time for Gated ESN RZ is that, for all
time steps, the gradients need to flow through h(t) and x(t) anyway, regardless of the

2 For example, in principle the network is allowed to discard any irrelevant time step in the input sequence
without alterations of the reservoir state.

On the effectiveness of Gated ESNs... 393

fact that the parameters Win and Ŵ are not trained. This adds a significant cost to the
computation of the gradients, especially on larger reservoirs.

Considering the potential impact of gated reservoir computing, innovative methods for
training the gates are needed. One likely candidate is represented by the class of local al-
gorithms which could bypass the chain of gradients by injecting a training signal directly
into the gates, a concept similar to the direct feedback alignment in feedforward networks
[24]. An instance of such algorithms is the biologically inspired Hebbian learning, which
must be modulated by an error signal to allow supervised learning. However, replacing
backpropagation through time requires to employ alternative techniques for addressing
the problem of credit assignment, or distal reward [23]: how did each individual synapse
contribute to the final prediction of the model, especially in case of long delays before
the error signal is available? The impact of this problem is clearly evident in the case of
classification problems, in which the error signal is only available at the end of each se-
quence. For addressing the credit assignment problem, variants of biologically motivated
mechanisms of eligibility traces [15] can be used, which can also be compatible with ap-
proximations of the gradients that would be computed by backpropagation through time
[4,3].

In the literature, reward-modulated Hebbian learning has already been successfully
employed for training all parameters of a recurrent neural network [22]. However, in order
to exploit the untrained discrimination capabilities of the reservoir computing approach
we see as a promising method that of not training the whole network, but instead only
steering the trajectories of the state of the reservoir through the use of gate or gate-like
mechanisms trained by variants of the above-mentioned approach.

Efficient alternatives for training RNNs are needed: the suggested approach of em-
ploying both untrained and trained dynamics could represent a tool for allowing the al-
ready efficient ESNs to effectively tackle problems which today represent a hurdle due to
the presence of long-term dependencies.

8. Conclusion

In this paper we have discussed the introduction of gated mechanisms in the architecture
of reservoir computing neural networks. We have started by presenting the limitations of
reservoir computing models such as ESNs. Their fading memory characteristic, which
is a strength in certain situations, can become a weakness when dealing with data pre-
senting long-term dependencies. We have thus proposed a reservoir computing model,
Gated ESN, and its variant Gated ESN RZ, for overcoming those limitations by the use
of gating mechanisms.

To allow the Gated ESN to escape a strict fading memory regime, we have derived
a general bound that links the weight matrices of all GRU-based gated models (GRU,
Gated ESN, and Gated ESN RZ) to their ability to escape such regime. This gives a
means of initializing or verifying these networks for the desired behaviour.

We have performed an experimental comparison between the different models under
consideration by testing the generalization performance on a Question Classification task
that was chosen for its suitedness to highlight the effect of the gates. We have discovered
that gates can indeed provide advantages even to reservoir computing models. In addition,
we have shown that the use of backpropagation through time drastically increases the

394 Daniele Di Sarli et al.

time required for training. We have then verified that the experimental results match the
theoretical bound that we have derived.

While the results of this work provide insights about gated reservoir computing, we
have also critically discussed the reasons why we believe a pure gated reservoir computing
model to be ineffective in practice. We have then suggested directions to produce efficient
gated models that join reservoir computing techniques with trained gate dynamics, with
an important focus on local training algorithms.

Looking ahead, we believe that the key for efficient and effective RNN models is to
be found in the form of an interplay between a suitable gated architecture and a suitable
local training algorithm.

Acknowledgments. This work has been partially supported by the European Union’s Horizon 2020
Research and Innovation program, under project TEACHING (Grant agreement ID: 871385), URL
https://www.teaching-h2020.eu, and by the project BrAID under the Bando Ricerca
Salute 2018 – Regional public call for research and development projects aimed at supporting clin-
ical and organisational innovation processes of the Regional Health Service – Regione Toscana.

References

1. Babinec, S., Pospichal, J.: Gating echo state neural networks for time series forecasting. In:
ICONIP (1). Lecture Notes in Computer Science, vol. 5506, pp. 200–207. Springer (2008)

2. Bellec, G., Salaj, D., Subramoney, A., Legenstein, R.A., Maass, W.: Long short-term memory
and learning-to-learn in networks of spiking neurons. In: NeurIPS. pp. 795–805 (2018)

3. Bellec, G., Scherr, F., Hajek, E., Salaj, D., Subramoney, A., Legenstein, R.A., Maass, W.: El-
igibility traces provide a data-inspired alternative to backpropagation through time. In: Neuro
AI Workshop, NeurIPS (2019)

4. Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., Maass, W.: A
solution to the learning dilemma for recurrent networks of spiking neurons. bioRxiv p. 738385
(2019)

5. Bengio, Y., Simard, P.Y., Frasconi, P.: Learning long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

6. Bianchi, F.M., Scardapane, S., Løkse, S., Jenssen, R.: Bidirectional deep-readout echo state
networks. In: ESANN (2018)

7. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., Bengio,
Y.: Learning phrase representations using RNN encoder-decoder for statistical machine trans-
lation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014. pp. 1724–1734 (2014)

8. Collins, J., Sohl-Dickstein, J., Sussillo, D.: Capacity and trainability in recurrent neural net-
works. In: ICLR (Poster). OpenReview.net (2017)

9. Di Sarli, D., Gallicchio, C., Micheli, A.: Gated echo state networks: a preliminary study. In:
INISTA. pp. 1–5. IEEE (2020)

10. Di Sarli, D., Gallicchio, C., Micheli, A.: Text classification by untrained sentence embeddings.
Intelligenza Artificiale 14(2), 245–259 (2020)

11. Gallicchio, C., Micheli, A.: Architectural and Markovian factors of echo state networks. Neural
Networks 24(5), 440–456 (2011)

12. Gonon, L., Ortega, J.P.: Fading memory echo state networks are universal. Neural Networks
(2021)

13. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157
languages. In: Proceedings of the International Conference on Language Resources and Eval-
uation (LREC 2018) (2018)

https://www.teaching-h2020.eu

On the effectiveness of Gated ESNs... 395

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–
1780 (1997)

15. Izhikevich, E.M.: Solving the distal reward problem through linkage of stdp and dopamine
signaling. Cerebral cortex 17(10), 2443–2452 (2007)

16. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks –
with an erratum note’. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report (2001)

17. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in
wireless communication. Science 304(5667), 78–80 (2004)

18. Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applications of echo
state networks with leaky-integrator neurons. Neural Networks 20(3), 335–352 (2007)

19. Li, X., Roth, D.: Learning question classifiers. In: 19th International Conference on Computa-
tional Linguistics, COLING 2002 (2002)

20. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for se-
quence learning. CoRR 1506.00019 (2015)

21. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network
training. Comput. Sci. Rev. 3(3), 127–149 (2009)

22. Miconi, T.: Biologically plausible learning in recurrent neural networks reproduces neural dy-
namics observed during cognitive tasks. Elife 6, e20899 (2017)

23. Minsky, M.: Steps toward artificial intelligence. Proceedings of the IRE 49(1), 8–30 (1961)
24. Nøkland, A.: Direct feedback alignment provides learning in deep neural networks. In: NIPS.

pp. 1037–1045 (2016)
25. Popov, A., Koprinkova-Hristova, P., Simov, K., Osenova, P.: Echo state vs. lstm networks for

word sense disambiguation. In: International Conference on Artificial Neural Networks. pp.
94–109. Springer (2019)

26. Ramamurthy, R., Stenzel, R., Sifa, R., Ladi, A., Bauckhage, C.: Echo state networks for named
entity recognition. In: ICANN (Workshop). Lecture Notes in Computer Science, vol. 11731,
pp. 110–120. Springer (2019)

27. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Pro-
cess. 45(11), 2673–2681 (1997)

28. Simov, K.I., Koprinkova-Hristova, P.D., Popov, A., Osenova, P.: Word embeddings improve-
ment via echo state networks. In: INISTA. pp. 1–6. IEEE (2019)

29. Subramoney, A., Scherr, F., Maass, W.: Reservoirs learn to learn. CoRR abs/1909.07486 (2019)
30. Tiño, P., Hammer, B., Bodén, M.: Markovian bias of neural-based architectures with feedback

connections. In: Perspectives of Neural-Symbolic Integration, Studies in Computational Intel-
ligence, vol. 77, pp. 95–133. Springer (2007)

31. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of
reservoir computing methods. Neural Networks 20(3), 391–403 (2007)

32. Wang, X., Jin, Y., Hao, K.: A gated recurrent unit based echo state network. In: IJCNN. pp.
1–7. IEEE (2020)

33. Yildiz, I.B., Jaeger, H., Kiebel, S.J.: Re-visiting the echo state property. Neural Networks 35,
1–9 (2012)

Daniele Di Sarli has conducted research on Recurrent Neural Networks and Reservoir
Computing at the Department of Computer Science, University of Pisa, Italy. The main
focus of his research concerns the study of the effectiveness of Reservoir Computing
approaches.

Claudio Gallicchio is an Assistant Professor of Machine Learning at the Department of
Computer Science of the University of Pisa, Italy. His research is based on the fusion

396 Daniele Di Sarli et al.

of concepts from Deep Learning, Recurrent Neural Networks, and Randomized Neural
Systems.

Alessio Micheli is an Associate Professor at the Department of Computer Science, Uni-
versity of Pisa, Italy. His main research lines are in the field of Machine Learning and
Neural Networks, with a pioneering research activity since the end of 90’s for learning in
structured domains (sequence, tree and graph data).

Received: February 18, 2021; Accepted: August 31, 2021.

	Introduction
	Related Works
	Background
	Echo State Networks
	Gated Recurrent Units

	Gated ESN
	Gated ESN
	Gated ESN RZ

	Contractivity conditions of the gated reservoir
	Experimental analysis
	TREC Dataset
	Experimental methodology
	Results

	Discussion
	Conclusion

