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Abstract. To secure cloud computing and outsourced data while meeting the re-
quirements of automation, many intrusion detection schemes based on deep learn-
ing are proposed. Though the detection rate of many network intrusion detection
solutions can be quite high nowadays, their identification accuracy on imbalanced
abnormal network traffic still remains low. Therefore, this paper proposes a ResNet
&Inception-based convolutional neural network (RICNN) model to abnormal traf-
fic classification. RICNN can learn more traffic features through the Inception unit,
and the degradation problem of the network is eliminated through the direct map-
ping unit of ResNet, thus the improvement of the model’s generalization ability can
be achievable. In addition, to simplify the network, an improved version of RICNN,
which makes it possible to reduce the number of parameters that need to be learnt
without degrading identification accuracy, is also proposed in this paper. The ex-
perimental results on the dataset CICIDS2017 show that RICNN not only achieves
an overall accuracy of 99.386% but also has a high detection rate across different
categories, especially for small samples. The comparison experiments show that the
recognition rate of RICNN outperforms a variety of CNN models and RNN models,
and the best detection accuracy can be achieved.

Keywords: Intrusion Detection, ResNet, Inception, CNN, Traffic Classification,
Imbalanced Samples.

1. Introduction

With the maturity of cloud computing technology, more and more outsourced data are
stored in the cloud [1–4]. Worse still, the wrongdoers are tempted by the enormous value
of digital asserts such as users’ privacy and transaction records in this era of cloud com-
puting [5]. They thus constantly attack the network for economic benefits [6]. To ensure
the security of cloud space, intrusion detection technology is needed to secure outsourced
data traffic [7]. As a defense means, network traffic detection technology can identify the
abnormal data in the byte stream, so that the system managers can find the attack behav-
iors in time, and then take corresponding measures to resist them and therefore reduce
the loss. While early intrusion detection techniques relied on manual extraction of traffic
features, not only the chosen algorithm but the pre-defined set of features could make a
significant influence on its recognition accuracy [8, 9]. So far, with the development of
deep learning, especially the increasing maturity of convolutional neural networks (CNN)
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on image recognition, many researchers have introduced neural networks into the field
of network traffic detection, and have made numerous achievements. However, following
problems can be generally found in existing researches. First, the datasets used by many
researchers are too old [10]. In recent years, new types of attack have been emerging, but
many public datasets are not adequate for the current cyberspace, either in terms of variety
or quantity. Second, many datasets are processed data that has lost the full information of
the original byte flow [11], resulting in solution’s failure to simulate real detection envi-
ronment. Third, many researchers have ignored the imbalanced distribution of different
kinds of abnormal categories in the dataset [12]. As a result, models with high overall
accuracy can be quite inaccurate when it comes to small samples.

Notably, data imbalance is an important factor for machine learning [13]. In the field
of intrusion detection, different anomalous flows vary greatly in terms of structure, be-
havior, etc. For example, attacks such as port scanning [14] or DoS [15] are easy to be
detected and captured, so such anomalous flows often take up a large portion of the byte
stream. In contrast, some complex attack types, such as APT [16], that are difficult to be
collected only account for a small proportion in the dataset. To solve the impact of im-
balanced data distribution on recognition accuracy, this paper chooses to use the original
byte traffic as input directly. The flow form composed of the same five-tuple features [17]
(i.e., source IP address, destination IP address, source port, destination port, and protocol)
maximally preserves the structure and spatial features of each abnormal flow itself. These
features are then expressed by a traffic grayscale map, thus, with the help of a CNN-based
neural network, different abnormal categories can be identified through the automatic ex-
traction of them. Finally, we choose CICIDS2017 [10], which provides raw byte stream
files and contains many different types of attack flow, as the dataset for our experiments.
Statistically, the percentage of different malicious flow types varies greatly, also, the at-
tack categories match the realistic cyberspace environment and thus fit the scope of our
study.

Many studies at this stage often use a single-path CNN network structure [18], which
often fails to extract enough features from the grayscale map. Besides, simple increase-
ment of the network depth may lead to the downgrade of model accuracy. In order to im-
prove the generalization ability of the model and to deal with gradient disappearance, this
paper proposes a ResNet&Inception convolutional neural network (RICNN) by combin-
ing the advantages of residual networks (ResNet) [19] and Inception feature fusion [20].
RICNN adopts parallel structures for feature extraction of the input to obtain more fea-
ture maps in the form of feature fusion. And direct mapping via ResNet [19] will be used
to solve the problem of gradient disappearance during learning process. The final exper-
imental results show that RICNN achieves a recognition accuracy of over 99% on the
dataset CICIDS2017 and has high recognition rate on small samples categories.

The main contributions of this paper are as follows:
(1) A new network model, RICNN, is proposed, which can effectively improve the

recognition precision of small samples in multi-classification detection of abnormal traf-
fic.

(2) An improvement model, ICNN, is proposed, which achieves the purpose of sim-
plifying the network structure and does not affect the detection accuracy.

(3) The experimental results on the dataset CICIDS2017 show that RICNN not only
has the overall accuracy of 99.386%, but also has high detection precision in different
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categories, especially those with small samples. The comparison experiments show that
the recognition rate of RICNN outperforms a variety of CNN models and RNN models,
which can achieve the highest detection accuracy.

The rest of this paper is organized as follows. Section 2 discusses related works in
this field. Section 3 describes the data pre-processing steps and the specific structure of
the proposed model in this paper. Section 4 conducts an experimental comparison of our
proposed model on CICIDS2017 to assess the effectiveness of our model. Finally, we
draw a conclusion in Section 5.

2. Related Work

Current supervised learning models for classifying abnormal traffic are mainly divided
into using CNN models to extract spatial features and using RNN models to extract timing
features [18]. Most studies, though can obtain high detection accuracy, fail to take into
account the impact of the imbalanced distributed dataset on the classification results.

Marı́n, G et al. [21] investigated the accuracy of deep learning models for recogni-
tion at the packet level and the flow level. The results showed that the recognition rate
was higher for inputs in flow form. However, the authors did not consider the impact
of small sample factors on the model, and also the experiments had a small variety of
malicious samples. And many researchers raised the detection accuracy by improving the
CNN model. Jing Ran et al. [22] first used 3-dimensional CNN networks for network traf-
fic classification. The authors applied video analysis to traffic recognition by processing
vector time series and one-hot coding to form a fixed-length 3-dimensional input, which
was learned by a 3-dimensional CNN structure with features in time and space. The result
showed that this model had a higher detection accuracy on multiple categories. Hyun-Kyo
Lim et al. [23] introduced the residual structure to the CNN network. After experimental
comparison, it was found that the ResNet model could improve the generalization abil-
ity of the network. When the input data contained more information, the ResNet model
had higher accuracy. Wei Wang et al. [24] proposed to use a 1-dimensional CNN model
to classify encrypted traffic, and experiments proved that 1D-CNN performed better in
end-to-end encrypted traffic recognition. Yong Zhang et al. [25] proposed a parallel CNN
structure, PCCN, which improved the generalization ability of the network through fea-
ture fusion without increasing the depth of the network. Peng Yujie et al. [26] proposed
a 1.5D-CNN model that combined 2D-CNN and 1D-CNN to extract features of traffic in
different dimensions, and its multi-classification accuracy reached 98.5%. Samson Ho et
al. [27] used a modified version of LeNet which did not take into account the imbalanced
dataset, so the model did not have a high detection rate for small samples at multiple
classifications. In the same way, researchers have focused on the impact of hybrid models
on anomaly detection. Manuel Lopez-Martin et al. [28] studied the influence of timing
features in the network stream on the classification detection results. The use of CNN
and LSTM for vector time series data reduced the impact of feature engineering, but ex-
periments showed that the model’s recognition accuracy was still low for certain packet
types. Monika Roopak et al. [29] proposed a model that combined RNN and CNN to
detect DDoS attacks on IoT networks. Although its detection accuracy reached 97.16%,
the author only considered DDoS attack, and did not verify the detection accuracy of the
model under multiple attacks. Jiayin Feng et al. [30] proposed a model combining cas-
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cades CNN and autoencoder for mobile terminal intrusion detection to classify mobile
traffic in a semi-supervised form. But the model performed poorly in the case of mul-
tiple classifications. Khan, M. A. et al. [31] proposed a hybrid model of 1D-CNN and
two-layer LSTM and achieved 97.29% accuracy on the dataset ISCX2012 [32]. Pengfei
Sun et al. [33] also used a hybrid model of CNN and LSTM, and eliminated the effect
of sample category imbalance on the model by weight optimization. The accuracy of the
model in multiple classifications reached 98.67%. Kaiyuan Jiang et al. [12] used a hy-
brid sampling method to solve the dataset imbalance problem by reducing the noise in
large samples through one-sided selection (OSS), and increasing small samples by using
the synthetic minority oversampling technique (SMOTE) to finally build a relatively bal-
anced dataset. However, the authors’ hybrid model using CNN-BiLSTM failed to achieve
the required recognition accuracy on the dataset. Maonan Wang et al. [34] combined
CNN and stacked autoencoder (SAE), with CNN automatically extracting high-level fea-
tures from the original traffic, SAE encoding 26 statistical features, and finally merging
them into new high-level features. The framework achieved 98% accuracy in the multi-
classification of encrypted traffic, but it took a lot of time to perform feature statistics on
the original flow, which required high labor costs. Wanqian Zhang et al. [35] explored
the relationship between window size and model classification accuracy. By detecting
CPU occupancy in real time and finding appropriate dynamic parameters, the recognition
time of CNN model was reduced, and a new framework of online traffic detection tech-
nology was realized. Chongzhen Zhang et al. [36] proposed a general intrusion detection
framework that used an unsupervised autoencoder for feature extraction, and the extracted
low-dimensional recombined features were stored for testing and retraining. However, the
results showed that the recognition rate of small samples was lower than other sample cat-
egories in multi-classification.

Compared with the above schemes, our model has the following advantages. Our
model has higher accuracy. And under the condition of imbalance distribution of data
samples, the detection effect of all malicious categories is optimal. Our model structure
does not deepen the number of network layers, but uses multiple branches to process the
features. In terms of data processing, we combine the pre-processing methods of [11]
and [25] to segment the raw traffic into flow format and form fixed-length input samples.
Two types of training samples are generated, one is to extract the header of the packet and
the other is to extract the payload of the packet, and they share the same length. Instead
of deepening the layers of the network to improve the detection accuracy on small sam-
ple categories, we improve the parallel units of [25] and introduce ResNet to enhance the
generalization ability of the model.

3. Model and Method

In this section, we design a hybrid neural network model to implement the detection of
abnormal traffic. The proposed model primarily combines two convolutional neural net-
works, ResNet and Inception, and uses feature fusion to achieve accurate recognition of
small samples. Our model uses raw traffic as input and automatically extracts the origi-
nal features from abnormal traffic to complete the multi-classification. For the model to
better learn the spatial features of the original traffic, we transform the samples into two-
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dimensional grayscale maps. First, we will introduce the pre-processing process for the
dataset.

3.1. Data Preprocessing

In this paper, the original traffic file is processed directly to obtain sample data in the flow
format with a fixed length of 256 bytes. The process is as follows.

(1) Raw file processing. The dataset is a large PCAP file. We use the SplitCap tool
[37] to merge packets with the same five tuples into a single flow. We limit the number
of packets in a flow to five, and when the number is over five, we form a new flow where
vacancies are filled with 0 bytes.

Fig. 1. Packet interception. The first 50 bytes are header features (red underline), and the
51st-100th bytes are payload features (blue underline)

(2) Packet processing. As shown in Fig. 1, to make the final training samples in the
same length, the packets need to be intercepted and padded. The first 50 bytes of the
packet are used as the header features and the 51st to 100th bytes are used as the payload
features, with any shortfall in length being padded with “0”. Statistical analysis shows
that a length of 50 bytes can contain most of the traffic features [11]. The number “256”
is used to divide each packet in a flow sample, as it equals to 0 when being transformed
into a grayscale map, it will not affect the original features of the flow.

(3) Grayscale map conversion. Since the same type of network attack flow has a
similar structure [38], and the original bytes of the packets take values within 0-255, the
data can therefore be converted into a grayscale map. In this way, the classification of
different malicious flows can be realized by transforming the process of extracting traffic
structure features into that of extracting texture features from grayscale maps. In this
paper, the flow samples with 256 bytes in length are converted to 16*16 grayscale maps.

3.2. Model Design

Because the various types of samples in the dataset are imbalanced distribution, we choose
CNN to extract features from the samples to improve the recognition accuracy for small
samples. The CNN-based models have good recognition capability in image classifica-
tion [39]. In this paper, we propose a RICNN model combining ResNet and Inception to
improve the detection rate of abnormal traffic with imbalanced data. As shown in Fig. 2,
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the proposed model is mainly composed of three residual blocks, each of which is an In-
ception structure that learns more spatial features from the samples through feature fusion
to achieve the detection of traffic categories.
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Fig. 2. RICNN network model architecture. Its input is a 16 × 16 grayscale matrix. The
main structure of RICNN is three residual blocks, each of which consists of an Inception
unit and a direct mapping. In addition, there are several global network layers to increase
and reduce the dimension of the feature maps, and finally the model prediction results are
output through the Softmax layer
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Fig. 3. Details of three Inception units

Inception is a CNN functional unit proposed by Google [20], which sets up different
branching structures in the same block. Each branch extracts features from the original
maps in parallel and extracting more features with different receptive field sizes without
increasing the depth of the network. For a feature map X , its dimension is H ×W × C.
Assuming that a Inception unit has n branches, the height, width, and channel number
of the output feature maps of i-th branch are h, w and ci, then the final concatenation
operation of each Inception is as follows:

Hout ×Wout × Cout = h× w ×
n∑

i=1

ci (1)
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Table 1. Parameters of the Inception units

Name Branch Operation Input Size Convolution Kernel Step Padding Output Size

Inception 1
Branch 1 Conv 16*16*16 3*3 2 1 8*8*32

Branch 2
Conv 16*16*16 3*3 1 1 16*16*32

MaxPool 16*16*32 2*2 2 0 8*8*32

Inception 2
Branch 1 Conv 8*8*64 3*3 1 1 8*8*96
Branch 2 Conv 8*8*64 3*3 1 1 8*8*96

Inception 3
Branch 1 Conv 8*8*192 3*3 2 1 4*4*256
Branch 2 MaxPool 8*8*192 2*2 2 0 4*4*192

Tab. 1 shows the structural parameters of the three Inception units. As shown in Fig.
3, the branches of Inception consist of convolutional layers and maximum pooling layers.
The first Inception unit has one convolutional layer in each of the two branches. In the
first branch, the convolutional layer is responsible for sampling and dimension reduction,
but the convolutional layer in the second branch is just responsible for sampling, and
the maximum pooling layer performs the dimension reduction and preserves the texture
features of the grayscale maps. The second Inception unit consists of two convolutional
layers, which form a parallel branch structure. The first branch in the third Inception unit
is a convolutional layer, which is responsible for sampling and dimension reduction, and
the second branch is a maximum pooling layer for texture reduction and preservation.

(2) ResNet Unit

Residual

Xi

Xi+1

F(Xi ,Wi ) D(i)

Fig. 4. Residual block structure

The residual network is designed to solve the problem of vanishing gradient and ac-
curacy degradation in deep networks so that each layer of the network can fully learn the
original traffic features and improve the classification accuracy of malicious traffic. As
shown in Fig. 4, a residual block mainly consists of a residual part and a direct mapping.
For an input feature map Xi, its residual part is F (xi,Wi), and Wi denotes the set of
convolution operations. The direct mapping is:

D(x) = w′ ∗ x (2)
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w′ represents a 1*1 convolution operation, which reduces the dimension of the input
feature map to be consistent with the output dimension of the residual part. The final
output of the residual block is:

Xi+1 = λrelu(D(Xi) + F (Xi,Wi)) (3)

λrelu represents the activation function ReLU, which can improve the nonlinear abil-
ity of the network. Through direct mapping D(Xi), we can solve the problem of network
learning difficulties. The residual part F (Xi,Wi) of the proposed model is composed of
Inception and three direct mapping branches. Each branch uses a 1*1 convolution layer
to increase and reduce the dimension of the original feature maps, so that the output is
consistent with the residual part.

(3) Overall Model Architecture
The proposed model consists mainly of convolutional layers and maximum pooling

layers. The convolution layers are used for feature sampling on the input maps and ex-
panding the dimension of the output maps. A convolution kernel ω with the size of f ∗ f
is sampled on the input map Xi, and the output feature map is:

Xi+1 = λrelu(BN(ω ∗Xi)) (4)

For each batch, all feature maps need to be batch normalization (BN) before nonlinear
activation. First, we normalize the feature data with each mini-batch as a unit:

Xi =
xi − µB√
σ2
B + ε

=

xi − 1
m

m∑
i=1

xi√
1
m

m∑
i=1

(
xi − 1

m

m∑
i=1

xi

)2

+ ε

(5)

Then move and scale the feature, that is:

BNγ,β(X) = γX + β (6)

Batch normalization improves generalization ability of the network and increases the
accuracy of learning, which also has the effect of preventing overfitting [40].

Maximum pooling is used for the pooling layer. The recognition of the traffic grayscale
map mainly relies on the learned texture features, that the texture composed of light-
colored pixel units, while weakening the dark part of the grayscale map. Therefore, when
down-sampling the feature map, maximum pooling can preserve the texture features very
well and reduce the loss during the learning process.

Tab. 2 shows the other parameters of the proposed model. The original traffic map is
fed into the first global convolutional layer to obtain initial sampled feature maps with
an expanded number of channels. The feature maps are then fed into the residual block
structure, where the different features are extracted by the Inception unit in parallel, and
the accuracy degradation problem is eliminated by the direct mapping. The second global
convolution of the model is the expansion of the feature maps, and the global pooling
layer reduces the dimension of the feature maps and the number of parameters. The final
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Table 2. Parameters of the overall model

Operation Input Size Convolution kernel Step Padding Output Size

Global Convolution 1 16*16*1 3*3 1 1 16*16*16
Global Convolution 2 4*4*448 3*3 1 1 4*4*896
Global Max Pooling 4*4*896 4*4 1 0 1*1*896

Dense 896 - - - 12

fully-connected and softmax layer map the final extracted high-dimensional features into
specific categories, enabling multiple classification of malicious traffic.

3.3. ICNN

To simplify the network structure, we propose ICNN, an improved version based on the
model in this paper. As shown in Fig. 5, in the improved version, we remove the residual
block and add a 1*1 convolution layer to each Inception unit instead of direct mapping,
and perform features fusion with other branches to achieve improved network generaliza-
tion. Simultaneously, we abandon a global convolution network layer, which reduces the
number of learning parameters.
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Fig. 5. Improved model based on Inception (ICNN)

4. Experimental Evaluation

In this section, we perform an experimental validation of the proposed model and test
the validity of our model through contrast experiments. We choose CICIDS2017 as the
dataset for our experiments. Our experimental environment is shown in Tab. 3.

4.1. Dataset

The dataset chosen for this paper needs to have the following characteristics: (I) It is the
original traffic; (II) It contains various types of attack; (III) The distribution of all kinds of
traffic is imbalanced; (IV) It is a relatively new dataset. Nowadays, many datasets are too
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Table 3. Experimental environment parameters.

Name Parameters

CPU Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
GPU NVIDIA Quadro P4000
RAM 64GB

OS Ubuntu 16.04

old and lack of new attack types. Similarly, some datasets only contain partial features of
packets, and lack of complete traffic data. After comprehensive consideration, we choose
CICIDS2017 [10] as the experimental dataset for this paper.
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Fig. 6. Statistics on the number of various attack types in the CICIDS2017 dataset

CICIDS2017 is an open source network intrusion detection dataset, which is com-
posed of traffic data collected by Canadian Network Security Agency over five consecu-
tive days in 2017, and has completely marked various types of traffic. According to the
statistical analysis, the dataset contains a total of 12 different types of attack traffic, and the
number of different attacks is imbalanced. As shown in Fig. 6, Hulk, DDoS, and PortScan
account for 90% of the overall dataset, while types such as Botnet and Infiltration make up
much small percentage of the attacks. We divide the CICIDS2017 dataset, 80% of which
are used as training set and 20% as testing set. To make each category equally distributed
in the training set and testing set, we need to divide each type with a 4:1 ratio.

4.2. Evaluation Indicators

To analyze the detection accuracy of the model for each category of abnormal traffic,
we choose Accuracy Rate (Acc) as the indicator of the overall model and Precision, Re-
call and F1 values as the recognition indicators for each category. For the category i of
abnormal traffic, the following four indicators can be calculated:

True Positives (TPi): The predicted category is i, and the true category is i as well.
False Positives (FPi): The predicted category is i, but the true category is not i.
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False Negatives (FNi): The predicted category is not i, but the true one is i.
Then, for the model with n-classification, the calculation formula of Acc, which rep-

resents the overall recognition accuracy of the model, is as follows:

Acc =

n∑
i=1

TPi

n∑
i=1

(TPi + FNi)
× 100% (7)

For the evaluation indicators Precision and Recall for category i, the formulae are:

Pi =
TPi

TPi + FPi
× 100% (8)

Ri =
TPi

TPi + FNi
× 100% (9)

The F1 indicator for category i is calculated as:

F1i =
2× Pi ×Ri

Pi +Ri
× 100% (10)

Accuracy (Acc) is the ratio of the number of correctly identified samples to the overall
samples. It measures the general classification effect of the model, but it is not specific
to the recognition accuracy of a certain category. For this paper, it is important to fo-
cus not only on the general classification effect, but also on the identification of specific
categories. In contrast, Precision, Recall and F1 focus more attention on evaluating the de-
tection effectiveness of the model on different categories. The use of the above indicators
provide a comprehensive and realistic assessment of our model.

4.3. Result Analysis

To investigate the detection capability of the proposed model on the imbalanced abnormal
traffic dataset, we compare the performance indicators of it with other CNN models. We
conduct experiments on the header and payload of samples to investigate the recognition
ability of the proposed model on different segments of raw traffic features. And to inves-
tigate the effectiveness of our model in extracting features directly on the original traffic,
we also compare it with LSTM and CNN+LSTM models that identify the timing proper-
ties of the samples. Furthermore, in order to simplify the proposed network, we propose
an improved network ICNN that uses only the Inception structure to achieve extremely
high detection rates and improve the operational efficiency of the model.

(1) Experimental content

Table 4. Variation of learning rate with epoch

Epoch 1-5 6-8 9-10

Learning Rate 0.0001 0.00001 0.000001
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In the training phase, we set the epoch to 10 and the mini-batch for each round is
256. Tab. 4 shows the setting of the learning rate for different epoches. At the same time,
after each epoch of training, we use the testing set to test the model and obtain the actual
accuracy in the process of model learning.

(2) Analysis of experimental results
We use the proposed RICNN model in this paper as the basis for performance com-

parisons with other network models, and also compare the experimental performance of
ICNN. For other CNN models, we choose 1d-CNN [24], 2d-CNN [27] and PCCN [25].
Meanwhile, we choose RNN models like LSTM [41,42] and CNN+LSTM [28,29,33] to
compare their effectiveness in extracting timing features from the original traffic samples.
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Fig. 7. Comparison of five CNN models (header). (a) indicates the variation of loss with
epoch, and (b) indicates the variation of accuracy with epoch

To show the ability of RICNN in extracting the texture features from maps and ob-
taining the spatial features of the original traffic, three different CNN models are used
to compare the detection accuracy of the 12-classification of abnormal traffic samples
(header) with RICNN and ICNN. Fig. 7 (a) shows the variation of loss value with epoch
in the process of model learning, and Fig. 7 (b) shows the change of accuracy. It can be
seen that RICNN, ICNN, and PCCN which includes parallel feature extraction branches
are more than 0.3% higher than the 1d-CNN and 2d-CNN with a single extraction path
in terms of abnormal traffic detection accuracy. Due to the improved generalization of the
network by direct mapping, RICNN and ICNN had a 0.17% higher detection accuracy
than PCCN.

Raw traffic data holds the most complete flow features, and feature learning directly
in the raw traffic can improve the accuracy of classification. LSTM can extract the tim-
ing features of the samples to distinguish between different malicious traffic. However,
the comparison of the indicators in Fig. 8 shows that in BotNet, Goldeneye, Slowhttp,
Infiltration and Web Attack, the number of samples is so small that the recognition ac-
curacy in these categories is 0, that is, LSTM does not learn the correct features at all.
The CNN+LSTM hybrid model has improved the recognition accuracy of the above ab-
normal traffic types (except BotNet) because of the spatial features extracted by CNN.
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Fig. 8. Comparison of evaluation indicators between the proposed models and the RNN
models for imbalanced abnormal traffic (header)

The above comparative experiments show that the original traffic needs to be specifically
encoded [43, 44], and the RNN models can extract complete timing features. However,
encoding also irreversibly corrupts the original traffic similar to hand-extracted features
and is therefore less effective in anomaly detection for small samples.

Table 5. Precision of 12 categories of imbalanced traffic (payload). Numbers 1-12 re-
spectively indicate: Botnet, DDoS, GlodenEye, Hulk, Slowhttptest, Slowloris, Patator,
Heartbleed-Port, Infiltration, PortScan, SSH-Patator, WebAttack

Model 1 2 3 4 5 6 7 8 9 10 11 12

RICNN 0.9787 0.9963 0.9976 1.0000 0.9978 0.9915 1.0000 0.9980 0.9467 1.0000 0.9993 0.9995
ICNN 0.9921 0.9959 0.9973 0.9999 0.9985 0.9920 1.0000 0.9990 0.9605 1.0000 0.9996 0.9995
PCCN 0.9814 0.9965 0.9968 0.9999 0.9985 0.9925 1.0000 0.9995 0.9542 1.0000 0.9993 0.9995

Finally, we investigate the effect of the payload part on the detection accuracy of the
model when it is used as training data. The header part of the packet mainly contains
header information, including protocol, address, etc., and its structure is relatively fixed.
Furthermore, the payload part contains the application layer data of the packet, which
represents the real information and better expresses the feature information of the abnor-
mal traffic. We choose PCCN, which also has parallel structures, for comparison with
the two proposed models. Tab. 5-7 show the Precision, Recall and F1 score of the three
models in different abnormal classes. The tables show that even the BotNet and Infiltra-
tion categories, which have the smallest number of samples, have improved recognition
rates, indicating that RICNN and ICNN can have higher recognition rates on the pay-
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Table 6. Recall of 12 categories of imbalanced traffic (payload). The category number is
consistent with Tab 5

Model 1 2 3 4 5 6 7 8 9 10 11 12

RICNN 0.8867 0.9997 0.9998 0.9985 0.9816 0.9991 0.9992 0.9995 0.9493 0.9999 0.9989 0.9995
ICNN 0.9108 0.9998 0.9976 0.9985 0.9838 0.9995 0.9992 0.9995 0.9343 0.9999 0.9995 0.9991
PCCN 0.8916 0.9998 0.9983 0.9985 0.9816 0.9991 0.9992 0.9990 0.9568 0.9999 0.9998 0.9995

Table 7. F1-score of 12 categories of imbalanced traffic (payload). The category number
is consistent with Tab 5

Model 1 2 3 4 5 6 7 8 9 10 11 12

RICNN 0.9305 0.9980 0.9987 0.9993 0.9896 0.9953 0.9996 0.9987 0.9480 1.0000 0.9991 0.9995
ICNN 0.9497 0.9979 0.9974 0.9992 0.9911 0.9957 0.9996 0.9992 0.9472 0.9999 0.9995 0.9993
PCCN 0.9343 0.9981 0.9976 0.9992 0.9900 0.9957 0.9996 0.9992 0.9555 1.0000 0.9995 0.9995

load dataset. Fig. 9 shows the variation of the three models with epoch. It can be seen that
ICNN learns features quickly and achieves higher accuracy, while RICNN is less accurate
than ICNN and PCCN in the first few epoches due to the more complex network structure.
Finally, at the 10th epoch, all three models achieved a detection accuracy of 99.87%. With
limited resources, ICNN has more advantages.
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Fig. 9. Accuracy comparison of three parallel CNN multi-classification models (payload)

5. Conclusion

We want to retain the maximal amount of raw traffic features, so the raw packets are cut
into header and payload parts of a specific length and then combined into separate flow
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forms as input data. This paper proposes a convolutional neural network based on ResNet
and Inception. Through three times of feature fusion and direct mapping, the detection
accuracy of imbalanced abnormal samples is improved without increasing the depth of
the network. The experimental results show that the proposed model can detect abnormal
classes of small samples well on the CICIDS2017 dataset. We not only compare experi-
mentally with other CNN models, but also compare the feature extraction of RNN models
on raw traffic. The experimental results show that our models all outperform the other
models. Finally, we find that the model has a higher detection accuracy on the payload
feature set than the header.

In the future, we will try to use deep learning algorithms to detect unknown types
of attacks. In addition, we would like to introduce recurrent neural network models and
unsupervised models to mine the temporal and unknown features present in the traffic.
Thus, we can improve the detection capability of real-time and persistent attack traffic to
keep pace with the development of cyber environment and to improve cyber security in
cloud computing scenarios.
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