
Computer Science and Information Systems 19(1):165–184 https://doi.org/10.2298/CSIS200424038K

Deep RNN-Based Network Traffic Classification Scheme
in Edge Computing System

Kwihoon Kim1, Joohyung Lee2, Hyun-Kyo Lim3, Se Won Oh4, and Youn-Hee Han5⋆

1 Department of Artificial Intelligence Convergence Education,
Korea National University of Education, Cheongju 28173, South Korea

kimkh@knue.ac.kr
2 Department of Software, Gachon University,

Seongnam 13120, South Korea
j17.lee@gachon.ac.kr

3 Interdisciplinary Program in Creative Engineering,
Korea University of Technology and Education, Cheonan 31253, South Korea

glenn89@koreatech.ac.kr
4 Electronics and Telecommunications Research Institute,

Daejeon 34129, South Korea
sewonoh@etri.re.kr

5 Future Convergence Engineering, Korea University of Technology and Education,
Cheonan 31253, South Korea

yhhan@koreatech.ac.kr

Abstract. This paper proposes a deep recurrent neural network (RNN)-based traf-
fic classification scheme (deep RNN-TCS) for classifying applications from traffic
patterns in a hybrid edge computing and cloud computing architecture. We can also
classify traffic from a cloud server, but there will be a time delay when packets
transfer to the server. Therefore, the traffic classification is possible almost in real-
time when it performed on edge computing nodes. However, training takes a lot of
time and needs a lot of computing resources to learn traffic patterns. Therefore, it is
efficient to perform training on cloud server and to perform serving on edge com-
puting node. Here, a cloud server collects and stores output labels corresponding
to the application packets. Then, it trains those data and generates inferred func-
tions. An edge computation node receives the inferred functions and executes clas-
sification. Compared to deep packet inspection (DPI), which requires the periodic
verification of existing signatures and updated application information (e.g., ver-
sions adding new features), the proposed scheme can classify the applications in an
automated manner. Also, deep learning can automatically make classifiers for traf-
fic classification when there is enough data. Specifically, input features and output
labels are defined for classification as traffic packets and target applications, respec-
tively, which are created as two-dimensional images. As our training data, traffic
packets measured at Universitat Politecnica de Catalunya Barcelonatech were uti-
lized. Accordingly, the proposed deep RNN-TCS is implemented using a deep long
short-term memory system. Through extensive simulation-based experiments, it is
verified that the proposed deep RNN-TCS achieves almost 5% improvement in ac-
curacy (96% accuracy) while operating 500 times faster (elapsed time) compared to
the conventional scheme.

Keywords: RNN, Traffic Classification, Edge Computing, Cloud Computing.
⋆ Corresponding author



166 Kwihoon Kim et al.

1. Introduction

To realize advanced network management, user service, and security functions accord-
ing to various application traffic, service providers are required to design effective ways
to inspect and identify their application traffic. Aiming for this goal, the deep packet in-
spection (DPI), which is a type of network packet filtering technique, has been a widely
deployed approach for many years; it examines packet payloads to identify application
traffic. Specifically, the DPI technique utilizes unique byte patterns (e.g., headers, data
protocol structures and the payload of the message) as signatures to detect the applica-
tion type. Because most recent applications are frequently updated to add new features
with different versions, an accurate DPI system must periodically verify and update exist-
ing signatures, which sometimes requires much human intervention. Further, the manual
task of application traffic generation and verification on multiple platforms and updated
applications is highly tedious and error-prone [39,11,3,27].

This limitation has recently motivated research to establish lightweight and automated
methods for classifying application traffic [35,2]. Recently, owing to the breakthroughs
made by deep learning technique in various typical algorithms including deep multi-
layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network
(RNN), and long short-term memory (LSTM) [28,36,20,43], there have been broad use
cases in the area of image classification (e.g., almost 98% accuracy achieved in image
classification). According to Lecun et al. [19], the deep learning technology performed
better in image classification than classical machine learning algorithms such as support
vector machines (SVM) and Random Forest (RF). Despite its practical popularity in deep
learning techniques, there has been only a limited number of research works on the au-
tomated classification of application traffic. In particular, the authors of [43] first applied
and proposed a deep CNN-based traffic classification system in order to detect malware
applications. However, because of the CNN’s own characteristics, which are generally
used to handle batch data and not for streaming data (i.e., time-series analysis), there is
still room to improve its accuracy by considering time-varying packet payload patterns
depending on the type of application, which inspired our work [17,14,5,15,32,16,33].

In this paper, a deep RNN-based traffic classification scheme (deep RNN-TCS) is pro-
posed by adopting the RNN technique, which is suitable for training on streaming data.
CNN is good at classifying the image data, especially such as data with shift invariant
characteristics. On the other hand, RNN is good at classifying the time series data. Be-
cause network traffic flows through time series, it is appropriate to classify using RNN.
The proposed deep RNN-TCS provides lightweight and automated classification of appli-
cation traffic. Specifically, a novel learning platform is designed suited for detecting time-
varying application traffic where input features and output labels are mapped to traffic
packets and target applications, respectively. A hybrid edge computing and cloud com-
puting architecture is considered. Here, a cloud server collects and stores output labels
corresponding to the application packets. Then, it trains those data and generates inferred
functions. An edge computation node receives the inferred functions and executes clas-
sification. From input features, multiple two-dimensional square matrices for sequential
flows in preprocessing are created and trained in a stacked RNN model. As our training
data, traffic packets measured at Universitat Politecnica de Catalunya Barcelonatech were
utilized. Accordingly, the proposed deep RNN-TCS is implemented using a deep long
short-term memory (LSTM) system. Through extensive simulation-based experiments, it



Deep RNN-Based Traffic Classification... 167

is revealed that the proposed scheme improves accuracy by almost 5% (96% accuracy)
while operating 500 times faster (elapsed time) compared to the conventional scheme
over five types of applications from the produced inferred function. In this study, network
traffic classification is performed using only the payload excluding header information
among network packet information. Recently, many IoT and mobile devices use private
or dynamic IP addresses and changeable port numbers. So the classification of network
traffic based on packet header information is no longer accurate [45]. The payload-based
network traffic classification can solve the problem. The contributions of this paper can
be summarized as follows.

– In our scheme, by applying the RNN mechanism to the traffic classification problem,
we design new input features of the traffic payload data as the image data with a two-
dimensional fixed-size matrix, so that only payload of packets, excluding TCP/IP
headers, are used for training and inference data.

– We deploy the proposed deep RNN-TCS by considering a hybrid edge computing
and cloud computing architecture is considered. Here, the cloud computing acts as a
learner, which collects and stores output labels corresponding to the application pack-
ets received from PC clients and creates inferred functions for classification through
a deep-learning process. Then, those inferred functions (i.e., deep learning model)
are delivered to the edge computing. Correspondingly, the edge computing performs
classification of application packets without output labels by using the deep-learning
model delivered from the cloud computing.

– Through extensive simulation-based experiments, it is verified that the proposed deep
RNN-TCS achieves almost 5% improvement in accuracy (96% accuracy) while op-
erating 500 times faster (elapsed time) compared to the conventional scheme.

– Our research is not limited to this vanilla RNN. There are RNNs that have been mod-
ified recently, and it is easy to apply to reflect modified RNNs. Later, it will be the
future work to apply the revised RNN to improve performance.

We can thus develop a practical deep recurrent neural network-based traffic classification
scheme. Section II explains the related work of network traffic classification problem. Sec-
tion III presents an overview of the proposed system model. In Section IV, we formulate
the problem as a deep learning model and present the novel deep RNN-TCS. Numerical
results and performance analysis are explained in Section V. We summarize and conclude
this work in Section VI.

2. Related work

Recently, to solve each problem in various domains, such as smart homes, airport gate
assignments, and the traveling salesmen, rule-based algorithms such as daily activation
recognition, and classical machine learning algorithms such as the Support Vector Ma-
chine (SVM) and the Random Forest (RF) are being studied [24,7,6]. Classical algorithms
such as the Principal Component Analysis (PCA), the Broad Learning System (BLS) tech-
niques, a new performance degradation prediction method, and a genetic and ant colony
adaptive collaborative optimization are being studied to address abnormal detection issues
in manufacturing areas such as the Fault Diagnosis and the Prognostic and Health Man-
agement (PHM) [49,48,8]. For the network domain case, many researches have focused



168 Kwihoon Kim et al.

on network traffic classification methods. Existing researches include rule-based network
traffic classification method.

Recently, researches on network traffic classification method using good performance
deep learning models have been actively performed [13,45]. Network traffic classifica-
tion using deep learning is a method of automatically classifying packets without human
intervention. Existing rule-based network traffic classification is a method of classifying
packets having the network according to predefined rules [21,29,40,30]. For example, the
classification methods use the header of the network packets. Therefore, rule-based net-
work traffic classification is conducted on the basis of IP address and port number of the
packet header. Li et al. proposed an approach to reduce the dependency on packet header
information [21,22,38]. Using this approach, they found that their packet-shaping device
uses the HTTP and TLS-handshake fields in their matching rules but only for the first
packet in each direction. If there is similar information in the header information of the
incoming packet compared to the header information found in the first packet, the incom-
ing packet is classified as a packet of the same type. Although there is less dependence
on the IP and port number of the packet, the method of classifying subsequent packets
using the header information of the first packet still depends on the header information.
However, since the rule-based network traffic classification method is highly dependent
on the header information (Source IP / Port number, Destination IP / Port number), net-
work traffic classification methods such as Correlation-based and payload-based methods
have been studied. Correlation-based network classification classifies datasets by select-
ing packets with high correlation between traffic packets considering correlation between
network traffic [47,18,9]. Zhang et al have shown that there is a strong correlation between
flow size and rate [46]. The flow of application used by the user has a certain size and rate
[47]. Also, user behavior might have an effect on large flows. Erman et al. consider the
problem of traffic classification in the core network [9].

The packet classification at the core network is challenging because only partial header
information about the flow are available. So, they use only unidirectional flow records.
Specifically, they propose and evaluate a clustering-based framework for classifying net-
work traffic using only unidirectional flow statistics. And their work is facilitated by recent
full-payload Internet packet traces [22]. As the research on payload-based network traf-
fic classification is studied, network traffic classification methods using machine learning
and deep learning are being studied variously [43,9,31,44,12,37,25,26,10]. Haffner et al.
used a variety of traditional machine learning techniques to compare and analyze packet
payloads [12]. It reduced the amount of computation required when generating payload-
based datasets. Toward this end, they used only the first few bytes of unidirectional traffic
data and unencrypted TCP data. Specifically, they used NB, AdaBoost, and MaxEnt for
traffic classification. AdaBoost outperforms NB and MaxEnt, yielding an overall preci-
sion of 99% with an error rate within 0.5%. Shafiq et al. used to classify network traffic
by various machine learning algorithms using different kinds of datasets [37]. They used
the three machine learning algorithms, multi-layer perceptron (MLP), C4.5 decision tree,
and support vector machine (SVM).

However, recent developments in computing resources have led to a significant ad-
vance in deep learning fields that can be applied to network traffic classification. Espe-
cially, as the CNN and RNN models in the deep learning model are developed, they can be
easily applied to the classification of network traffic. Wang et al. classified malware traf-



Deep RNN-Based Traffic Classification... 169

Fig. 1. Proposed system model for applying the proposed scheme

fic and normal traffic by using CNN [43]. To generate training set, header information of
packet was extracted using DPI tool. Based on the 5-tuple (source IP / port number, desti-
nation IP / port number, protocol) of the extracted header information, flow-based dataset
and session-based dataset is generated. The generated flow and session-based datasets
again generate 28x28 training sets for each packet through an imaging process suitable
for the CNN model. The trained CNN model using flow-based and session-based datasets
is 100% accurate for malware traffic and normal traffic classification. Lopez-Martin et al.
used to classify the network traffic using a combined CNN and LSTM [25]. The dataset
is extracted from the packet headers of the network traffic and learns the dataset using
a model that combines the single-layer CNN with LSTM, CNN, and LSTM. However,
most network traffic classification methods that use in deep learning use the IP, port num-
ber, and MAC address of the packet header information as a feature of the training set. In
this paper, a preprocessing process that extracts only the payload of packets from network
traffic is implemented, and detailed comparison and analysis of the layers of CNN and
LSTM are provided. Aceto et al. and Wang et al. utilizes various models of deep learning
(CNN, LSTM, SAE, MLP) to classify application of network traffic using payload data as
well as header information. Since the IP and port numbers, which are some information
in the TCP/IP headers, are changed dynamically, they have the bad effects when they are
used for classifying packets [41,1].

3. System Model

Multiple personal computer (PC) clients are considered that generate traffic while exe-
cuting an application where they are connected to a cloud computing via an intermedi-
ate node called an “edge computing”. Accordingly, a hybrid edge computing and cloud
computing architecture is considered. Here, the cloud computing acts as a learner, which
collects and stores output labels corresponding to the application packets received from



170 Kwihoon Kim et al.

Fig. 2. Proposed procedures for applying the proposed scheme

PC clients and creates inferred functions for classification through a deep-learning pro-
cess. Then, those inferred functions (i.e., deep learning model) are delivered to the edge
computing. Correspondingly, the edge computing performs classification of application
packets without output labels by using the deep-learning model delivered from the cloud
computing. Fig. 1 shows a detailed system model and procedures of the proposed deep
RNN-TCS.

As Fig. 2 is shown, detailed procedures consist of two processes: a learning process
and a serving process. In the learning process, PC clients send the application packets
with a corresponding output label to the cloud computing via the edge computing. In this
case, five types of applications (e.g., BitTorrent, web service, Skype, secure shell (SSH),
and remote desktop protocol (RDP)) are considered as classification candidates. Here, it
should be noted that the proposed scheme is not limited to classifying those five appli-
cations and can be easily extended to classify different types. In the cloud computing,
first the collected packets are preprocessed, and through the learning process based on the
output labels corresponding to the collected packets, an appropriate deep-learning model
is created. Afterwards, the result of the deep-learning model is sent to the edge comput-
ing. The edge computing loads the received deep-learning model to act as an application
classifier. In the serving process, the PC clients send the application packets without the
corresponding output labels. Then, the edge computing examines or sniffs the application
packets and classifies the application, which would be mapped into one of the five candi-
dates. On the basis of this automated classification function, it is expected that a service
provider can effectively perform the desired network management according to various
application traffic.



Deep RNN-Based Traffic Classification... 171

(a)

(b)

Fig. 3. Proposed deep RNN-based traffic classification scheme for the (a) data preprocess-
ing and (b) deep learning process (Stacked RNN/LSTM)



172 Kwihoon Kim et al.

Table 1. Parameters explanations

Parameters Explanations

R The raw data set for the first preprocessing procedure
Rtype

1st pre The first preprocessing result with a certain type, which is a subset of R
Nflow The data size of one sequential flow
f types
2nd pre,i The second preprocessing data of the flow i

f types
i,0 The sequence 0 of flow i with a certain type

4. Proposed Deep RNN-Based Traffic Classification Scheme

In this section, the detailed process of the proposed scheme is explained as shown in
Fig. 3. The entire process is divided into two parts: data preprocessing and deep learning.
Detailed parameters are summarized in Table 1

4.1. Proposed Data Preprocessing

The set of features entering LSTM’s input is payload data for packets in each flow. The
input data of the neural network changed each element of the payload to 8 bits, and then
re-imaged the bitted payload data and used it as input data through the preprocessing. In
the proposed scheme, preprocessing is conducted in two stages, called the first prepro-
cessing and second preprocessing procedures. For the first preprocessing procedure, raw
data with a defined set R is collected and sniffed in the cloud computing. Then, raw data
is classified into a corresponding type of application. Here, because only six types of ap-
plications are considered, including “others,” each flow belongs to one of six types. For
convenience, Rtype

1st pre is denoted as a subset of R, which is the first preprocessing result
with a certain type, i.e., type∈ {RDP, Skype, SSH,BitTorrent,Web,Others}. In
this process, a conversion process of the raw data is conducted, which removes the head
information that indicates the flow id, start time, and end time of each flow, and imports
the data portion of the application payload in the flow unit and creates a data set. The first
preprocessing result is given by

R = RRDP
1st pre ∪RSkype

1st pre ∪RSSH
1st pre ∪RBitto

1st pre

∪RWeb
1st pre ∪ROthers

1st pre (1)

For the second preprocessing procedure, square matrix images are generated from the
classified raw data in the first preprocessing procedure. That is, each flow corresponding to
a certain type contains sequential data with time-series (e.g., streaming data). In addition,
one square matrix image in each sequential datum has a user-designed size, which can be
set by the user to l. The bit size of one pixel in the square matrix image has a m, and the
character-type value replaced by a floating-point value is 0 ∼ (2m − 1). That is, the data
size of one sequential flow (Nflow) is obtained by

Nflow = k × l × m (2)

where k is the number of square matrix images per one flow, l is the number of pixels per
one square matrix image, and m is the size of a pixel.



Deep RNN-Based Traffic Classification... 173

For instance, in the case of 30 sequences per flow, 256(= 16×16) pixels per sequence
(square matrix image), and 4 bits per pixel for RNN models detecting time-varying target
applications, Nflow has a value 30,720 (= 30× 256× 4).

Fig. 3(a) shows the payload of a packet in one of the completed flows in a two-
dimensional image, an element of four bits in size, and a value between 0 and 15 (floating
point). In addition, because of the nature of the LSTM network structure, all flows should
have the same number of packets. Because the length of a sequence is set in advance,
the number of packets per flow should be the same as the predefined length. However,
because application flows can have a varying number of packets, the number of packets
should be processed with a defined size. Specifically, if the number of packets per flow
is smaller than Nflow, the packet is padded by zero. Contrarily, if the number of packets
per flow is greater than Nflow, then the packets over Nflow are discarded. Finally, the
second preprocessing data of the flow i (ftypes2nd pre,i) is given by

ftypes2nd pre,i = [f types
i,0 f types

i,1 · · · f types
i,29 ], (3)

where f types
i,0 is denoted as a sequence 0 of flow i with a certain type.

4.2. Proposed Deep-Learning Process

In the deep-learning process, these generated input features with corresponding output
labels are inserted and trained to create an acceptable inferred function (i.e., deep learn-
ing model) where a stacked RNN model with three layers was utilized in this study to
improve accuracy with consideration of time-varying target applications. In particular,
for the existing vanilla RNN model, the length of the sequences should be short; other-
wise, acceptable accuracy cannot be achieved, which is called the “long-term dependency
problem.” To alleviate this issue while using 30 sequences per flow, RNN with the LSTM
method is additionally considered, which is composed of a memory cell, an input gate, an
output gate, and a forget gate. Then, each LSTM cell takes an input and stores it for some
period of time to solve the “long-term dependency problem.” The output labels used for
the train, validation, and test tasks were designed as one-hot vectors as shown in Table
2, where the size of the one-hot vectors is [5 × 1] because of the five application types.
LSTM [48, 49] is a type of the RNN model. It is useful for training datasets with long-
term dependency, so that it is commonly used to train speech and text dataset. In LSTM,
the previous learning data is reflected in the current learning data using the cyclic struc-
ture. As a result, LSTM is suitable for the classification of the flow-based network traffic
dataset with sequential feature. As explained in Section II, collection of the application
packets and learning for the deep learning model is conducted in the cloud computing, and
the classification of an application packet is served by the edge computing. For learning,
an equal amount of data for the six application types should be prepared, which is used
as an input for generating the deep learning model. As depicted in Fig. 3(b), f types

i,j , with
= 16× 16 square matrix images, is used as an input feature, where j is a sequence index
from 0 to 29. In addition, each input feature has a corresponding output label designed as
in Table 2. Finally, in the serving process, classification is conducted on the basis of the
result of output labels [5 × 1] such that the largest vector can be selected as an inferred
application type. For instance, if the result represents a vector with [0.01 0.12 0.76 0.04
0.07], SSH with [0 0 1 0 0] is selected.



174 Kwihoon Kim et al.

Table 2. Output labels of applications (one-hot vector)

Application BitTorrent Web Skype SSH RDP

Output label


1
0
0
0
0



0
1
0
0
0



0
0
1
0
0



0
0
0
1
0



0
0
0
0
1


Table 3. Deep-learning system environment

Case Description

Cloud Computing

DL Toolkit Tensorflow 1.12
Language Python 3.6
OS Ubuntu 16.04 LTS
RAM 32 GB
GPU Two NVIDIA GTX 1080Ti, 11GB
CPU Intel Core i9-7900X @ 3.30GHz
Hyper parameter Optimizer: Adam, Batch: 100, Epoch: 200

Edge Computing

DL Toolkit Tensorflow 1.12
Language Python 3.6
OS Ubuntu 16.04 LTS
RAM 32 GB
GPU One NVIDIA GTX 1080Ti, 11GB
CPU AMD Ryzen 5 1400 Quad-Core Processor
Hyper parameter Optimizer: Adam, Batch: 100, Epoch: 200

5. Performance Evaluation

In this section, the details regarding the performance evaluation of the proposed scheme
is discussed. The proposed deep RNN-TCS is compared with the conventional approach,
a deep CNN-traffic classification scheme (deep CNN-TCS) [43].

The experiments were conducted on Ubuntu 16.04 LTS, using 32 GB of RAM and
two NVIDIA GTX 1080Ti GPUs with 11 GB for the cloud computing and using 16 GB
of RAM and one NVIDIA GTX 1080Ti GPU with 11 GB for the edge computing. Ten-
sorflow 1.12 in the Python 3.6 environment is used to configure the LSTM and CNN
deep-learning models. For the experiments, 2000 flows for each application are used in
the training data, and the number of packets per flow was set to 10, 30, 60, and 100. In
addition, the payload size of each packet was set to 40, 80, and 160. Table 3 shows the de-
tailed hyper-parameters used in deep RNN-TCS and deep CNN-TCS. There is a limitation
of the DL-PAS in applications to a high-user-density nature owing to the factorial increase
in both output nodes and multi-layer perceptions (MLP) weight. The LSTM model used
in RNN-TCS consists of a single LSTM layer, and an output layer. The number of cells
in the LSTM layer is 320, and we use the ‘uniform’ distribution for the model parameter
initializer. The dropout rate is set to 0.2 in order to prevent the overfitting. The activation
function is ‘softmax’, optimization type is ‘adam’, and batch size is 100.

The traffic data used to classify applications were preprocessing packet capture (PCAP)
files supplied by Universitat Politecnica de Catalunya Barcelonatech (UPC) [4] suitable



Deep RNN-Based Traffic Classification... 175

Fig. 4. Accuracy of the deep RNN-based traffic classification scheme

for RNN learning. For the data preprocessing process, six types of applications are con-
sidered, where web applications included HTTP-Facebook-Google, HTTP-Web, HTTP-
Wiki, and HTTP-Youtube. The learning data set included flight data with 8,750 flows,
1,250 validation data, and 3,000 test data. For five applications, the overall accuracy of
the deep RNN-TCS with respect to the number of packets per flow are examined. In
this investigation, the deep RNN-TCS is tested with different payload sizes, i.e., 40, 80,
or 160 bytes, denoted by proposed deep RNN-TCS(40), deep RNN-TCS(80), and deep
RNN-TCS(160), respectively. As shown in Fig. 4, as the number of packets per flow in-
creases, the accuracy increases. Similarly, the accuracy also increases as the payload size
increases, because a lot of packets and big payload size provides more information to
the classifier to make an accurate decision. Specifically, the proposed scheme achieves
accuracy of 96.00% - 99.85% with varying conditions.

Fig. 5 shows the accuracy of the proposed scheme for each five applications. As shown
in the figure, the accuracy of each application increases as the number of packets per
flow increases. In particular, SSH, RDP and Skype usually consist of text or control data
with fewer bits, thus requiring fewer packets per flow. Correspondingly, as the number of
packets per flow and payload size increase in the all applications, the accuracy of RNN-
TCS also reaches about 99%. However, if the dataset size is small (i.e., 10 packets per
flow with 40 payload size), especially in case of Web and BitTorrent, the accuracy is
not as high (88.97% and 95.65%, respectively). Because BitTorrent and Web are usually
composed of image or video data with a large amount of data, our scheme requires more
packets per flow to classify these applications accurately.

A clearly presenting the predictions of the deep RNN-TCS model is to use a con-
fusion matrix. Table 4 shows the confusion matrix generated by the test process of the
proposed deep RNN-TCS as a flow-based dataset. For example, the deep RNN-TCS ac-



176 Kwihoon Kim et al.

Fig. 5. Accuracy of deep RNN-TCS for each target application

curately predicts 574 BitTorrents, 593 Web, 578 Skype, 594 SSH and 603 RDP. It also
incorrectly predicted 58 cases (all cases except the diagonal position in Table 4) from the
total number of all estimates. In addition, the F1 score of each application label remains
high with strong robustness, demonstrating that the deep RNN-TCS model can effectively
and reliably predict network applications. If the number of application labels is different,
the accuracy indicator may be misrepresented. The model predicts most applications for
all predictions and achieves high classification accuracy, but the model may not be useful
for problem areas. Therefore, we replace the confusion matrix, which is the prediction
result for all application labels, with the binary confusion matrix for each label. Table 5
is an example of a binary confusion matrix of BitTorrent labels created based on Table
4. In the binary confusion matrix in Table 5, the deep RNN-TCS predicts 600 (= 574 +
26) of the total 3000 test datasets as BitTorrent and 2400 (= 19 + 2381) as the remainder.
In fact, 593 (= 574 + 19) of the test dataset is bit torrent and 2407 (= 26 + 2381) is the
remainder. The TP represents the cases in which the actual label is positive (BitTorrent)
and the prediction result is also positive correctly. The FN represents the cases in which
the actual label is positive, but the prediction result is negative incorrectly. The FP repre-
sents the cases in which the actual label is negative (that is, not BitTorrent), but prediction
result is positive incorrectly. Lastly, the TN represents the cases in which the actual label
is negative, and the prediction result is also negative correctly.

To solve the reliability issue of accuracy, the deep RNN-TCS is evaluated by calculat-
ing the F1-score in this paper. Using a binary confusion matrix, it is defined according to
the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)



Deep RNN-Based Traffic Classification... 177

Table 4. The all applications confusion matrix by the proposed deep RNN-TCS test with
100 packets per flow and 160 pixels.

Applications Predicted
BitTorrent Web Skype SSH RDP SUM F1 score

Actual

BitTorrent 574 0 2 17 0 593 0.99
Web 6 593 1 1 0 601 1.00

Skype 19 1 578 1 0 599 1.00
SSH 1 3 0 594 5 603 0.99
RDP 0 0 0 1 603 604 1.00

Total F1-score 0.99

Table 5. The Binary confusion matrix of BitTorrent application labels in deep RNN-TCS
tests.

n=3000
Prediction

Positive Negative

Actual Positive 574 (True Positive: TP) 19 (False Negative: FN)
Negative 26 (False Positive: FP) 2381 (True Negative: TN)

F1− score =
2× Precision×Recall

Precision+Recall
(5)

where Recall = TP/(TP + FP) and Precision = TP/(TP + FN).
The F1-score expresses the harmonic mean of precision and recall, and shows the pre-

dicted results performance of a deep learning model accurately. In this paper, we compute
the accuracy, recall, precision, and F1-score values of all five application labels.

Finally, Fig. 6, Fig. 7 and Fig. 8 represent that the performance of the accuracy and
elapsed time for the different schemes (the proposed deep RNN-TCS and the traditional
deep CNN-TCS). The CNN model used in CNN-TCS consists of two convolutional lay-
ers, a maxpooling layer, and finally an output layer. Like RNN-TCS, we use the ‘uniform’
distribution for the model parameter initializer. The number of CNN model filters used in
the experiment is the same as the payload size of the dataset used for training. Also, the
size of the kernel is 3× 3 and the output size of the convolutional layers maintains as the
input size by using the ‘same’ padding method. The activation function is ‘softmax’, the
optimization type is ‘adam’, and the batch size is 100. It should be noted that the elapsed
time is the sum of the preprocessing time for generating the appropriate data for each
model and the time taken to train the CNN and LSTM model. As shown in Fig. 6 and Fig.
7, as the number of applications increases, the proposed scheme, which utilizes stream-
ing training data, achieves almost 96%-99% accuracy and 0.995-0.998 F1-score, whereas
the conventional deep CNN-TCS is 91%-96% accurate and 0.926-0.948 F1-score, for a
nearly 5% accuracy gap and 0.06 F1-score gap. The elements of the application types ac-
cording to the number of applications is summarized in Table 6. Furthermore, with regard
to elapsed time, as depicted in Fig. 8, the proposed scheme is almost 500 times faster than
the conventional scheme, because the conventional scheme reads arbitrary packets of each
application flow in the data preprocessing step. On the other hand, the proposed scheme



178 Kwihoon Kim et al.

Table 6. Elements of application types with the number of applications

Number of apps. Set of apps.
2 {BitTorrent, Web}
3 {BitTorrent, Web, Skype}
4 {BitTorrent, Web, Skype, SSH}
5 {BitTorrent, Web, Skype, SSH, RDP}

Fig. 6. Performance evaluations for accuracy of the proposed deep RNN-TCS vs. the tra-
ditional deep CNN-TCS

reads and generates data in each application flow unit. In particular, the elapsed time
of RNN-TCS is faster than that of CNN-TCS because CNN-TCS in the pre-processing
process converts the payload into an image after reading all data sets of network traffic.
On the other hand, in the case of RNN-TCS, the network traffic dataset is extracted as
the number of packets per flow, and the payload is converted to an image only for the
extracted dataset. Here, the overall tendency of both schemes is that as the number of
applications increases, because of the increased training data for classification, the overall
accuracy is improved at the cost of more elapsed time.

In addition, recently, network traffic classification schemes using various machine
learning methods have been actively studied. Parsaei et al. [31] described a method of
classifying network traffic using the four neural network models (Feedforward Neural
Network, Multi-layer Perceptron, Levenberg-Marquardt, and Naive Bayes) in Software-
Defined Networking. The four neural network models show accuracy of 95.6%, 97%,
97% and 97.6%, respectively. Parsaei’s scheme performed the classification based on the
header information as well as the payload one. But, our RNN-TCS performs it based only
on the packet payload. It achieves a 99% accuracy, so that it is better than the above four
neural network models.

Wang et al. [42] worked on classifying malware traffic and normal traffic using a
CNN model. They preprocessed all of the header and payload information of the network
traffic into images for input data from the CNN model. The CNN model is trained from
the imaging dataset, and the accuracy of malware traffic and normal traffic classification
was almost 100%. But, the binary classification of the Wang’s scheme is the simplest kind



Deep RNN-Based Traffic Classification... 179

Fig. 7. Performance evaluations for F1-score of the proposed deep RNN-TCS vs. the tra-
ditional deep CNN-TCS

Fig. 8. Performance evaluations for preprocessing elapsed time of the proposed deep
RNN-TCS vs. the traditional deep CNN-TCS

of machine learning problem. On the other hand, our proposed RNN-TCS is not binary
classification, but multiple classification.
In our previous work [23], we collected payload-based network traffic which excluded the
TCP/UDP headers, and used CNN and ResNet models for network traffic classification
method. According to the network traffic classification results, the F1-score values for
CNN and ResNet models are 0.948 and 0.969, respectively. The proposed scheme in
this paper is also payload-based network traffic classification, but it uses the RNN model
unlike previous work. We experimented with a comparison of our RNN-based scheme
with the previous one. As a result, our RNN-based scheme outperforms the previous one.



180 Kwihoon Kim et al.

6. Discussion

When new traffic data are generated from a new application (or protocol), the proposed
traffic classification scheme does not classify them correctly, since the new data were
not used to train the model. Even with traditional methods including DPI, however, it is
impossible to know new applications in advance and the traffic from the new application
will be unclassified with the methods. Rather, the proposed method can better respond to
traffic generated by a new application, since a manager only creates a new label for the
new application data, and retrain the model with the new training data augmented with
the new traffic images and label. The DPI-based traditional methods are more difficult
because it must come up with new rules (e.g., a specific values or structure on headers or
payload) for the new application data.

From a system perspective, the proposed scheme includes the ability to collect data
about the new application with a cloud computing system in a centralized manner, update
the model through retraining with the new application data, and apply the results to edge
computing systems in a distributed manner.

Regarding the classification of encrypted packets, much works have been already stud-
ied [34]. In case the packets are encrypted, as we can see from the previous studies, it
should be possible measures 1) to add metadata to encrypted packets in the preprocessing
phase, and utilize them in the classification phase, 2) to utilize the various data interpola-
tion (Nearest value based, Bi-linear Interpolation based, Bicubic based) schemes to pro-
cess data packets with various lengths to a fixed size, or 3) to extract the features through
the packet header and encrypted payload using deep packet toolkit with deep learning.
Therefore, by using such extended measures, classification of encrypted packets can be
performed with the deep learning-based scheme proposed in this paper.

7. Conclusion

In this paper, a RNN-based traffic classification scheme (RNN-TCS) is proposed to clas-
sify applications from traffic patterns. RNN-TCS is a payload-based network classifica-
tion method, so that it can classify network traffic well even though dynamic IP addresses
or port numbers are used on the packet header. In addition, the architecture of the proposed
technique is a hybrid edge computing system capable of parallel execution by performing
data preprocessing and model training in the cloud and classifying network traffic with
the trained model in edge computing. For evaluation, traffic packets measured at Uni-
versitat Politecnica de Catalunya Barcelonatech for our training data are utilized and the
proposed scheme is implemented using a deep LSTM system. Finally, it is shown that the
proposed deep RNN-TCS achieves almost 96%-99% accuracy and 0.995-0.998 F1-score
with low elapsed time. In the future, we plan to classify more than 100 services based on
deep RNN-TCS in edge computing studied in this paper. Also, based on each classified
service, we will conduct a research to control Quality of Service using Software-Defined
Networking.

Acknowledgments. This research was supported by the National Research Council of Science &
Technology (NST) grant by the Korea government (MSIP) (No. CRC-15-05-ETRI).



Deep RNN-Based Traffic Classification... 181

References

1. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Mobile encrypted traffic classification using
deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Transactions on
Network and Service Management 16(2), 445–458 (2019)

2. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. in Proceedings of
the 2006 ACM CoNEXT Conference pp. 1–12 (2006)

3. Boutaba, R., Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrad-solano, F.,
Caicedo, O.M.: A comprehensive survey on machine learning for networking: evolution, appli-
cations and research opportunities. Journal of Internet Services and Applications (2018)

4. Carela-Español, V., Bujlow, T., Barlet-Ros, P.: Is Our Ground-Truth for Traffic Classification
Reliable? In Proc. of the Passive and Active Measurements Conference (PAM’14) (Mar 2014)

5. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series pre-
diction. IEEE Transactions on Neural Networks pp. 240–254 (1994)

6. Deng, W., Xui, J., Zhao, H.: An Improved Ant Colony Optimization Algorithm Based on Hy-
brid Strategies for Scheduling Problem. IEEE Access pp. 20281–20292 (2019)

7. Deng, W., Zhao, H., Yang, X., Xiong, J., Sun, M., Li, B.: Study on an improved adaptive PSO
algorithm for solvingmulti-objective gate assignment. Applied Soft Computing pp. 288–302
(2017)

8. Deng, W., Zhao, H., Zou, L., Li, G., Yang, X., Wu, D.: A novel collaborative optimization
algorithm in solving complex optimization problems. Soft Computing pp. 4387–4398 (2017)

9. Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and discriminating between web
and peer-to-peer traffic in the network core. in Proceedings of the 16th International Conference
on World Wide Web pp. 883–892 (2007)

10. Finsterbusch, M., Richter, C., Rocha, E., Muller, J.A., Hanssgen, K.: A survey of payload-based
traffic classification approaches. IEEE Communications Surveys & Tutorials pp. 1135–1156
(2014)

11. Gupta, P., McKeown, N.: Algorithms for packet classification. IEEE Network: The Magazine
of Global Internetworking pp. 24–32 (2001)

12. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: automated construction of application signa-
tures. in MineNet (2005)

13. Hatcher, W.G., Yu, W.: A survey of deep learning: platforms, applications and emerging re-
search trends. IEEE Access. pp. 24411–24432 (2018)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE Con-
ference on Computer Vision and Pattern Recognition 2016 pp. 770–778 (2016)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation pp. 1735–1780
(1997)

16. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model se-
lection. in Proceedings of the 14th International Joint Conference on Artificial Intelligence pp.
1137–1143 (1995)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems 25 (NIPS 2012) pp.
1097–1105 (2012)

18. Lan, K., Heidemann, J.: On the correlation of Internet flow characteristics. Technical Report
ISI-TR-574, USC/Information Sciences Institute (2003)

19. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. in Proceedings of the IEEE vol. 86(11), 2278–2324 (Nov 1998)

20. LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature International Journal of science pp.
436–444 (May 2015)

21. Li, F., Kakhki, A.M., Choffnes, D., Gill, P., Mislove, A.: Classifiers unclassified: An efficient
approach to revealing IP traffic classification rules. in proceedings of the 2016 Internet Mea-
surement Conference pp. 239–245 (2016)



182 Kwihoon Kim et al.

22. Li, L., Kianmehr, K.: Internet traffic classification based on associative classifiers. IEEE In-
ternational Conference on Cyber Technology in Automation, Control, and Intelligent Systems
(CYBER) pp. 263–268 (2012)

23. Lim, H., Kim, J., Heo, J., Kim, K., Hong, Y., Han, Y.: Packet-based Network Traffic Classifi-
cation Using Deep Learning. In Proceedings of the 2019 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC) pp. 46–51 (2019)

24. Liu, Y., Wang, X., Zhai, Z., Chen, R., Zhang, B., Jiang, Y.: Timely daily activity recognition
from headmost sensor events. ISA Transactions pp. 379–390 (2019)

25. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic classifier with
convolutional and recurrent neural networks for internet of things. IEEE Access. pp. 18042–
18050 (2017)

26. McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow clustering using machine learning tech-
niques. in Passive and Active Network Measurement. Berlin, Heidelberg: Springer Berlin Hei-
delberg pp. 205–214 (2004)

27. Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J.D., Ochoa, M., Tippenhauer, N.O., Elovici,
Y.P.: A machine learning approach for IoT device identification based on network traffic anal-
ysis. in proceedings of the Symposium on Applied Computing pp. 506–509 (2017)

28. Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., Khudanpur, S.: Extensions of recurrent
neural network language model. 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing(ICASSP) pp. 5528–5531 (2011)

29. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using
machine learning. IEEE Communications Surveys Tutorials pp. 56–76 (2008)

30. Park, J.: Statistics signiture based application traffic classification. Korea Communication Jour-
nal 34, 1234–1244 (Nov 2009)

31. Parsaei, M.R., Sobouti, M.J., Khayami, S.R., Javidan, R.: Network traffic classification us-
ing machine learning techniques over software defined networks. International Journal of Ad-
vanced Computer Science and Applications (2017)

32. Pedregosa, F., Varoquaux, G., Gramfort, A.: Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research pp. 2825–2830 (2011)

33. Powers, D.M.W.: Evaluation: From precision, recall and f-measure to ROC, informedness,
markedness & correlation. Journal of Machine Learning Technologies pp. 37–63 (2011)

34. Rezaeij, S., Liu, X.: Deep learning for encrypted traffic classification: An overview. IEEE Com-
munications Magazine pp. 76–81 (2019)

35. Risso, F., Baldi, M., Morandi, O., Baldini, A., Monclus, P.L.: Lightweight, payload-based traf-
fic classification: An experimental evaluation. IEEE International Conference on Communica-
tions pp. 5869–5875 (2008)

36. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architec-
tures for large scale acoustic modeling. Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association(INTERSPEECH) pp. 338–342 (Jan 2014)

37. Shafiq, M., Yu, X., Wang, D.: Network traffic classification using machine learning algorithms.
Advances in Intelligent Systems and Computing pp. 621–627 (2018)

38. Singh, H.: Performance analysis of unsupervised machine learning techniques for network traf-
fic classification. 2015 Fifth International Conference on Advanced Computing & Communi-
cation Technologies pp. 401–404 (2015)

39. Trivedi, U., Patel, M.: A fully automated deep packet inspection verification system with ma-
chine learning. 2016 IEEE International Conference on Advanced Networks and Telecommu-
nications Systems (ANTS) (Nov 2016)

40. Udrea, O., Lumezanu, C., Foster, J.S.: Rule-based static analysis of network protocol imple-
mentations. Information and Computation p. 130–157 (2008)

41. Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., Zhu, M.: Hast-ids: Learning hi-
erarchical spatial-temporal features using deep neural networks to improve intrusion detection.
IEEE Access 6, 1792–1806 (2018)



Deep RNN-Based Traffic Classification... 183

42. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware trac classification using convolutional
neural network for representation learning. In Proceedings of the 2017 International Conference
on Information Networking (ICOIN) pp. 712–717 (2017)

43. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware Traffic Classification Using Convo-
lutional Neural Network for Representation Learning. IEEE ICOIN 2017 (2017)

44. Yu, C., Lan, J., Xie, J., Hu, Y.: QoS-aware traffic classification architecture using machine
learning and deep packet inspection in SDNs. Procedia Computer Science pp. 1209–1216
(2018)

45. Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification and application iden-
tification using machine learning. The IEEE Conference on Local Computer Networks 30th
Anniversary (LCN’05) pp. 250–257 (2005)

46. Zhang, J., Xiang, Y., Wang, Y., Zhou, W., Xiang, Y., Guan, Y.: Network traffic classification
using correlation information. IEEE Transactions on Parallel and Distributed Systems pp. 104–
117 (2013)

47. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins of internet
flow rates. SIGCOMM 02 Proceedings of the 2002 conference on Applications pp. 309–322
(2002)

48. Zhao, H., Liu, H., Xu, J., Deng, W.: Performance Prediction Using High-Order Differential
Mathematical Morphology Gradient Spectrum Entropy and Extreme Learning Machine. IEEE
Transactions on Instrumentation and Measurement pp. 379–390 (2019)

49. Zhao, H., Zheng, J., Xu, J., Deng, W.: Fault Diagnosis Method Based on Principal Component
Analysis and Broad Learning System. IEEE Access pp. 99263–99272 (2019)

Kwihoon Kim is currently a professor in the Department of Artificial Intelligence Con-
vergence Education, Korea National University of Education (KNUE), South Korea. He
received the B.S, M.S. and Ph.D. degrees from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea in 1998, 2000 and 2019, respectively.
He worked in LG DACOM 2000 2005. From 2005 to 2020, he was a Principle Researcher
with Electronics and Telecommunications Research Institute (ETRI). He is an editor and
rapporteur of ITU-T SG11 since 2006. His interested fields are Fog/edge computing, In-
ternet of Things, 5G/IMT2020, deep learning, machine learning, reinforcement learning,
GAN and knowledge-converged intelligent service.

Joohyung Lee (S’09–M’14–SM’19) is currently an Assistant Professor in the School of
Computing, Gachon University, South Korea. He received the B.S, M.S. and Ph.D. de-
grees from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
South Korea, in 2008, 2010 and 2014, respectively. From 2012 to 2013, he was a Visiting
Researcher with the Information Engineering Group, Department of Electronic Engineer-
ing, City University of Hong Kong, Hong Kong. From 2014 to 2017, he was a Senior En-
gineer with Samsung Electronics. He has contributed several articles to the International
Telecommunication Union Telecommunication (ITU-T) and the 3rd Generation Partner-
ship Project (3GPP). His research work is resource management at the intersection of
mobile systems and machine learning focusing on edge computing architectures to opti-
mize the trade-off between latency, energy, bandwidth and accuracy for data analytics.

Hyun-Kyo Lim received the B.S. degree in computer science and engineering and the
M.S. degree in computer science engineering from the Korea University of Technology



184 Kwihoon Kim et al.

and Education, in 2015 and 2017, respectively, where he is currently pursuing the Ph.D.
degree with the Department of Interdisciplinary Program in Creative Engineering. He
studied mobility management during his master course and he especially researched dis-
tributed mobility management in software-defined networking. He is studying deep learn-
ing and reinforcement learning during his doctoral studies. He is also exploring ways to
apply deep learning and reinforcement learning to the network and is working on applying
deep learning and reinforcement learning to a variety of applications.

Se Won Oh received the B.S.(1999) and the M.S. degrees(2001) from Pohang University
of Science and Technology (POSTECH), and received the Ph.D.(2018) from Chungnam
National University (CNU), Daejeon, South Korea, respectively. Since joining Electron-
ics and Telecommunications Research Institute (ETRI) in 2001, he is currently a Principal
Researcher working for Knowledge-converged Super Brain (KSB) Convergence Research
Department in ETRI, Daejeon, South Korea. He has been involved in several research
projects on software platform (such as RFID Event Management, USN Middleware, Inter-
net of Things Platform) which integrates legacy applications with various data resources
and sensors. He has made several contributions in international standardization activi-
ties, particularly on automatic identification and data capture techniques of JTC 1/SC 31.
His recent interested areas include machine learning application, anomaly detection, and
knowledge-converged intelligent service solutions.

Youn-Hee Han received the B.S. degree in mathematics and the M.S. and Ph.D. degrees
in computer science and engineering from Korea University, Seoul, South Korea, in 1996,
1998, and 2002, respectively. From 2002 to 2006, he was a Senior Researcher with the
Next Generation Network Group, Sam- sung Advanced Institute of Technology. Since
2006, he has been a Professor with the School of Computer Science and Engineering,
Korea University of Technology and Education, Cheonan, South Korea. Since 2002, his
activities have been focusing on mobility management, media independent handover, and
cross-layer optimization for efficient mobility support. He has published approximately
250 research articles on the theory and application of mobile computing and has filed
40 patents on information and communication technology domain. His current research
interests include theory and application of computer networks, including protocol design
and math- ematical analysis, mobile sensor/actuator networks, social network analysis,
machine learning, deep learning, and reinforcement learning. He has made several con-
tributions in IETF and IEEE standardization. He has served as the Co-Chair for working
group in the Korea TTA IPv6 Project Group. He has been serving as an Editor for the
Journal of Information Processing Systems since 2011.

Received: April 24, 2020; Accepted: July 25, 2021.


	Introduction
	Related work
	System Model
	Proposed Deep RNN-Based Traffic Classification Scheme
	Proposed Data Preprocessing
	Proposed Deep-Learning Process

	Performance Evaluation
	Discussion
	Conclusion

