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Abstract. The analysis of protein-protein interaction networks can transfer the
knowledge of well-studied biological functions to functions that are not yet ade-
quately investigated by constructing networks and extracting similar network struc-
tures in different species. Multiple network alignment can be used to find similar
regions among multiple networks. In this paper, we introduce Accurate Combined
Clustering Multiple Network Alignment (ACCMNA), which is a new and accurate
multiple network alignment algorithm. It uses both topology and sequence simi-
larity information. First, the importance of all the nodes is calculated according to
the network structures. Second, the seed-and-extend framework is used to conduct
an iterative search. In each iteration, a clustering method is combined to generate
the alignment. Extensive experimental results show that ACCMNA outperformed
the state-of-the-art algorithms in producing functionally consistent and topological
conservation alignments within an acceptable running time.

Keywords: graph data analysis, big data, protein-protein interaction network, net-
work clustering, seed-and-extend strategy.

1. Introduction

Great progress has been made in constructing large amounts of biological networks of
different species using high-throughput experimental techniques and computational pre-
dictions. In recent years, obtaining information on cell composition and function by an-
alyzing network data has gradually become a popular research topic. In protein-protein
interaction networks (PPINs), proteins are represented by nodes and interactions between
two proteins by edges between two nodes. The alignment is usually generated accord-
ing to the topological structure and sequence similarity information of the protein-protein
interaction network. The topology of the network can extract much of the hidden infor-
mation in the network [23], [26], which can be used for network research on different
data. Functionally homogeneous proteins and protein complexes in different species can
be discovered through network alignment, which is divided into pairwise network align-
ment (PNA) and multiple (i.e., three or more) network alignment (MNA) according to
the number of aligned networks. The purpose of PNA is the creation of node mappings
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between two networks. In addition to finding a mapping between multiple networks, the
MNA can obtain correlation information of different species simultaneously. Therefore,
a well-studied MNA can provide deeper network insight. With respect to the mapping
types, network alignment algorithms are divided into one-to-one, one-to-many and many-
to-many alignment algorithms. In one-to-one alignment, there is exactly one node from
each aligned network, and not every node is required to be mapped; in one-to-many align-
ment, which is usually used in metabolic network alignments, one metabolic path can be
mapped to another subset; in many-to-many alignment, there can be one or more nodes
from the same network in each alignment cluster. Network alignment types are classified
into local network alignment (LNA) and global network alignment (GNA). The purpose
of LNA is to find highly conserved, unrelated sub-networks with a highly similar structure
among the input network. However, LNAs only consider the similarity of local structures,
which may lead to conflicts or ambiguities. On the other hand, GNA aims to construct
node mappings between the overall nodes from the input networks with the cost of sub-
optimal conservation in the local area and finally obtain a network with a larger coverage,
which can produce a more consistent alignment compared to LNA.

Network alignment can be regarded as a subgraph isomorphism problem; however,
subgraph isomorphism is an NP-hard complete problem [7],which makes it very difficult
to find the network alignment solution. Heuristic algorithms are usually used for the so-
lution of NP-hard problems. They have the ability of intelligence, generality and global
search, which make them applicable in many fields, such as the cutting problem [44],
image analysis [5], the graph matching problem and so on. Therefore, heuristics align-
ment algorithms are used to address the issue that the computational difficulty of network
alignment increases exponentially with the increase of input network size.

The two most important aspects in evaluating network alignment results are network
topology and biological consistency. Nevertheless, achieving high topological conserva-
tion while obtaining biological significance is often contradictory in present literature,
even though they are both vital goals of network alignment [12]. The present study at-
tempted to solve the problem of balancing network topological conservation and func-
tional consistency. Moreover, the ACCMNA algorithm proposed in this paper introduces
a network clustering method as a solution to the problem of network alignment. The MNA
algorithm gathers many similar nodes in the same cluster and is, therefore, similar to a
clustering algorithm.

The multiple network aligner ACCMNA is proposed in this paper, which could match
as many consistent proteins together as possible and outperformed other state-of-the-art
algorithms in real and synthetic network experiments. The ACCMNA algorithm is based
on a seed-and-extend schema, inspired by the backbone extraction from the BEAMS al-
gorithm [1]. To begin, the calculation of node weights is included in the initialization
process and the topology and sequence information of the network are also considered.
Second, a clustering method finds the maximum edge weighted cluster, and an expansion
method is used so that similar proteins can be put into a cluster as much as possible.

In this section, we introduce network alignment, and the remainder of this paper is
organized as follows: In Section 2, we introduce the current state of network alignment
research. In Section 3, we describe the definition of the problem, the details of the algo-
rithm, and the two important innovations of our algorithm. In Section 4, we present the
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experimental results of the algorithm on different data sets and analyze the time complex-
ity. Finally, the concluding remarks are discussed in Section 5.

2. Related Work

Network alignment algorithms have been widely studied in recent years. Research on
pairwise network alignment was quite popular in the early years. Consequently, many ex-
cellent pairwise network alignment algorithms have been developed. The GRAAL family
of algorithms consists of GRAAL [23], H-GRAAL [29], MI-GRAAL [24], C-GRAAL
[28] and L-GRAAL [27],which use graphlet degree signatures and sequence similarity in-
formation to calculate the similarity between two networks. MAGNA [39] is optimized by
a genetic algorithm to obtain the results, IsoRank [40] uses a method similar to Google’s
PageRank algorithm to calculate the similarity of nodes in a different network to find the
alignment, NETAL [30] calculates the similarity score and obtains the alignment through
the greedy search algorithm, and PINALOG [34] uses community detection to improve
the alignment algorithm result. The above algorithms are compared and analyzed in detail
in prior work [9]. With the increasing availability of PPI networks, the need for simulta-
neous alignment of multiple networks is growing, and the study of MNA algorithms has
become increasingly popular. Multiple network alignment is different from the pairwise
network alignment in that multiple networks can be aligned simultaneously,however the
time complexity and computational difficulty of the algorithm become higher. Alignment
algorithms that have been proposed include Graemlin [11], an early two-phase local MNA
algorithm that learns the score function to optimize the vector of features while continu-
ously iterating to produce the final alignment. However, Graemlin requires additional phy-
logenetic information as input. Both Graemlin1.0 and Graemlin2.0 [10] have been devel-
oped as local aligner and global aligner, respectively. IsoRankN [25] uses spectral graph
theory to calculate similarity scores of nodes between any two networks. SMETANA [37]
calculates the similarity score matrix based on a semi-Markov random walk model and
uses probabilistic consistency transformations to enhance the similarity score matrix. The
final alignment result is generated by a greedy searching method. BEAMS [1] establishes
the alignment by generating the maximum edge weighted cliques. Then, the backbone
extraction and merge strategy are used to produces alignment results of high biological
consistency was proposed. CSRW [18] is an improved version of SMETANA in that it
establishes a score matrix by using a context-sensitive random walk model. NetCoffee
[16] is an extension of the T-Coffee algorithm [31], which uses a triplet approach that
combines the third network information. Subsequently, the similarity score between any
two networks is calculated and a simulated annealing method is used for continuous it-
eration until the final alignment is produced. Due to the limitation of the triplet method,
NetCoffee can align only three or more networks. To address this issue, NetCofee2 [15]
was proposed, which is based on graph feature vectors and is more accurate and efficient
for aligning two or more networks. The MAPPIN [8] algorithm is an improved version of
NetCoffee. MAPPIN can align two or more networks as well and combines the GO anno-
tation information of proteins with topology and sequence similarity to calculate the simi-
larity of nodes. Node Handprinting (NH) [35]is a global MNA, which solves the weighted
bipartite graph matching problem by using the progressive alignment strategy to obtain
the final optimal alignment. MultiMAGNA++ [42] is a global MNA designed to maxi-
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mize the optimization objective function using genetic algorithms and is an extension of
MAGNA and MAGNA++ [43], which are pairwise network alignment algorithms. FUSE
[13] calculates similarity scores by using the non-negative matrix tri-factorization method
and the k-partite matching algorithm to obtain the one-to-one alignment results. MPGM
[20] generates seeds through sequence similarity and then obtains the final many-to-many
alignment results through the percolation-based, graph-matching algorithm.

3. Method

3.1. Problem Definition

Let G1(V1, E1), G2(V2, E2), . . . , Gk(Vk, Ek) denote the k initial input PPI networks.
Here, Gi represents the ith input network. Vi, Ei represent the nodes, that is, the proteins
and edges ( interactions), of the set of the ith input network, respectively. S represents the
complete k-partite similarity graph of the weighted edge, where S has the same nodes as
the input networks. The edges represent the interrelationship of proteins among different
species. The value of the edge weight represents the sequence similarity score, where the
value of weight is the bit score value between u and v, which are two nodes from differ-
ent networks obtained through Basic Local Alignment Search Tool (BLAST), which was
proposed in prior work [2]. Sβ represents the filtered version of similarity graph S, which
is a subgraph of S with some edges removed. If unfiltered sequence similarity data are
used, then the computational complexity increases exponentially with the size of S and
some similarity data may lead to incorrect alignment due to incompleteness in sequence
similarity information. To avoid this, the S graph is filtered using beta, which is a user-
defined threshold for each edge (x, y). If w(x, y) < β × max(x, y), then edge (x, y)
in the similarity graph S is deleted. Here, max(x, y) denotes the maximum value of the
weight of an edge associated with x or y in S.

Assume that A = {Cl1, Cl2, . . . , Cln} is an alignment result of the input network,
and alignment A ∈ E, where E is the edge set of all the networks mentioned above. In
many-to-many network alignment A, for any cluster Cli = {V1,i, V2,i, . . . , Vk,i}, Vc,i is
the node set of the ith cluster and nodes come from the cth network. Vc,i ∩Vc,j = ∅,∀i 6=
j, that is, a node belongs exclusively to one cluster. For a given network, the quality of
alignment A is unknown and needs to be measured. Therefore, we quote the method in
BEAMS [1] as the objective function of alignment A. Here, Formula 1 can be used as the
objective function of the algorithm as follows:

AS(A) = α× CIQ(A) + (1− α)× ICQ(A) , (1)

where α is a real number from 0 to 1 that balances the contribution weight of topology
and sequence scores.

CIQ(A) =

∑
∀Clm,Cln |EClm,Cln | × cs(m,n)∑

∀Clm,Cln |EClm,Cln |
(2)

In the equation above, CIQ(A) stands for the cluster interaction quality and is a score
function that measures the quality of the conservative edge between clusters; EClm,Cln
represents the set of edges whose vertices are in the distinct cluster Clm, Cln; cs(m,n)
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represents any two clusters Clm, Cln and the proportion of the conserved edge network
calculated by the formula cs(m,n) = c′m,n/cm,n; cm,n represents the number of net-
works with nodes in both clusters Clm and Cln; and c′m,n is the number of networks
in which the vertices of the edges in EClm,Cln are in different networks. We assign
cs(m,n) = 0 if c′m,n = 1, which indicates that there is no conservative edge between
clusters Clm and Cln.

ICQ(A) =

∑
Cli∈A ICQ(Cli)

|A|
(3)

ICQ(Cli) =

∑
∀(u,v)∈E(Cli)

√
w(u,v)2

wmax(u)×wmax(v)

|E(Cli)|
(4)

Here, ICQ(A) stands for the internal cluster quality and is defined as a measure for the se-
quence similarity score between aligned nodes, expressed in Formula 3, where A denotes
alignment result; ICQ(Cli) represents the sequence similarity measure of Cli, expressed
in Formula 4, where w(u, v)denotes the bit score of sequence similarity information be-
tween node u and node v; wmax(u)denotes the maximum value of the edge attached to
the node u in Sβ ; and E(Cli) is the number of edges from the Sβ incident on nodes in
cluster Cli.

3.2. Algorithm

Inspired by the backbone extraction of the BEAMS algorithm [1], the whole framework
of the ACCMNA algorithm is a seed-and-extend strategy. The method is used in com-
bination with clustering to generate the alignment cluster. The clusters are generated in
each iteration as seeds and the seeds are expanded in the input network to generate new
clusters. The pseudo-code for the ACCMNA algorithm is demonstrated in the follow-
ing Algorithm description. The algorithm is initialized, while both the alignment set and
the candidate set are empty. To begin, the weight of each node is calculated based on the
topology and sequence information of the network, then the first candidateC0 is generated
by searching the cluster in the graph through the function Generate Candidate(Sβ).
This function searches for the node with the largest weight and its neighbor nodes in the
weighted graph Sβ to generate a subgraph of Sβ through these nodes, while a cluster is
generated in this subgraph. The main part of the algorithm is the repeat loop. The first step
involves selecting the candidate with the highest AS score in candidate set C as the new
alignment Anew in this loop, adding Anew to the alignment set A, and deleting the nodes
contained in Anew in Sβ . The second step is generating the neighborhood node set in the
PPIN according to the nodes in Anew and establishing the subgraph NSβ (Anew) of this
neighborhood node set. IfNSβ (Anew) contains only isolated nodes, then Cnew2 is empty;
otherwise, a new prospective candidateCnew1is generated in the graph. In the third step, if
Cnew1 contains nodes in each input network, then it is not extended; otherwise, candidate
Cnew2 is generated by extending Cnew1 in the Sβ . In the fourth step, if there is overlap
between the newly generated cluster and the candidate set, then the candidate needs to be
updated and the above four steps are repeated until the candidate set is empty.

Algorithm description
Input: Sβ , G1, G2, . . . , Gk, α
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Output: Set of cluster A
C = ∅; A = ∅;
//Initial
Calculate node score NodeWeight;
C0=Generate initial candidates in Sβ;
C = C ∪ {C0};
repeat

Select a cluster Anew from candidate set C;
A = A ∪ {Anew};
remove Anew from Sβ;
generate new candidates Cnew1 in Anew’s neighbors;
expand new Candidate of Cnew1 in Sβ;
C = C ∪ {Cnew2};
for all Ci ∈ C do

if Ci ∩ Anew 6= ∅ then
if i==0 then

C0=Generate initial candidates in Sβ;
else:

generate new candidates Ci;
end if

end if
end for

until no more Candidate
end.

Calculation of the Node Weight. When the initial candidate is generated in Sβ , the
node with the highest weight needs to be located, and then the cluster is searched with
this node as the center. Inspired by the HubAlign algorithm for computing the node simi-
larity function, the HubAlign algorithm is used for pairwise network aligners. HubAlign
uses a minimum-degree heuristic method to measure the role of nodes in the network
and preferentially aligns the more important nodes [14]. The use of the HubAlign algo-
rithm is extended to the calculation of the similarity of nodes among multiple networks.
Using a similar approach to HubAlign, the topological importance score for all nodes in
the network is calculated to begin with, and then the score of all nodes is calculated by
combining the sequence similarity information between pairs of nodes from different net-
works. The degree is one of the properties that can reflect the importance of nodes, given
that the importance of nodes in the network can be determined by the global topological
property. The weights of nodes and edges are calculated by traversing from the node with
the smallest degree to the node with a degree of 10. The weight of the node with a small
degree is transferred to the node or edge with a larger degree at the adjacent node so that
higher weight scores are assigned to nodes with a higher degree in the network and there
is a greater weight of the edge connected with the node. The network nodes and edge
weights are initialized as follows (see Fig. 1 for a simplified example):

we(u, v) =

1, (u, v) ∈ E

0, otherwise
, wn(u) = 0,∀u ∈ V , (5)



ACCMNA: A Novel Network Aligner 1433

where wn(u) represents the weight of the nodes in V ; we(u, v) represents the weight of
the edges between nodes u and v in PPINs; for a particular node u in a network, let deg(u)
be the degree of node u; N(u) denotes the neighbor nodes set of node u; and |N(u)| is
the number of neighbors of node u and also the degree of node u. The node weight update
starts from the node with the lowest degree and the topology information of the node is
gradually transferred to the neighbors with the higher degree. Nodes with zero degrees are
generally ignored. For a given node u, ∀v ∈ N(u), wn(v) = wn(v)+wn(u)+we(u, v),
if deg(u) = 1. If deg(u) > 1 and ∀v1, v2 ∈ N(u), then

we(v1, v2) = we(v1, v2) +
wn(u) +

∑
v∈N(u) we(u, v)

|N(u)||N(u)−1|
2

, (6)

Following the weight calculation in Formula 6, the importance score of the node is calcu-
lated by combining the weight of the node with the weight of the edge, as follows:

importance(u) = wn(u) + γ
∑
v∈V

we(u, v) . (7)

where importance(u) is the importance score of node u, and γ is set γ = 0.2 and controls
the contribution of the node related edge weights. The importance score obtained from
the network topology information is combined with the sequence similarity information
to obtain the final node weight. Nodes with zero degrees are generally ignored again.
Formula 8 is proposed to calculate the sequence similarity score of node u in Sβ . The
formula is as follows:

B(u) =

∑
v∈NS(u)B(u, v)

|NS(u)|
, (8)

where B(u, v) represents the sequence similarity information between nodes u and v,
which in this paper was calculated by the BLAST bit score; and B(u) represents the
average value of sequence similarity values related to node u. Finally, the weight of each
node in PPIN is obtained by combining the topology importance and sequence similarity
score. The final node weight is calculated as follows:

Weight(u) = α× importance(u) + (1− α)×B(u) , (9)

where α is a balancing parameter, see the definition of Equation 1.

Cluster Searching. For a graph with a given non-negative weight edge, the candidate is
generated by searching similar nodes in the search graph according to the edge weight.
Thus, nodes with high sequence similarity are clustered. The clustering method is com-
bined with the network alignment and similar nodes are gathered to generate clusters
through the clustering method in the search graph. Inspired by the clustering algorithm
SPICi [19], a clustering method based on the seed-and-extend approach is adopted. The
data of sequence similarity is incomplete, which may lead to similar nodes with no se-
quence similarity value between them and contribute to the incomplete alignment. The
alignment is constructed by improving this method with the inclusion of similar nodes in
the same cluster as much as possible.
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Fig. 1. An example to illustrate the calculation of node weights. This example network
has five nodes. The thickness of an edge shows its weight, and the size of a node shows its
weight. For example, for node a with degree one, N(a)={c}, wn(c)=wn(c)+wn(a)+we(a,
c); however, for node b with degree greater than one, N(b)={c, d}, we(c, d)=we(c,
d)+(wn(b)+we(b, c)+we(b, d))/(2(2-1)/2)=we(c, d)+wn(b)+we(b, c)+we(b, d)

The weights of all the nodes in the search graph are calculated according to the fol-
lowing formula:

degw(u) =
∑

v∈NS(u)

B(u, v) , (10)

whereNS(u) represents the set of neighbor nodes of node u in the filtered similarity graph
Sβ ; and B(u, v) represents the sequence similarity score between node u and node v in
the Sβ mentioned above. In each graph with weighted edges, the node with the highest
weighted degree is selected as the first seed. The higher the weight of a node, the higher
its importance in the graph, and it can be used as a meaningful seed node. A higher weight
between nodes indicates a higher sequence correlation between two nodes, and, therefore,
the weight of the neighbor of the first seed node is normalized and the nodes are divided
into five bins according to the normalized weight between them. In this study, they were
as follows: (0,0.2],(0.2,0.4],(0.4,0.6],(0.6,0.8],(0.8,1). Searching started from the bin with
the highest node weight, that is, (0.8, 1], to the bin with the lowest node weight, that is,
(0, 0.2]. If the bin being searched is not empty, then the node with the highest node degree
weight in the current bin is the second seed; otherwise, searching continues in the next
bin. The neighbor node that is most similar to the seed node is also an important node in
the network.

After the initial seed node pair is obtained, the graph is extended through two seed
nodes. First, S represents the nodes already included in the current cluster, and S contains
only two seed nodes at the beginning of the seed extension. The search node set that could
be added to S is composed of the neighbor nodes of the nodes in S. The node with the
maximum value of support(u, S) in the search set is selected in each iteration of the
extension. The score of support(u, S) is the sum of the weight of the edges in S related to
u, indicating the correlation between node u and the node in S. Two constraint conditions
decide whether to add node u to S. Node u is only added to S only if Formula 11 was
satisfied; otherwise, the search loop is terminated.{

density{S ∪ {u}} > Td
|Es(u)|

|S|×density{S∪{u}} ≥ Ts
(11)
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Here, density{S∪{u}} denotes the density of graph S after adding node u, and it reflects
how close the current graph S is to clique; |ES(u)| denotes the number of edges related
to u in S; and |S| is the number of nodes in graph S. The Values for Ts, Td were set to
0.5 in here.

After generating the prospective candidate in the neighborhood graph, the generated
candidate cluster is extended only when the number of networks in the cluster is less
than that of the input networks. The basic process of expansion is the same as that of
the above search process. Here, S is the newly generated prospective candidate, and the
search nodes are the neighbor nodes of the nodes in S. When the current node meets the
two constraints above, the node is added. However, since there is no direct correlation
between the extended search set and the nodes in the original alignment cluster, stricter
constraints should be set. The values of Ts, Td were set to be higher, namely 0.7 in the
synthetic network and 0.9 in the real networks in here.

4. Results and Discussion

4.1. Datasets

The ACCMNA algorithm was compared with IsoRankN, SMETANA and BEAMS. Iso-
rankN is the first global MNA. As one of the most popular two-phase alignment algo-
rithms, many alignment algorithms have been compared to it. SMETANA is a multiple
network aligner based on semi-Markov random walk and probabilistic consistency trans-
formations. Several studies in the literature have proved that SMETANA can produce
comparative results with relative topological significance. BEAMS is a heuristic algo-
rithm that searches for the weighted maximum cluster, and the experimental results in
many previous reports indicate that BEAMS can produce alignments with good func-
tional consistency.

Table 1. The number of proteins and interactions of five eukaryotic species

Node Edge

S. cerevisiae 6659 82932
C. elegans 19756 4884
D. melanogaster 14098 25054
H. sapiens 22369 55168
M. musculus 24855 592

We used real and synthetic networks for the verification of our algorithm. Five eukary-
otic network databases derived from the IsoBase [32]were used, S. cerevisiae, C. elegans,
D. melanogaster, H. sapiens and M. musculus, which are consistent with the data used in
SMETANA [37], IsoRankN [25] and BEAMS [1]. The PPINs data were constructed by
combining data from BIOGRID [4], DIP [38], HPRD [21], IntAct [3] and MINT [6]. The
node and edge data for each network are presented in Table 1. The sequence homology
information of the network corresponded to the BLAST bit score retrieved from Ensembl
[17].
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The synthetic network used data provided by Network Alignment Performance As-
sessment Benchmark (NAPAbench) [36] and there were three different network growth
models: crystal growth (CG) model [22], duplication-mutation-complementation (DMC)
model [41] and duplication with random mutation (DMR) model [33]. Each model con-
tained eight networks. Each network of the CG model contained 1000 nodes and 3985
edges. Each network of the DMC model consisted of 1000 nodes and the number of
edges of each network was 1919, 1853, 1923, 1840, 1867, 1848, 1818 and 1867, respec-
tively. The number of nodes in the DMR model network was also 1000 and the number
of network edges was 2031, 2092, 1967, 1977, 1959, 1998, 2030 and 2056, respectively.

Table 2. Experimental results on a synthetic network CG model. best performance is
shown in bold

CIQ SPE Sen MNE nGOC

SMETANA 0.812 0.906 0.573 0.071 0.907
IsoRankN 0.692 0.620 0.679 0.276 0.575
BEAMS 0.702 0.879 0.588 0.112 0.910
ACCMNA 0.892 0.920 0.713 0.071 0.947

Table 3. Experimental results on a synthetic network DMC model. best performance is
shown in bold

CIQ SPE Sen MNE nGOC

SMETANA 0.754 0.869 0.631 0.106 0.865
IsoRankN 0.573 0.618 0.518 0.294 0.546
BEAMS 0.507 0.806 0.553 0.182 0.833
ACCMNA 0.791 0.858 0.755 0.119 0.850

Table 4. Experimental results on a synthetic network DMR model. best performance is
shown in bold

CIQ SPE Sen MNE nGOC

SMETANA 0.689 0.872 0.573 0.106 0.873
IsoRankN 0.545 0.607 0.566 0.304 0.544
BEAMS 0.640 0.815 0.558 0.181 0.841
ACCMNA 0.748 0.861 0.714 0.119 0.845

In the comparison experiment of the synthetic network, the parameters of our algo-
rithm α and β were set as 0.5 and 0.2, respectively. The values of α and β in our algorithm
were 0.5 and 0.3 on the real networks, respectively. The parameters of other compared al-
gorithms were set as the recommended parameters from the literature. The parameters
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Table 5. Performance of different algorithms on real networks. best performance is shown
in bold

CIQ SPE Sen MNE nGOC

SMETANA 0.054 0.724 0.360 1.394 0.247
IsoRankN 0.027 0.733 0.303 1.437 0.248
BEAMS 0.035 0.798 0.379 1.290 0.309
ACCMNA 0.041 0.813 0.345 1.218 0.331

of the BEAMS algorithm synthetic network were set as the same as our algorithm. The
parameters α and β of the BEAMS algorithm real networks were set to 0.5 and 0.2, re-
spectively. Parameter α of the IsoRankN algorithm was set to 0.6, and parameters αand
β of SMETANA were set to 0.9 and 0.8, respectively, and nmax = 10.

4.2. Analysis of the Alignment Result

The alignment results of the above algorithms were all many-to-many alignment, which
indicated that, for each cluster, multiple nodes from the same network may exist. Protein
coverage showed the total number of aligned nodes. The nodes were classified in each
cluster according to their source network. The node k-coverage denotes the number of
nodes that belong to clusters that contain nodes from k networks. To measure the biolog-
ical significance of the alignment, GO annotation was used to evaluate the consistency of
aligned proteins. If at least two proteins in a cluster were annotated by the GO category,
then the whole cluster was considered to be annotated, and if all proteins in an annotated
cluster shared the same GO category, then the whole cluster was considered to be con-
sistent. The k-coverage of the consistent nodes denotes the number of consistent proteins
present in clusters that contain proteins from k networks. As shown in Fig. 2, the total
number of proteins aligned by ACCMNA, SMETANA and BEAMS was very close. Iso-
RankN aligned the least number of proteins. In general, each cluster is expected to contain
proteins from as many species. The alignment generated by the ACCMNA algorithm had
the largest number of 8-coverage of nodes. This indicates that the ACCMNA algorithm
produced more high-quality clusters. From the consistent protein results in Fig. 2(b), the
results of the ACCMNA algorithm indicate that its performance was the best among sev-
eral aligners and that most of the consistent nodes belonged to clusters from k=8 species.
Figure 2 shows that our algorithm produced the cluster that contained the highest num-
ber of proteins and consistent proteins from eight species. This can also demonstrate that
our algorithm discovered more meaningful information and was more biologically con-
sistent. The alignment results on real networks are displayed in Fig. 3, where A repre-
sents the protein coverage of alignment, andB represents the consistent protein coverage.
There was little difference between the ACCMNA algorithm results and the BEAMS and
SMETANA results, all of which were higher than IsoRankN. The coverage of proteins
and consistent proteins on both real networks and synthetic networks revealed that the
ACCMNA algorithm outperformed the other algorithms.

The alignment performance was measured using metrics established in the literature.
The alignment measurement scores on the synthetic network and the real networks are
displayed in Tables 2, 3, 4 and 5. CIQ has been proposed as a measurement for con-
served edges between clusters and used in previous literature for result comparison [42],
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Fig. 2. Performance of various network alignment algorithms in the synthetic network.
From left to right, respectively, are the results under the CG, DMC and DMR network
model. (a) Node k-Coverage, where k denotes the number of input networks; (b) Consis-
tent Node k-Coverage
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[20]. Results on synthetic networks from Tables 2, 3 and 4 showed that our algorithm
had the highest CIQ score on the three network sets CG, DMC and DMR, which sug-
gests that our algorithm contained the highest proportion of conservation interaction. SPE
stands for Specificity, which was proposed in prior work [37], and it is the proportion of
the number of consistent clusters in the number of annotated clusters. Our algorithm had
much higher SPE scores than IsoRankN and BEAMS in the three network sets and the
highest score in the CG network. The other two network sets ranked second and were
very close to the results of the first SMETANA. Sen represents Sensitivity, defined in
previous literature [10], which indicates the sensitivity of the alignment. ACCMNA had
the highest Sen score among the three network sets. MNE represents the Mean Normal-
ized Entropy, which is an approach to measure the consistency of the alignment. The
Mean Normalized Entropy was the average normalized entropy of all the clusters de-
fined by prior work [25]. For a given cluster Cli, the normalized entropy is defined as
NE(Cli) = − 1

log d ×
∑d
i=1 pi × log pi, where d denotes the number of different GO

categories in cluster Cli, and pi represents the proportion of proteins annotated by GOi
in cluster Cli. The biological consistency of the alignments increased with lower MNE
values. Like the SPE results, the MNE value of our algorithm was the lowest in the CG
model network, and our algorithm ranked second on the DMC and DMR datasets; how-
ever, the score was very close to that of the first SMETANA. nGOC has been also pro-
posed for the measurement of the alignment consistency by prior researchers [1]. nGOC
is an extension of GO Consistency(GOC), and the measurement used in one-to-one pair-
wise network alignment was extended to measure many-to-many alignment. nGOC is the
average value of nGOC(Cli) of all the clusters. For a given cluster Cli, nGOC is de-
fined as nGOC(Cli) =

|GOint|
|GOuni| × c, where GOint and GOuni represent the intersection

and union of the GO annotation items of proteins in cluster Cli, respectively, and c is
the number of annotated proteins in cluster Cli. The consistency of alignment results in-
creases with higher nGOC values. The ranking of nGOC for ACCMNA was the same as
that of SPE and MNE. The main reason for this result may be that the number of nodes
and edges of the eight networks in the CG model were the same, which indicated that our
algorithm could get a better alignment in the case of a similar network size. However, the
alignment generated by our algorithm was more consistent and specific. The result in Ta-
ble 5 shows that the alignment generated by ACCMNA on real networks had the highest
SPE, MNE and nGOC score, which also shows that our algorithm was more specific and
consistent. ACCMNA scored second in the CIQ score, and it was only slightly lower than
SMETANA. The SMETANA algorithm places high importance on the topology informa-
tion of the network; therefore, the alignment on the real networks had a high topology
score, but several biological scores were low. We believe that SMETANA performed well
in the synthetic network, mainly because of its special network characteristics, namely, a
relatively ideal network situation, which can explain the result on the synthetic network
being slightly higher than ACCMNA. However, the alignment on the real networks was
worse than ACCMNA.

To prove that the alignment generated by ACCMNA can perform well both in topolog-
ical conservation and functional consistency, the product of CIQ and nGOC was plotted
for all the algorithms and networks sets. This amplifies the advantages of the ACCMNA
algorithm. CIQ is a measure to calculate the proportion of conservative edges between
clusters, while nGOC measures the biological consistency of alignment. These are de-
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picted in Fig. 4. Although some measures of the ACCMNA algorithm in Tables 2, 3, 4
and 5 were worse than SMETANA, the ACCMNA algorithm received the highest score
among all the algorithms when the product of CIQ and nGOC was calculated. This proves
that our algorithm can get a good result in both topology and biological consistency.

S M E T A N A I s o R a n k N B E A M S A C C M N A
0

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0 ������

S M E T A N A I s o R a n k N B E A M S A C C M N A
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0
���� ���� ���� ����

Fig. 3. Node and Consistent Node Coverage of different algorithms: (a)Node k-Coverage;
(b) Consistent Node k-Coverage
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Fig. 4. The product CIQ and nGOC for all the algorithms. The figure on the left shows the
scores on the three network models of the synthetic network, and the figure on the right
shows the results on the real networks

4.3. Analysis of the Time Complexity

Let V be the set V1 ∪ . . . Vk, and n = max{|V1|, . . . , |Vk|}. As we mentioned before,
it takes O(|V |) to calculate the NodeWeight of each node. Thus, the running time of
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ACCMNA is mainly determined by the time spent in the main repeat loop. The number
of iterations of the loop is O(|V |), and, since the maximum number of output clusters
can be |V |at most, each iteration finds a new cluster, and the iterations continue until
no new clusters remain. The function Select Candidate requires O(|V |k2∆max), where
k is the number of PPINs and ∆max the maximum degree in V . The function Gener-
ate Candidate is made on the neighborhood graph of the new cluster. The total running
time required by function Generate Candidate is O(∆(k∆max)), where ∆ is the max-
imum degree in Sβ . Function expand Candidate requires O(k∆). Note that the func-
tion Generate Candidate is executed only once in the for-loop, but the functions Gener-
ate Candidate and expand Candidate in the for-loop are executed O(|V |) times since the
number of candidates at a specific iteration can be at most |V |. Thus, the overall time
complexity of our algorithm is O(|V |2∆(k∆max) + |V |2k∆+ |V |2∆) = O(|V |2k∆2).

4.4. Discussion of the Alignment Result

In this section, we discuss the alignment results of the ACCMNA algorithm on the real
networks and the synthetic networks along with the comparison experiments with other
state-of-the-art algorithms. The above experimental results show that the algorithm pro-
posed in this paper could obtain better alignment results than other state-of-the-art algo-
rithms. The node coverage shows that the ACCMNA algorithm could produce more node
coverage with a larger k, indicating its ability to produce higher quality alignment and
more useful biological information. Moreover, the measurement results of the biological
consistency, specificity and sensitivity show that the scores of our algorithm ranked high
among several algorithms, which indicated that the alignment results produced by AC-
CMNA had good biological significance. When topological and biological consistency
scores are combined, the alignment results of the ACCMNA algorithm can reach the bal-
ance between topological and biological consistency.

5. Conclusion

To solve the NP-hard problem of network alignment and the computational complex-
ity of MNA gradually increasing with the increase of network size, a new and efficient
ACCMNA aligner was proposed in this paper, which combines topology and sequence
similarity information for alignment generation. ACCMNA is an aligner that utilizes the
importance of nodes and combines clustering methods to produce better alignment results.
The basic framework of ACCMNA is the seed-and-extend search method. The algorithm
utilizes the degree and neighbors of nodes to calculate the node weight, which aims to
reduce the complexity of alignment and make as many similar nodes as possible that can
be successfully mapped by combining the clustering method to search the alignment. The
ACCMNA algorithm was compared against excellent and representative MNA algorithms
on both real and synthetic networks. Extensive evaluations showed that the ACCMNA al-
gorithm performed well both in topological conservation and functional consistency. The
superior experimental results also reflected that the ACCMNA algorithm is an efficient
and accurate aligner that can be applied to PPINs of various sizes within an acceptable
running time. In addition to proving the effectiveness of the method proposed in this pa-
per, the alignment results generated by ACCMNA are of reference significance for the
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study of real networks. Moreover, it has the potential to be extended to other types of
complex networks in the future, rather than remain limited to PPINs.
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