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Abstract. Background modeling of video frame sequences is a prerequisite for
computer vision applications. Robust principal component analysis(RPCA), which
aims to recover low rank matrix in applications of data mining and machine learn-
ing, has shown improved background modeling performance. Unfortunately, The
traditional RPCA method considers the batch recovery of low rank matrix of all
samples, which leads to higher storage cost. This paper proposes a novel online
motion-aware RPCA algorithm, named OM-RPCAT, which adopt truncated nuclear
norm regularization as an approximation method for of low rank constraint. And
then, Two methods are employed to obtain the motion estimation matrix, the opti-
cal flow and the frame selection, which are merged into the data items to separate the
foreground and background. Finally, an efficient alternating optimization algorithm
is designed in an online manner. Experimental evaluations of challenging sequences
demonstrate promising results over state-of-the-art methods in online application.

Keywords: Computer vision, Background modeling, Online RPCA, Truncated nu-
clear norm.

1. Introduction

Background modeling aims to extract foreground objects from videos, which has been
widely used in many fields, such as object detection [46][29][18], object localization [33],
and image alignment [28]. It aims to initialize efficient and accurate background modeling
from a series of video frames.

Many background modeling methods have been proposed in the past few years. Re-
cently, RPCA [2][17][4]has attracted wide attention in the fields of video surveillance and
computer vision, which are based on decomposition of the matrix into sparse and low rank
components, and has shown improved performance in background modeling[43]. RPCA
decomposes the observed video frame matrix into background and foreground[7][16].

Let Z ∈ Rm×n be the observational data, which can be represented in matrix form.
RPCA attempts to decompose Z as the sum of a sparse matrix F and a low rank matrix B.

min rank(B)+λ||F||0 s.t. Z = B + F (1)
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where || ∗ ||0 denotes l0 norm, i.e., the number of nonzero elements, which is the regular-
ization term for promoting sparsity. λ is a regularization parameter. Unfortunately, due to
the discontinuity of the rank function and the nonconvexity of l0 norm , the optimization
problem (1) is ordinarily NP-hard. Many researchers are seeking suitable alternatives to
rank functions[8][6]. In addition, l0 norm can convert problem (1) into a convex optimiza-
tion problem. Wright et al. [2] proved that while the sparse matrix F is sufficiently sparse,
the low-rank matrix Z can be recovered by solving the following problem:

min ||B||∗ + λ||F ||1 s.t. Z = B + F (2)

where ||B||∗ is the nuclear norm of B.
The problem (2) is a convex optimization problem, and many algorithms have been

proposed for this problem. Unfortunately, most of the algorithms solve this problem in a
batch manner. Because all samples loaded in memory during the optimization procedure
may have high storage costs, it is especially unacceptable for large-scale sample sets. In
addition, while all the samples are collected by the streamlined way, these algorithms
cannot update the low dimensional subspace efficiently while a new sample is adding.
Each iteration needs to optimize every frame, which may seriously limit the scalability of
streaming video.

To solve these problems, the online method of RPCA has recently been proposed.
Many online mode algorithms for background modeling have been pursued. Shen et al.
[30] adopted max norm as a substitute of the rank function in problem (2) to solve the
RPCA problem in an online method.

However, the background in dynamic sequences may include multiple motions, which
makes the accurate modeling more challenging. In most previous methods, objects are not
moving. Smearing artifacts would be introduced while dealing with slow motion and sta-
tionary foregrounds. To be aware of motion, when the background scenes change gradu-
ally, many RPCA methods exhibit degraded performance, such as under changing lighting
conditions. Moreover, existing methods such as Zhou et al. [46] produced an overwhelm-
ing outlier in the low-rank component, when the background was heavily occluded by
foreground objects. Javed et al. [15] created a background model by using a modified
version of RPCA to generate a low-rank matrix from a set of matrices.

Recently, X. Ye [42] proposed a motion-assisted matrix restoration (RMAMR) model
for the separation of background objects from the foreground objects, in which the dense
motion fields were incorporated into the framework of the RPCA. J. Yang [40] proposed
an online motion-assisted RPCA model for back ground recovery from video sequences.
This method is more efficient for memory and is scalable for the long video sequences,
which are weighted by motion information.

In Hu [11], a novel norm called the truncated nuclear norm was proposed. The new
nuclear norm is subtracted from the sum of several maximal singular values, achieving
better rank approximation. Based on this method, F. Cao [3] proposed a new algorithm
which was called low-rank and sparse decomposition based on the truncated nuclear
norm(LRSD-TNN). B. Hong [10] proposed a novel and online robust principal analysis
algorithm via truncated nuclear norm regularization and designed an online optimization
scheme in which the matrices were updated alternately.

W. Hu [12] analyzed the problem of mocap data completion based on the truncated
nuclear norm. In order to reduce the redundant frames, a simple joint motion detection
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and frame selection operation was adopted[31]. Unfortunately, these methods deal with
batch data only. In order to meet the needs of dynamic subspace, Hu et al.[5] Proposed
an online optimization method to 60 deal with the static camera background scene in the
video sequence of each sampling point.

Pan et al.[27] proposed a motion-assisted RPCA model based on matrix factorization,
and designed an effective linear alternating direction multiplier method and matrix fac-
torization algorithm to solve the proposed FM-RPCA 65 model. Hu et al.[13] Proposed a
non-convex rank approximation RPCA model based on segmentation constraints. Firstly,
the original video sequence is divided into three parts by low rank matrix decomposition.
Then, a new non-convex function is proposed to constrain the low rank feature[9].

In this paper, we propose an online motion-aware RPCA with a truncated nuclear
norm regularization (OM-RPCAT) framework for background modeling. The key idea
is to extend the motion-aware low rank matrix approximation methods into an online
model. In addition, to get better effect, we added a joint method of frame selection. Motion
information from the video sequence is estimated by two methods in this paper. This
method replaces the objective of rank minimization by minimizing the truncated kernel
norm, which can be represented in a matrix factorization form. Then, we designed an
efficient iterative optimization method for implementation [39][14].

The rest of this paper is organized as follows: In Section II, we present the OM-
RPCAT scheme and two methods for obtaining the motion estimation matrix. In Section
III, we design an efficient optimization algorithm to solve the optimization function. In
Section IV, our algorithm is evaluated by experiments. Conclusions are made in Section
V.

2. Background Modeling via OM-RPCAT

In this section, the OM-RPCAT model is proposed for background recovery. The main
idea of our method is to make a more rigorous approximation to the rank operator and
to exploit an online method for solving the optimization problem. Moreover, the back-
ground of recovery always suffers from smearing artifacts in areas covered by slow-
moving objects. In order to overcome this defect, we combine the motion information
and frame selection into the framework to separate the background from the moving
objects[19][22][21].

2.1. The Proposed OM-RPCAT Model

In particular, let Z ∈ Rmxn be the observational data, with Z= (z1,...,zn), and each zi
expresses a sample. Our goal is to decompose the matrix Z into the low-rank matrix and
the sparse matrix. The traditional methods of recovering the two components B and F is
solved by solving the following equation:

min
1

2
||Z −B − F ||2F + λ1||B||∗ + λ2||F ||1 (3)

The truncated nuclear norm minimization is adopted as a more rigorous low-rank con-
straint on B. Therefore, the objective function for this method becomes:

min
1

2
||Z −B − F ||2F + λ1||B||T + λ2||F ||1 (4)
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where || ∗ ||F is the Frobenius norm, || ∗ ||T is the truncated nuclear norm, || ∗ ||1 is the l1
norm, λ1 and λ2 are the regularization parameters.

To solve the problem in (4), we usually use iterative optimization methods, such as
the augmented Lagrangian multiplier [20] or the accelerated proximal gradient. Unfor-
tunately, these methods are implemented in batch processing. Hence, huge data storage
costs are incurred when large data are solved. To overcome this problem, we factorize B
as B= LRT .

Given a matrix B, the relationship [11] between ||B||T and ||B||∗ is:

||B||T = ||B||∗ −maxTr(UBV T )

, UUT = I, V V T = I
(5)

where Tr(∗) denotes the trace of the matrix and I stands for the identical matrix.
Then, the nuclear norm can be factorized as follows [30] :

||B||∗ = min
B=LRT

1
2 (||L||

2
F + ||R||2F ) (6)

where L ∈ Rmxd , R ∈ Rnxd.
From this paper B. Hong [10] , we can obtain the following relationship:

||B||T = ||B||∗ −
T∑
i=1

σi(B)

=
1

2
||L||2F +

1

2
||R||2F − Tr(UBV T )

(7)

Thus, the problem(4) can be transformed into the following constrained problem:

min 1
2 ||Z − LR

T − F ||2F+

λ1(
1

2
||L||2F +

1

2
||R||2F − Tr(ULRTV T )) + λ2||F ||1

s.t.UUT = I, V V T = I

(8)

Our OM-RPCAT model is proposed to separate the foreground and background by
joining motion information in the video sequences. We introduce the matrix W to repre-
sent motion information, W ∈ [0, 1]. The elements in the matrix W indicate whether the
pixels in Z belong to the background. Therefore, the final form of the problem is

min 1
2 ||W ◦ (Z − LR

T − F )||2F+

λ1(
1

2
||L||2F +

1

2
||R||2F − Tr(MRT )) + λ2||F ||1

s.t.UUT = I, V V T = I

(9)

where ◦ denotes the Hadamard product, which is known as the element-wise product. Let
M=VTUL, and we use the fact that Tr(XYZ)=Tr(ZXY):

Tr(ULRTV T ) = Tr(V TULRT ) (10)
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For each sample zi, we can get the approximate value of each sample under dictionary L
through Lri + fi. The problem (9) can be decomposed into the sample form:

min 1
2 ||wi ◦ (zi − Lri − fi)||

2
2+

λ1(
1

2
||L||2F +

1

2

n∑
i=1

||ri||22 −
n∑
i=1

mT
i ri) + λ2

n∑
i=1

||fi||1

s.t.UUT = I, V V T = I

(11)

To simplify this problem, we introduce the l(zi, L) function:

l(zi, L) = min
1

2
||wi ◦ (zi − Lri − fi)||22+

λ1
2
||ri||22 − λ1mT

i ri + λ2||fi||1
(12)

The problem (11) can be solved by minimizing the following loss function:

fn(L) =
1

n

n∑
k=1

l(zi, L) +
λ1
2n
||L||2F (13)

where zi is the current frame, ri represents the coefficient under the dictionary L, and wi
is the ith row of W. l(zi, L) is the loss function for each sample.

2.2. Motion Estimation

In this section, the motion matrix W is generated by computing the video sequence Z. We
use two methods to construct the weighting matrix W. The first method is to adopt the
optical flow [1], and the second method involves joining the motion detection and frame
selection [31][34][35][36].

A. The first method involves using optical flow to obtain the motion estimation matrix.
Assume that zi and zi+1 are the two consecutive frames of a sequence Z. Then, the

horizontal V x and vertical V y motion vector components can be obtained by estimating
the optical flow field. The motion map W is constructed as follows[44][45]:

wi,j = {
0,if

√
(vxi,j)

2+(vyi,j)
2≥τ

1,otherwise (14)

where τ is the threshold of motion magnitude according to the average intensity of the
motion field determined experimentally. vyi,j and vxi,j are entries of V y and V x in the
vertical motion fields and horizontal motion fields respectively.

B. The second method is to add the frame selection.
This scheme aims to reduce the number of redundant frames [31] . The index of the

relevant frames is given as follows:

yi = {1,if |ẑ−µ̂|≥τ0,otherwise (15)

where µ̂ denotes the mean value of the vector ẑ which is gradiented and regularized for
each frame [31]. τ controls the threshold. When the label yi is 1, the corresponding frame
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will be selected. Due to the removal of invalid data frames, this method can restore the
background of the video more accurately[23][24][26].

While the frame selection process is complete, the motion estimation of the selected
frames is determined by:

wk(i, j) =

{
0, if 1

2 (Dk(i, j))
2 ≥ β

1, otherwise
(16)

Differing from this method [31] , β is the thresholding parameter,Dk is the difference
between the two consecutive frames, and zt denotes the t-th frame:

Dt =

√
(Zt − Zt−1)2 (17)

3. Optimization Method.

We propose an algorithm to minimize the average cost, which could solve our OM-
RPCAT model in detail. The coefficient rt, sparse error ft, motion estimation matrix
wt, and basis L are optimized using alternative methods. The optimization procedure is
divided into two steps[37][38][41]:

In the first step, we optimize coefficient rt, sparse error ft and motion estimation
matrix wt. The wt has been illustrated in Section 2.2.

{rt, ft} = argmin 1
2 ||wi ◦ (zt − Lt−1r − f)||

2
2+

λ1(
1

2
||r||22 −mT

t r) + λ2||f ||1
(18)

where wi denotes the motion map for the current frame zt.
Update rt: Given the current basis L, the coefficient rt can be obtained by the follow-

ing formula:

f(r) = 1
2 ||wi ◦ (zt − Lt−1r − f

k
t )||22 + λ1(

1
2 ||r||

2
2 −mT

t r) (19)

Let ∂f/∂r = 0 , and we can obtain the following solution:

rk+1
t =

(LTt−1 Ŵ
T
t Ŵt Lt−1 + λ1I)

−1(LTt−1 Ŵ
T
t Ŵt(zt − fkt ) + λ1mt)

(20)

where Ŵ is a diagonal matrix formed by placing the elements on the diagonal.
Update ft: The objective formula to optimize ft induced from problem(18) is:

g(f) = 1
2 ||wi ◦ (zt − Lt−1r

k+1
t − f)||22 + λ2||f ||1 (21)

We used the common approach presented in E. J. Candes [28] to solve this problem and
obtained the following closed formula:

fk+1
t = Sλ2 [wi ◦ (zt − Lt−1rk+1

t )] (22)
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where Sτ [∗] is a shrinkage operator, which is defined as

Sτ [x] = sign(x)max(|x| − τ, 0) (23)

In the second step, we optimize the basis matrices Lt, Vt, and Ut under the previously
obtained rk, fk, andwk. Based on problem(9), the objective function is derived as follows:

{Lt, Ut, Vt} =min 1
2 ||W ◦ (Z − LR

T − F )||2F+

λ1(
1

2
||L||2F − Tr(MRT ))

(24)

Because of the Hadamard product, it is difficult to calculate the matrix multiplication for
this formula. We introduce an additional variable Y:

Yk = Zk − LkRTk − Fk (25)

The above equation is converted to the following equation:
Y l+1
k = arg min

Y

1
2 ||Wk ◦ Y lk ||2F + λ1(

1
2 ||L

l
k||2F−

Tr(MkR
T
k )) +

λ3

2 ||Y
l
k − Zk + LlkR

T
k + Fk||2F

Ll+1
k = arg min

L

1
2 ||Wk ◦ Y l+1

k ||2F + λ1(
1
2 ||L

l
k||2F−

Tr(MkR
T
k )) +

λ3

2 ||Y
l+1
k − Zk + LlkR

T
k + Fk||2F

(26)

where λ3 is a constrained parameter. After removing the irrelevant items, we can get the
following:

Update Y:

Y l+1
k =arg min

Y

1
2 ||Wk ◦ Y lk ||2F+

λ3

2 ||Y
l
k − Zk + LlkR

T
k + Fk||2F

(27)

We can compute Y in a pixel-wise manner:

yik =
λ3

λ3 + w2
ik

(zik − fik − lirk) (28)

where li denotes the ith row of matrix L.
Update L:

Ll+1
k =arg min

L
λ1(|| 12L

l
k||2F − Tr(MkR

T
k ))+

λ3

2 ||Y
l+1
k − Zk + LlkR

T
k + Fk||2F

(29)

where M = V TUL ∈ Rn×d.
The matrix L can be updated via the closed-form solution of the least square problem

in Eq.(29):
Lk = (λ3(Z − F − Y )R+ UTV R)(λ1I + λ3R

TR) (30)

Ut is optimized by the following formula [10]:

Ut = arg max Tr(ULtR
T
t V

T
t−1) s.t. UUT = I (31)
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Similarly, Vt is optimized by the following formula [10]:

Vt = arg max Tr(VRtL
T
t U

T
t ) s.t. VVT = I (32)

The algorithm is shown as Algorithm 1.

Algorithm 1: OM-RPCAT Algorithm
Input:
The observed data:Z = [z1, z2, ..., zn] ∈ Rm×n
matrix: L0 ∈ Rm×d, U0 ∈ Rs×m, V0 ∈ Rs×n
regularization parameters:λ1, λ2, λ3 ∈ R
motion matrix:W ∈ Rm×n
number of frames: t
Output: Ln, Rn

1 for t = 1 to n do
2 coefficient rt = 0
3 sparse error ft = 0
4 mt is is the t-th row of V Tt−1Ut−1Lt−1
5 compute motion matrix wt by Eq.(14) or Eq.(16)
6 Stage 1: compute rt and ft
7 while not converged do
8 Update the coefficient rt by Eq.(20).
9 Update the sparse error ft by Eq.(22).

10 end
11 Stage 2: compute Lt, Ut and Vt
12 while not converged do
13 Update the additional matrix Yt by Eq.(28).
14 Update the matrix Lt by Eq.(30).
15 Update the Ut by Eq.(31).
16 Update the Vt by Eq.(32).
17 end
18 end

4. Experimental Results and Discussions

In this section, we investigate the performance of the proposed method. All the experi-
ments were implemented on a PC with an Intel Core i5 CPU at 2.4 GHz and with 16 GB
of memory. Simulations were performed using MATLAB 2014a.

Experiments are performed on scene background initialization (SBI) dataset [25]3.
The SBI dataset, consisting of fourteen image sequences with ground truth images and a
set of commonly adopted metrics, with a wide range of complex backgrounds and differ-
ent situations, including a variety of sequences, such as HallMonitor, Board, CAVIAR1,
CaVignal and HumanBody2, and it has been adopted by many existing and new back-
ground initialization methods. For the convenience of comparison, the ground truth im-
ages of the background are also provided.

3 http://sbmi2015.na.icar.cnr.it/
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For detailed qualitative comparisons, the proposed method is evaluated by comparing
it with the online RPCA method [32] , OMA-RPCA method [40] , and OTNNR method
[10] . These methods are state-of-the-art techniques for online background modeling.

We implemented the following settings: λ1 = 0.1, λ2 = 1, λ3 = 0.1, the convergence
error is set to 10e-4, the rank of the low dimensional subspace is 5, the threshold τ is
set by the average intensity of the optical flow. We implemented these four algorithms
on the more challenging moving background video sequences, i.e., HallMonitor, Board,
CAVIAR1, CaVignal and HumanBody2. Table 1 describes of the information of datasets.

Table 1. Brief introduction of the datasets

Dataset Size Number of frames
HallMonitor 352*240 299

Board 200*164 227
CAVIAR1 384*256 609
CaVignal 200*136 257

HumanBody2 320*240 740

4.1. Qualitative Results and Comparison

In this paper, we use two methods to get the motion matrix. The first method is to adopt
the optical flow [1] , and the second method is to apply joint motion detection and frame
selection [31]. For these two methods of obtaining the motion matrix, the results of our
proposed method and the existing methods are shown in Fig. 1 and Fig. 2 respectively.

Due to the slow moving foreground takes up many areas of the frame, it used to be
severely tailed by using the previous methods to recover the true background, such as on-
line RPCA, OMA-RPCA and OTNNR. The slow moving foreground may be considered
as part of the background. From the results as shown in Fig. 1 and Fig. 2, we can see that
our method is the closest to the real background and is superior to other algorithms. Fig.
1 and Fig. 2 show the background modeling results of frame selection mode and optical
flow mode respectively. Because of abandoning the redundant frames in the frame selec-
tion technology, the effect of background modeling is much better than that of optical flow
methods. But for video object with long static foreground, the effect of the two methods
are both not very good.

4.2. Quantitative Evaluations and Analysis

In order to quantitatively analyze the performance of the algorithm and verify the ratio-
nality of the algorithm, we measured these methods with the PSNR(Peak Signal-to-Noise
Ratio) and RRE(Relative Reconstruction Error), which is defined as follows:

RRE = ||Â−A||F /||A||F (33)
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Fig. 1. Background modeling results by frame selection method: (a) true backgrounds,
(b) OM-RPCAT(Ours), (c) OMA-RPCA, (d) online RPCA, (e) OTNNR. From top to
bottom, the recovered backgrounds for HallMonitor, Board, CAVIAR1, CaVignal and
HumanBody2 are presented respectively.

Fig. 2. Background modeling results by optical flow method:(a) true backgrounds, (b)
OM-RPCAT(Ours), (c) OMA-RPCA, (d) online RPCA, (e) OTNNR. From top to bot-
tom, the recovered backgrounds for HallMonitor, Board, CAVIAR1, CaVignal and Hu-
manBody2 are presented, respectively.
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PSNR = 10 ∗ log10(2552/MSE) (34)

where the MSE is the mean square error of the real background and the reconstruction
background.

Table 2. Quantitative background modeling results by frame selection

PSNR RRE
OM-RPCAT(OURS) 83.6 0.014
OMA-RPCA[40] 83.4 0.015
OTNNR[10] 75.8 0.021
Online RPCA[32] 76.1 0.019

Table 3. Quantitative background modeling results by optical flow

PSNR RRE
OM-RPCAT(OURS) 79.3 0.024
OMA-RPCA[40] 74.1 0.023
OTNNR[10] 75.7 0.027
Online RPCA[32] 76.3 0.020

In order to ensure the fairness of verification, we all use the HallMonitor dataset.
Based on the results of Table 2 and Table 3, our method can get the best PSNR. In addition,
the frame selection method obtain greater performance than optical flow.

4.3. Implementation Details and Computational Time

The solution of the proposed models require a set of parameters including λ1, λ2, λ3, τ
and d. The d represents the rank of the low dimensional subspace. In order to update the
model quickly, in the previous experiment, we set the rank d to 5. Now we analyze the
performance impact of rank d on background modeling, HallMonitor dataset was used in
this experiment. The frame selection method is selected for the motion estimation.

It can be seen from Fig. 3 that with the change of rank d, the PSNR also changes.
When the d is set to 5, the performance of background modeling is the best.

In the experiment, we also study the time complexity problem. To compare the overall
computational time, we selected a short sequence named HallMonitor. For a fair compar-
ison with the other methods, the time is recorded in seconds. The frame selection method
is selected for the motion estimation. Fig. 4 presents the performance in terms of com-
putational time. Compared with the previous algorithms, although our method does not
achieve the most promising results, considering the final performance, our algorithm is
better.
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5. Conclusions

In this paper, we propose a novel model for background modeling from a given sequence
of video frames and adopt the truncated nuclear norm as the convex optimization frame-
work. In order to perceive motion information in video, we use motion information as the
weighting matrix. In addition, the low-rank approximation is optimized to online mode,
which is more efficient for the online video. Additionally, to achieve better effects and im-
prove the processing efficiency, we introduced two methods to get the motion estimation
matrix. The first method is to adopt the optical flow, and the second method involves join-
ing the motion detection and frame selection which can use the frame selection technique
to abandon the redundant frames. We further designed an online optimization scheme
to solve the matrix decomposition problem with weighted matrix. Experimental results
demonstrate that the proposed algorithm outperforms existing online RPCA algorithms
significantly. Considering the limitations of RPCA, our future work will focus on design-
ing more efficient background modeling algorithms.
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