Compensation of degradation, security, and capacity of LSB substitution methods by a new proposed hybrid n-LSB approach


Kemal Tütüncü, Özcan Çataltaş




This study proposes a new hybrid n-LSB (Least Significant Bit) substitution-based image steganography method in the spatial plane. The previously proposed n-LSB substitution method by authors of this paper is combined with the Rivest-Shamir-Adleman (RSA), RC5, and Data Encryption Standard (DES) encryption algorithms to improve the security of the steganography, which is one of the requirements of steganography, and the Lempel-Ziv-Welch (LZW), Arithmetic and Deflate lossless compression algorithms to increase the secret message capacity. Also, embedding was done randomly using a logistic map-based chaos generator to increase the security more. The classical n-LSB substitution method and the proposed hybrid approaches based on the previously proposed n-LSB were implemented using different secret messages and cover images. When the results were examined, it has been seen that the proposed hybrid n-LSB approach showed improvement in all three criteria of steganography. The proposed hybrid approach that consists of previously proposed n-LSB, RSA, Deflate, and the logistic map had the best results regarding capacity, security, and imperceptibility.