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Abstract. With the development of wireless communication technology, the re-
quirement for data rate is growing rapidly. Mobile communication system faces the
problem of shortage of spectrum resources. Cognitive radio technology allows sec-
ondary users to use the frequencies authorized to the primary user with the permis-
sion of the primary user, which can effectively improve the utilization of spectrum
resources. In this article, we establish a cognitive network model based on under-
lay model and propose a cognitive network resource allocation algorithm based on
DDQN (Double Deep Q Network). The algorithm jointly optimizes the spectrum
efficiency of the cognitive network and QoE (Quality of Experience) of cognitive
users through channel selection and power control of the cognitive users. Simulation
results show that proposed algorithm can effectively improve the spectral efficiency
and QoE. Compared with Q-learning and DQN, this algorithm can converge faster
and obtain higher spectral efficiency and QoE. The algorithm shows a more stable
and efficient performance.

Keywords: cognitive radio network, network slicing, resource allocation, deep re-
inforcement learning.

1. Introduction

With the development of wireless communication technology, wireless communication
services around the world have shown a trend of rapid movement, huge capacity and
mechanism intelligence. The fifth-generation cellular network is the key technology of
the current wireless communication technology. The deployment of 5G networks will
promote the rapid development of IoT (Internet of Things) and cloud computing services
such as 4K video, VR (Virtual Reality), AR (Augmented Reality), driverless cars, intel-
ligent power grids, and telemedicine [14]. 5G network has the characteristics of network
virtualization and programmability, and uses a new technology called network slicing [4].
Network slicing is an on-demand networking model that allows operators to separate mul-
tiple virtual networks on a unified infrastructure. Each network slice is logically isolated
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from the wireless access network to the core network to adapt to various types of appli-
cations. The 5G network supports three general service scenarios: eMBB (Enhanced Mo-
bile Broadband), URLLC (Ultra-reliable and Low Latency Communication) and mMTC
(Massive Machine-type Communications). eMBB refers to the further improvement of
user experience and other performance based on existing mobile broadband business sce-
narios. The intuitive feeling is that the transmission rate has been greatly improved, which
is mainly used for 4K video and large file download. URLLC is characterized by high re-
liability and low latency, and is mainly used for unmanned driving and remote surgery.
In order to provide better performance and cost-effective services, network slicing has a
lot of research space in terms of resource management. By using resource management
algorithms, the wireless network can effectively increase the total transmission rate of
the wireless access network [17], spectrum efficiency [11], and user-perceived QoE [8].
mMTC scenario is mainly used for large-scale IoT services.

At present, people’s demand for data rate is higher and higher, and the demand for
spectrum resources is also increasing. However, spectrum resources are very scarce. Ac-
cording to current spectrum policies, most of the available spectrum has been allocated or
licensed to wireless service providers. In order to solve the problem of spectrum scarcity,
cognitive radio technology has become the key to solving this problem [12]. Cognitive
radio technology monitors the working conditions of authorized users by sensing the
spectrum environment, and dynamically schedules the available idle spectrum under the
premise of causing interference within a certain range to the authorized users, thereby im-
proving spectrum utilization. In a cognitive radio network, according to the different ways
that cognitive users access idle licensed spectrum, the sharing of licensed spectrum can
be divided into two models (overlay and underlay). In the overlay mode, cognitive users
can only use authorized spectrum when authorized users are not communicating. Under-
lay mode allows cognitive users to use the spectrum to which authorized users belong to
perform data transmission with authorized users at the same time. Cognitive users will
cause certain interference to authorized users, but the interference should be guaranteed
within a certain range. In order to restrict the interference caused by cognitive users, the
interference temperature constraint plays a key role in the allocation of cognitive radio
resources. Interference temperature is a concept defined by the FCC (Federal Commu-
nications Commission) in order to improve spectrum utilization efficiency and study the
application of cognitive radio [22], which is used to quantify the communication interfer-
ence of cognitive users.

Currently in China, the 230 MHz frequency band is used for the construction of elec-
tric power wireless private networks. It is a dedicated spectrum resource specifically al-
located to industries such as power, water power, and geology. Many frequency bands in
electric power wireless private networks are licensed frequency bands. Private network
users cannot use the licensed frequency bands of other private networks, which makes the
230MHz frequency band have weak transmission capabilities and low spectrum utiliza-
tion [2]. With the development of wireless communication technology, the current power
wireless private network based on the LTE system has begun to evolve to 5G, and the
application of multi-slice services needs to be carried out in the spectrum awareness en-
vironment. Applying cognitive radio technology to 5G networks can effectively solve the
problem of spectrum scarcity, improve spectrum utilization, and provide effective help for
the construction of 5G-based power wireless private network systems.
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Reinforcement learning algorithms are used to solve decision-making problems and
obtain optimal strategies through continuous interaction with the environment. The most
widely used reinforcement learning algorithm is Q-Learning [21]. In order to solve com-
plex control problems, deep reinforcement learning combines reinforcement learning with
deep learning to learn control strategies from high-dimensional raw data. The basic idea
of deep reinforcement learning is to use deep learning to automatically learn abstract fea-
tures of large-scale input data, and then use reinforcement learning based on deep learning
feature representation to learn and optimize problem solving strategies. The DeepMind
team first proposed DQN (Deep Q Network) in 2013 for playing Atari video games and
obtaining high scores [13]. Later, DQN appeared many variants, such as DDQN (Double
Deep Q Network) [19], D3QN (Dueling Double Deep Q Network) [20] and DQN with
prioritized experience replay [16].Currently, reinforcement learning has been widely used
in the field of wireless communication resource allocation [23,24,26,1].

In this article, we apply a DDQN algorithm and propose a deep reinforcement learn-
ing framework called CNDDQN for cognitive radio networks. This deep reinforcement
learning framework is used to solve the resource allocation problem in cognitive radio
networks with network slicing. Under the cognitive radio network underlay model, this
framework jointly optimizes the overall spectrum efficiency of the cognitive network and
the QoE of the secondary users by managing the channel selection and power allocation
of the secondary users. This framework learns the optimal resource allocation strategy
by establishing a mapping between known primary user channel selection and power al-
location strategies and secondary user channel selection and power allocation strategies.
We first introduce a cognitive radio network model combined with network slicing. Sec-
ondly, we introduce the basic concepts of reinforcement learning algorithms, Q-Learning
and DDQN algorithms. Subsequently, we show the details of the CNDDQN algorithm.
Finally, we conduct simulation experiments on the CNDDQN algorithm to verify the sta-
bility and effectiveness of the CNDDQN algorithm.

The key contributions of this article are as follows:

1) This paper proposes a cognitive radio model in the 5G network slicing scenario,
which provides effective help for the construction of 5G-based electric power wireless
private network system.

2) The resource allocation algorithm proposed in this paper considers user QoE and
jointly optimizes the network spectrum efficiency and user QoE to ensure the user expe-
rience.

3) This paper proposes a resource allocation algorithm based on DDQN to solve the
overestimation problem of DQN algorithm.

The remaining chapters of this paper are arranged as follows. Section 2 introduces
some research work related to this article. Section 3 introduces the system model of the
cognitive radio network and the formulation process of the resource allocation problem.
Section 4 introduces the proposed deep reinforcement learning algorithm (CNDDQN).
The simulation results and analysis are in Section 5. We summarize this article in Section
6.
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2. Related Work

Resource allocation in cognitive radio networks has been widely studied, [18,6] summa-
rizes these existing studies. The main optimization objectives of resource allocation in
cognitive radio network include maximizing throughput, spectrum efficiency and energy
efficiency, minimizing interference and ensuring the quality of service of users. [7] pro-
poses a distributed user association and resource allocation algorithm based on matching
theory to maximize the total throughput of primary and secondary users. [9] proposes a
method based on deep reinforcement learning for cognitive uplink users of cellular net-
works, and deployed some sensors to help secondary users collect signal strength infor-
mation at different locations in the wireless environment. Therefore, the secondary user
can realize spectrum sharing with the primary user without knowing the power allocation
strategy of the primary user. However, [9] does not consider the channel selection strategy
of secondary users.

As the key technology of 5G network, network slicing technology is considered in
many kinds of resource allocation scenarios. There are some researches on the applica-
tion of network slicing technology in cognitive radio network resource allocation sce-
narios [10,3]. In [15], the network slicing technology is classified into spectrum level,
infrastructure level and network level network slicing. In [10], the allocation of wireless
slicing resources among multiple users is modeled as a bankruptcy game, which realizes
the fairness of allocation. [3] proposes a multi-time-scale cognitive radio network slic-
ing resource allocation model. The resource allocation model can be decomposed into
inter-slice subchannels pre-assignment in large time period and intra-slice subchannels
and power scheduling in same time slot. [3] formulates the inter-slice problem as an inte-
ger optimization problem and intra-slice problem as a mixed optimization problem with
integer variables, and adopts Lyapunov optimization method with heuristic subchannel
assignment procedure and a fast barrier-based power allocation procedure. The above pa-
pers use traditional optimization methods, such as game theory and Lyapunov optimiza-
tion. These traditional optimization methods need to transform the optimization objectives
into convex optimization problems to obtain the optimal solution, which has certain re-
strictions on the communication network scenarios. For example, the locations of users
are fixed, and more users will bring higher algorithm complexity and longer calculation
time.

In order to solve the problem of resource allocation in complex communication net-
work scenarios, we propose a reinforcement learning architecture to solve the problem
of resource allocation optimization in communication networks. The existing reinforce-
ment learning algorithms applied to resource allocation are mainly divided into distributed
multi-agent reinforcement learning algorithm [5] and centralized single agent reinforce-
ment learning algorithm [27,25]. The centralized algorithm needs global information, has
better utility value, and can balance the whole network users. Distributed algorithm only
needs to know local information, so it has less communication cost. [27] proposes a cen-
tralized reinforcement learning algorithm based on DQN, which uses underlay access
mode to maximize the spectrum efficiency of secondary users under the interference tem-
perature limit acceptable for the primary user. But the network model of [27] does not con-
sider network slicing. [5] proposes a distributed reinforcement learning algorithm based
on Q-Learning and SARSA. The secondary users are organized into a random dynamic
team in a decentralized and cooperative way, which speeds up the convergence speed
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of the algorithm, improves the network capacity, and obtains the optimal energy-saving
resource allocation strategy. But [5] only considers a single kind of service slice (high
rate service slice) in the network model, and due to the use of table-based Q-learning and
SARSA algorithm, the state space becomes discrete space, and there is a certain quantiza-
tion error when segmenting the state space. [25] proposes a graph convolutional network-
based reinforcement learning algorithm based on DQN. Secondary users are formed into
a graph, and the information features are extracted by graph convolution, and then the
DQN algorithm is used for policy learning to maximize the data rate of secondary users
on the premise of the quality of service of users. In this paper, we propose a centralized
reinforcement learning algorithm based on DDQN, and use DDQN algorithm to solve the
problem of over estimation of DQN algorithm, so as to speed up the convergence speed
and stability of the algorithm. In addition, in the network scenario, we consider the sce-
nario where multiple service slices are combined with cognitive radio networks, and we
consider rate-sensitive eMBB service slices and delay-sensitive URLLC service slices. In
terms of optimization goals, if only the overall spectral efficiency of the cognitive network
is optimized, this may sacrifice the user experience of some users. Therefore, we jointly
optimize the spectral efficiency of the cognitive network and the user-perceived QoE of
each user.

3. System Model and Problem Formulation

In this section, the system model and problem formulation are described.

3.1. System Model

This article considers a downlink OFDMA (Orthogonal Frequency Division Multiple Ac-
cess) cellular cognitive network, as shown in Fig. 1. This network model has one PBS
(Primary Base Station) and one CBS (Cognitive Base Station). The PUs (Primary Users)
are associated with PBS, and the SUs (Secondary Users) are associated with the CBS.
The PBS and CBS share the same spectrum resource. The SU adopts the underlay access
model, and within the interference acceptance range of the PU, the SU is allowed to use
the licensed frequency band resources of the PU. In Fig. 1, the black line indicates the
communication between PU and PBS, the blue line indicates the communication between
SU and CBS. The red line indicates the interference from the CBS to the PU, which
should be controlled within a certain range.

3.2. Problem Formulation

In this scenario, secondary users are divided into two categories. The two types of sec-
ondary users have different service types and communication requirements. One type
of secondary users are high-rate users, and the other type of secondary users are low-
latency users. For these two types of secondary users, by using network slicing technol-
ogy, high-rate users are associated with eMBB slices, and low-latency users are asso-
ciated with URLLC slices. The set of secondary users associated with the eMBB slice
is SUeMBB = {1, 2, ..., NeMBB

su }, and the set of secondary users associated with the
URLLC slice is SUURLLC = {1, 2, ..., NURLLC

su }. Therefore, the set of all secondary
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Fig. 1. Cognitive Radio Network Model

users is SU = {1, 2, ..., Nsu}, where Nsu = NeMBB
su + NURRLC

su is the total number
of secondary users. The total primary user set is PU = {1, 2, ..., Npu}, where Npu is the
total number of primary users.

There are k channels for users to use. The channel set is C = {1, 2, ..., k} and the
bandwidth of each channel is B. Therefore, the total network bandwidth is W = k ∗ B.
Assuming that each primary user can occupy multiple channels at the same time, the
primary user-channel association matrix is PCA = {apcn,k}Npu∗k. If PU n occupies the
channel k, then apcn,k = 1, otherwise apcn,k = 0. Each secondary user can only occupy one
channel, and the secondary user-channel association matrix is SCA = {ascn,k}Nsu∗k. If
the secondary user n occupies the channel k, then ascn,k = 1, otherwise ascn,k = 0.

The channel gain matrix of each primary user and PBS is PPG = {gpPn }Npu
, and the

channel gain matrix of each primary user and CBS is PCG = {gpCn }Npu
. The channel

gain matrix of each secondary user and PBS is SPG = {gsPn }Nsu
, and the channel gain

matrix of each secondary user and CBS is SCG = {gsCn }Nsu .
Assume that the maximum transmission power of the PBS and CBS are PPBSmax and

PCBSmax correspondingly. P pun,k indicates the transmission power of the primary user n on
the channel k, and P sun,k indicates the transmission power of the secondary user n on the
channel k.

According to the definition of the signal-to-interference and noise ratio, ( 1)( 2) are
the expressions of the signal-to-interference ratio of the PU and SU.

δpu =

∑
k∈C

apcn,k · gpu,PBSn · P pun,k∑
a∈PU,a6=n

∑
k∈C

apcn,k · a
pc
a,k · g

pP
a · P pua,k +

∑
a∈SU

∑
k∈C

apcn,k · asca,k · g
pC
a · P sua,k + σ2

.

(1)

δsu =

∑
k∈C

ascn,k · gsCn · P sun,k∑
a∈PU

∑
k∈C

ascn,k · a
pc
a,k · gsPa · P

pu
a,k +

∑
a∈SU,a6=n

∑
k∈C

ascn,k · asca,k · gsCa · P sua,k + σ2
.

(2)
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According to the Shannon channel formula R = B · log(1 + δ), the transmission rate
of the primary user Rpun and secondary user Rsun can be calculated. Therefore, the total
transmission rate of the cognitive network is Rcn =

∑
n∈SU

Rsun . ( 3) is the total spectrum

efficiency of the cognitive network.

ηcn =
Rcn
W

=

∑
n∈SU

B · log(1 + δsun )

k ∗B
=

1

k
·
∑
n∈SU

log(1 + δsun ) . (3)

The user’s QoE is mainly reflected by the user’s communication needs. The user’s
QoE is defined as the ratio of the number of packets meeting the communication re-
quirements to the total number of packets. The communication demand of eMBB slice
users is that the transmission rate is higher than a certain threshold, and the communica-
tion demand of URLLC slice users is that the transmission delay is lower than a certain
threshold.

The transmission rate of the data packet is expressed by the user’s transmission rate,
and the transmission delay of the data packet is composed as shown in Fig. 2.

Fig. 2. Transmission Delay of Data Packet

The transmission delay of data packets is mainly composed of the queue delay (t1)
when entering the base station, the operation delay of the channel allocated at the base
station (t2), the queue delay of entering the channel (t3), and the transmission delay of
transmitting in the channel (t4). In order to simplify the transmission delay model of the
data packet, t1 and t2 belong to the transmission delay of the base station, the value of
t4 is very small, they are not considered in this paper. Therefore, the transmission delay
of the data packet is the queue delay of the data packet entering the channel t3. We use
the M/M/1 queue model to calculate the queue delay. According to the average waiting
time formula of the M/M/1 queue model Ws = 1/(µ − λ), where µ is the service rate
and λ is the arrival rate. We can get the queue delay t3 = 1/(rpackage − λ), where λ
is the arrival rate of each data packet, rpackage = Rn/L is the transmission rate of each
data packet, Rn is the transmission rate of the user, L is the packet length of the data
packet. We assume that the packet length is normally distributed. Therefore, ( 4) is the
transmission delay of the data packet.

t =
1

Rn/L− λ
. (4)
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Let tmax and Rmin be the threshold for the data packet transmission delay and trans-
mission rate to meet the communication requirements. The expression that meets the com-
munication requirements is shown in ( 5). The user’s QoE is equal to the ratio of the
number of packets that meet the inequality requirements to the total number of packets.{

Rn ≥ Rmin for eMBB users
t = 1

Rn/L−λ ≤ tmax for URLLC users
. (5)

In order to balance the spectral efficiency and the user’s QoE, we set the attention
coefficient α ∈ [0, 1] between the spectral efficiency and the user’s QoE. α = 1 means that
the optimization goal is only to maximize the system spectral efficiency, and α = 0 means
that the optimization goal is only to maximize the user QoE. Therefore, our optimization
goal is ( 6).

max[αηcn + (1− α)QoE] . (6)

The interference temperature is defined as the ratio of the interference power to the
corresponding bandwidth IT = Pinterference

kconsW
, where Pinterference is the power of the inter-

ference noise in the channel, kcons is the Boltzmann constant, and W is the total band-
width of the cognitive network. Therefore, the total interference temperature of the cog-
nitive network is ( 7).

IT =

∑
a∈SU

∑
k∈C

asca,k · gpCa · P sua,k

kcons ·W
. (7)

Let the maximum interference temperature caused by the cognitive network accept-
able to the PU be ITmax.

Constraint C1 indicates that each secondary user can only be associated with one
channel. Constraint C2 is the maximum total power constraint of the cognitive base sta-
tion. Constraint C3 is the main user’s interference temperature constraint on the cognitive
network.

Therefore, the optimization problem can be expressed as ( 8- 11).

max[αηcn + (1− α)QoE] . (8)

s.t.C1 :
∑
k∈C

ascn,k ≤ 1,∀n ∈ SU . (9)

C2 : 0 ≤
∑
n∈SU

P sun,k ≤ PCBSmax . (10)

C3 :

∑
a∈SU

∑
k∈C

asca,k · gpCa · P sua,k

kcons ·W
≤ ITmax . (11)

Due to the nonlinear constraints of continuous variables (such as P sua,k) and binary
variables (such as scaa,k), the optimization problem is a non-convex problem. Using
deep reinforcement learning to solve such non-convex problems is a common method.
Therefore, we propose a deep reinforcement learning algorithm to solve this optimization
problem.
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4. Deep Reinforcement Learning for Optimization Problem

4.1. Reinforcement Learning

Reinforcement learning is a common method for solving decision problems. Reinforce-
ment learning has two basic elements (state and action). Performing a certain action in
a certain state is a strategy. Agents need to obtain a good strategy in continuous explo-
ration and learning. If the state is regarded as an attribute and the action is regarded as
a mark, reinforcement learning is similar to supervised learning. They are all trying to
find a mapping from known attribute/state to the mark/action. In this way, the strategy in
reinforcement learning is equivalent to the classifier and regressor in supervised learning.
However, in practical problems, reinforcement learning does not have supervised learning
as labeled information. Usually results are obtained after trying actions, so reinforcement
learning is to continuously adjust the previous strategy through the feedback of the result
information, so the algorithm can learn what kind of action to choose in which state to get
the best result.

Reinforcement learning is usually described using MDP (Markov Decision Process).
The agent is in an environment, and each state is the agent’s perception of the current
environment. The agent can only affect the environment through actions. When the agent
performs an action, the environment will be transferred to another state with a certain
probability. At the same time, the environment will feedback a reward to the agent ac-
cording to the potential reward function. This process is shown in Fig. 3.

Fig. 3. Basic Process of Reinforcement Learning

Then, we define two value functions—state value function and action value function.
The state value function V (s) is defined as the expectation of the long-term reward that the
state s can obtain at the moment t. The state value function represents the value of a state,
regardless of which action the state chooses. It takes the current state as the starting point
to make a weighted sum of all possible actions, the expression is Vπ(s) = Eπ[Rt|St = s],
where π is the strategy, and the expression is π(a|s) = P [At = a|St = s]. The action
value functionG(s, a) is defined as the long-term reward that can be obtained by selecting
the action a in state s at the moment t. The action value function represents the value of
an action in a certain state. It is the weighted sum of all possible long-term rewards for a
given state and action, the expression is Gπ(s, a) = Eπ[Rt|St = s,At = a].

Usually, a limited Markov decision process consists of a quadrupleM = (S,A, P,R).
Where S represents the limited state set space, A represents the action set space, P repre-
sents the state transition probability matrix, and R represents the expected reward value.
The Markov decision process relies on the Markov assumption that the probability of the
next state St+1 depends only on the current state St and action At, not on the previous
state or action. In the Markov decision process, given a state s ∈ S and an action a ∈ A, it
will transition to the next state s′ ∈ S with a certain probability. P ass′ is the state transition
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probability, which means that starting from the state s and taking action a, we will reach
the state s′ with the probability of P ass′ , the expression is P ass′ = P (St+1|St = s,At = a).
rass′ is the expected reward, which means starting from the state s, taking action a, and
transferring to the state s′, the expression is rass′ = E(rt+1|St = s,At = a, St+1 = s′).

Because reinforcement learning can be summarized as obtaining an optimal strategy
by maximizing rewards. However, if it is only the maximum instantaneous reward, it will
only select the action with the largest reward from the action space every time, which
becomes the simplest greedy policy. In order to achieve the maximum current reward
value including the future, the total reward from the current moment until the end state
reaches the goal is maximized. Therefore, the cumulative discount reward functionR(t) is

constructed with the expression as R(t) =
n∑
k=0

γkrt+k+1, where γ ∈ [0, 1] is the discount

coefficient, which indicates the degree of influence of the current reward in the future.
γ = 0 means that the learned strategy is short-sighted and only considers even rewards
and γ = 1 means that the rewards at all times are equal. Combining the definition of
the state value function and the cumulative discount reward function, we can obtain the
Bellman equation form of the state value function, as shown in ( 12- 16).

Vπ(s) = Eπ[Rt|St = s] (12)

= Eπ(rt+1 + γrt+2 + γ2rt+3 + · · ·|St = s) (13)

= Eπ(rt+1|St = s) + Eπ(γ

∞∑
k=0

γkrt+k+2|St = s) (14)

=
∑
a

π(s, a)
∑
s′

P ass′{Rass′ + γEπ[

∞∑
k=0

γkrt+k+2|St+1 = s′]} (15)

=
∑
a

π(s, a)
∑
s′

P ass′ [R
a
ss′ + γVπ(s

′)] (16)

Combining the definition of the action value function and the cumulative discount
reward function, we can obtain the Bellman equation form of the action value function
through a similar derivation process, as shown in ( 17). ( 18) and ( 19) are Bellman opti-
mality equations.

Gπ(s, a) =
∑
s′

P ass′ [R
a
ss′ + γ

∑
a′

Gπ(s
′, a′)] . (17)

V∗(s) = E[Rt + γmax
π

V (s′)|St = s] . (18)

Q∗(s) = E[Rt + γmax
a′

Q(s′, a′)|St = s,At = a] . (19)

The most common reinforcement learning algorithm is the Q-Learning algorithm. By
introducing Q-Table, the action value function is described. The update formula of Q-
Learning is ( 20). By constantly updating, we can get an excellent Q-Table to make the
decision-making process.

Q(s, a) = Q(s, a) + α[R(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)] . (20)
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4.2. Deep Reinforcement Learning: from Q-Learning to DQN

Q-Learning is a classic algorithm for reinforcement learning, but there is a problem that
Q-Learning uses a Q-Table to store Q values. This makes Q-Learning limited to the action
space and the state space are very small, and generally in discrete situations. If there are
many types of states and actions in the model, the size of the Q-Table will become very
large, even larger than the memory of the computer, and it is also very time-consuming to
search in a huge table for each update. However, more complex tasks that are closer to the
actual situation often have a large state space and action space. For the field of processing
high-dimensional data, deep learning has a good performance. Deep reinforcement learn-
ing combines reinforcement learning and deep learning, using neural networks instead of
the original table to calculate the value function.

DQN is a representative algorithm for deep reinforcement learning. Based on the orig-
inal Q-Learning used Q-tables, the Q value (action value function) is calculated using a
neural network in DQN algorithm. In the decision-making process, DQN takes the state
as the input of the neural network, calculates the Q value of each action through the neu-
ral network, and then selects the action according to the principle similar to Q-Learning.
Fig. 4 compares the Q value calculation process of Q-Learning and DQN. The original
Q value Q(s, a) is replaced by a new form with neural network parameters Q(s, a; θ),
where θ represents the parameters of the neural network.

Fig. 4. Comparison of Calculation Process for Q of Q-learning and DQN

In order to reduce the problems caused by the correlation between data, DQN intro-
duced two key technologies of experience replay and fixed target value network.

In supervised learning, each sample is independently identically distribution. How-
ever, the samples of reinforcement learning are obtained through the agent’s continuous
exploration, which makes the samples in reinforcement learning highly correlated and
non-stationary, causing the training results difficult to converge. The experience replay
technology is used to solve this problem. First put the collected samples into the sample
pool, and then randomly select a sample from the sample pool for network training. Ran-
dom sampling is used to remove the correlation between samples, making the samples
independent of each other, thereby improving the stability and convergence of network
training.

In the original Q-Learning, as described in ( 20), when we calculated the TD error,
we obtained it by calculating the difference between the target Q and estimated Q. The
calculation of the TD target is by using the Bellman equation. The TD target is the reward
of the current action plus the highest Q value of the next state through attenuation. How-
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ever, the same parameters are used when calculating the TD target and estimating the Q
value. The correlation between the two makes the model prone to oscillation and diver-
gence. In order to solve this problem, DQN builds an independent target Q network that is
slower than the current Q network to calculate the TD target, which makes the possibility
of oscillation and divergence during training reduced and more stable.

In Q-Learning, updating the Q value directly changes the value of the corresponding
position in the table. In DQN, the Q value is updated by updating the parameters of the
neural network. The update of the neural network parameters is based on the reverse
transfer of the loss function. The loss function of DQN is defined as the square error form
of target Q and estimated Q. ( 21) is the form of the loss function of DQN.

LossDQN = [r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ)]2 . (21)

DQN still has the problem of overestimation. Overestimation means that the estimated
value function is larger than the real value function, and its root is mainly in the maximiza-
tion operation in Q-Learning. When calculating target Q, the maximum Q value in the next
state is obtained. For real strategies and in a given state, the action that maximizes the Q
value is not selected every time, because the general real strategies are random strategies,
the selection of the maximum Q value of the action here will often result in the target
value being higher than the real value. Double DQN solves the problem of overestima-
tion on the basis of DQN. DDQN implements action selection and action evaluation with
different value functions, and in DQN we have proposed two Q networks. Therefore, the
step of DDQN calculating target Q can be split into two steps. In the first step, the action
to maximize the Q value is obtained by estimated Q network. In the second step, the ac-
tion value function corresponding to the action is obtained through the target Q network.
Combining the two steps together, the loss function of DDQN can be obtained, as shown
in ( 22).

LossDDQN = [r + γQ(s′, argmax
a′

Q(s′, a′; θ); θ−)−Q(s, a; θ)]2 . (22)

Except for the change of the loss function, the main process of DDQN is the same as
that of DQN. Fig. 5 is a flowchart of the operation of the DDQN algorithm.

4.3. CNDDQN (Cognitive Network Double Deep Q Network)

In this paper, we propose a Double DQN algorithm for solving the channel selection and
power allocation problems in cognitive networks. In the cognitive network environment,
the basic elements of reinforcement learning are set as follows.

The reinforcement learning agent is the overall cognitive network, and the DDQN al-
gorithm runs in the CBS to manage the channel selection and power allocation of all cog-
nitive users. The state of reinforcement learning is the SINR of the PU, which is recorded
as st = {δnt }1∗Npu

.
The reinforcement learning action at =

{
{asc,nt }1∗Nsu

, {P su,nt }1∗Nsu

}
1∗2·Nsu

is the
channel selection of the secondary user and the power allocation of the secondary user.
Since the output of the DDQN algorithm is a discrete value, we divide the transmission
power of cognitive users into 20 discrete power values on average. ( 23) is the action space
of the transmission power of cognitive users.
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Fig. 5. Flowchart of DDQN Algorithm

P sun,k ∈ {0,
PCBSmax

19
,
2PCBSmax

19
,...,PCBSmax } . (23)

The reward function is modified on the basis of ( 8). The constraint condition C3
for interference temperature is added to the description of the reward function. If the
constraint condition of the interference temperature is satisfied, a normal reward will be
obtained. If the constraints of the interference temperature are not met, then only zero
rewards can be obtained. The characteristics of the step function meet our expectations.
We make the difference between the actual interference temperature and the interference
temperature threshold to obtain the interference temperature threshold constraint function
( 24).

f(asca,k, P
su
a,k) = ε(ITmax −

∑
a∈SU

∑
k∈C

asca,k · gpa · P sua,k

k ·W
) . (24)

ε(x) is a step function, its characteristic is ε =

1 x > 0
0.5 x = 0
0 x < 0

.

The step function is discontinuous at 0, making it difficult during gradient descent.
Therefore, we use the Sigmoid function to approximate the equivalent step function.
Therefore, the interference temperature threshold constraint function is expressed as ( 25).
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f(asca,k, P
su
a,k) = Sigmoid(ITmax −

∑
a∈SU

∑
k∈C

asca,k · gpu,CBSa · P sua,k

k ·W
) . (25)

The expression of Sigmoid function is Sigmoid(x) = 1
1+e−x . Combined with the

interference temperature threshold constraint function, the reward function can be defined
as shown in ( 26).

Reward = f(asca,k, P
su
a,k) ∗ [αηcn + (1− α)QoE]/, . (26)

There are two neural networks in this algorithm, the training network and the tar-
get network. These two networks have the same structure, but the parameter updates are
different. The neural network in this algorithm uses a simple fully connected neural net-
work. The fully connected neural network contains 2 fully connected layers, the structure
is shown in Fig. 6.

Fig. 6. Neural network structure (Npu: total number of primary users, Nsu: total number
of secondary users, k: total number of channels)

The general steps of CNDDQN is summarized as shown in Algorithm 1.

5. Performance Evaluation

In this section, we first introduce the settings of cognitive network model parameters and
DDQN hyperparameters. Then, we provide the simulation performance results.
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Algorithm 1 The General Steps of CNDDQN
1: Initialize replay memory D to capacity N

2: Initialize action-value function Q with random weights θ and target action-value function
∧
Q

with weights θ− = θ
3: for each episode, M do
4: Initialize network state s;
5: for each step of an episode, T do
6: CBS chooses an action at = argmaxaQ(φ(st), a; θ) at state st with probability ε

select a random action at;
7: CBS completes channel and power allocation according to the selected action at;
8: CBS calculates the reward rt according to ( 26) through message passing;
9: CBS observes the network state st+1 through message passing;

10: CBS stores transition (st, at, rt, st+1) in D;
11: CBS samples random minibatch of transitions (st, at, rt, st+1) from D;

12: yj =

 rj if episode terminates at step j + 1

rj + γ
∧
Q(s′, argmax

a′
Q(s′, a′; θ); θ−) otherwise

;

13: CBS performs a gradient descent step on (yj −Q(φj , aj ; θ))
2 with respect to the net-

work parameters θ;

14: Every C steps, CBS resets
∧
Q = Q;

15: CBS sets st = st+1;
16: end for
17: end for

5.1. Simulation Settings

In this model, there are 1 PBS and 1 CBS, and there are 10 PUs and 20 CUs. Among the 20
secondary users, 10 secondary users are associated with eMBB slices and 10 secondary
users are associated with URLLC slices. The size of the model is 100m * 100m. The
locations of base stations and users are fixed, and the distribution of base stations and
users is shown in Fig. 7.

For the PBS and CBS, the maximum transmission power is PPBSmax = PCBSmax =
46dBm. For AWGN channels, the noise power is σ2= 1e − 7. The standard deviation
of shadow fading is set to 8dB. For model simplicity, channel fading only considers large-
scale fading, the expression is L(d) = 37+30 log(d), where d is the distance between the
base station and the user. The network has a total of 20 channels, the bandwidth of each
channel is 180kHz. For cognitive radio networks, the interference temperature acceptable
to the primary user is 5dB. For the user’s QoE, the rate threshold is set to 0.1Mbps and the
delay threshold is 10ms. The hyperparameter settings for the DDQN algorithm are shown
in Table 1.

5.2. Simulation Results

First, we show the performance of the DDQN algorithm at different learning rates. In
the DDQN algorithm, the setting of the learning rate is very important. In the gradient
descent process, the learning rate represents the step size of each update. Fig. 8 is a
graph comparing the performance of the DDQN algorithm at different learning rates.
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Fig. 7. Distribution of BSs and UEs

Table 1. Hyperparameters of DDQN Algorithm
Papameter Value

Mini-batch size 32
Discount rate γ 0.995
Learning rate δ 0.005
ε-greedy 0.1
Activation function Relu
Optimizer Adam

The three curves in the figure are the images of the DDQN reward function value with
the number of iterations when the learning rate is 0.05, 0.005 and 0.0005. When the
learning rate value is small (δ= 0.0005), the CNDDQN algorithm converges in about
1500 iterations, and the convergence speed is slow. As the learning rate increases, when
δ= 0.005,the convergence speed of the CNDDQN algorithm increases, and the CNDDQN
algorithm converges in about 700 iterations. When the learning rate is too large (δ= 0.05),
the CNDDQN algorithm converges in about 400 iterations. But the final reward function
convergence value is lower than the reward function convergence value when the learning
rate is 0.005 and 0.0005. It can be seen that a low learning rate will lead to a slower
convergence rate, requiring more iterations to achieve convergence. Too high a learning
rate will cause CNDDQN to reach the final reward function convergence value lower
than the normal learning rate convergence value. Therefore, the choice of learning rate
should be moderate, too high and too low learning rate will make the performance of
the algorithm decline. In the simulation of this paper, the learning rate δ= 0.005 is an
appropriate value.

We observe the curve of learning rate δ= 0.005 in Fig. 8. We can find that the re-
ward function value is low and unstable at the beginning of the iteration. As the training
iteration progresses, the reward function continues to grow. After a certain number of
iterations, the reward function completes convergence. This means that the CNDDQN al-
gorithm has learned the optimal action strategy. After the CNDDQN algorithm converges,
the jitter of the reward function is caused by ε-greedy in the CNDDQN algorithm.
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Fig. 8. Comparison of DDQN Performance with Different Learning Rates

The optimization objective in (6) is obtained by the linear combination of system
spectral efficiency and QoE, and the attention coefficient is α. Fig. 9 shows the change
curves of the average convergence value of user QoE and system spectral efficiency under
different coefficients. As the attention factor increases, the CNDDQN algorithm’s atten-
tion to the system spectral efficiency increases, the final average convergence value of
the system spectral efficiency increases, and the final average convergence value of the
user QoE decreases. It can be seen that a greater attention to system spectrum efficiency
can result in a more superior system spectrum efficiency performance strategy, but at the
same time it will cause a certain loss to the user’s QoE performance. Similarly, in order
to obtain superior user QoE performance strategies, a certain loss will be caused to the
system spectrum efficiency.

Fig. 9. Influence of Different Attention Coefficients on SE and User QoE



996 Siyu Yuan, Yong Zhang, Wenbo Qie, Tengteng Ma, and Sisi Li

The comparative experiment algorithm selected in this paper is CNDQN algorithm
and CNQ-learning algorithm, which is shown in Fig. 10. Compared with the CNDQN
algorithm, the convergence speed of the CNDDQN algorithm has been significantly im-
proved. The CNQ-learning algorithm uses a table to store Q values, so that not only the
action space is discrete, but the state space is also discrete. This makes CNQ-learning’s
overall performance far from CNDDQN in complex cognitive radio scenarios.

Fig. 10. Performance Comparison of Different Algorithms in Cognitive Radio Networks

6. Conclusion

In this article, we propose a resource allocation algorithm (CNDDQN) for cognitive ra-
dio with network slicing. This algorithm is used in cognitive radio scenarios in underlay
mode. Under the interference acceptable to the primary user, the secondary user is allowed
to access the frequency band authorized to the primary user. In order to quantify the inter-
ference caused by secondary users, we introduce the concept of interference temperature.
In order to solve the proposed non-convex and NP-hard problem of resource allocation,
we use a deep reinforcement learning algorithm (DDQN). The algorithm jointly optimizes
the overall spectrum efficiency of the cognitive network and the QoE of the secondary user
by managing the channel selection and power allocation of the secondary user. Through
continuous iterative learning, the algorithm continuously updates the resource allocation
strategy of the secondary users, and finally reaches the optimal resource allocation strat-
egy. Simulation results show that compared with other reinforcement learning methods,
the proposed CNDDQN can effectively achieve a near-optimal solution through a smaller
number of iterations.
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