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Abstract. Huge amounts of data are being collected and analyzed nowadays. By 

using the popular rule-learning algorithms, the number of rule discovered on those 

“big” datasets can easily exceed thousands. To produce compact, understandable 

and accurate classifiers, such rules have to be grouped and pruned, so that only a 

reasonable number of them are presented to the end user for inspection and further 

analysis.  

In this paper, we propose new methods that are able to reduce the number of class 

association rules produced by “classical” class association rule classifiers, while 

maintaining an accurate classification model that is comparable to the ones 

generated by state-of-the-art classification algorithms. More precisely, we propose 

new associative classifiers, called DC, DDC and CDC, that use distance-based 

agglomerative hierarchical clustering as a post-processing step to reduce the 

number of its rules, and in the rule-selection step, we use different strategies 

(based on database coverage and cluster center) for each algorithm. Experimental 

results performed on selected datasets from the UCI ML repository show that our 

classifiers are able to learn classifiers containing significantly fewer rules than 

state-of-the-art rule learning algorithms on datasets with a larger number of 

examples. On the other hand, the classification accuracy of the proposed 

classifiers is not significantly different from state-of-the-art rule-learners on most 

of the datasets. 

Keywords: Frequent Itemset, Class Association Rules (CAR), Associative 

Classification, Agglomerative Clustering. 

1. Introduction 

Huge amounts of data are being collected and stored nowadays in many world 

applications. Mining association rules from those datasets and reducing is becoming a 

popular and important knowledge discovery technique [1]. A huge number of rules are 

being discovered in “real-life” datasets that will lead to combinatorial complexity.  To 

overcome this problem, rules have to be pruned and clustered while the compact, 
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accurate and understandable classifier (model) is being built to reduce the number of 

rules.  

Association rule (AR) mining [2] aims to generate all existing rules in the database 

that satisfy some user-defined minimum support and confidence thresholds, while 

classification rule mining tries to extract a small subset of rules to form accurate and 

efficient models to predict the class label of unknown objects. Associative 

Classification (AC) is a combination of these two important data mining techniques, 

namely, classification and association rule mining [3]. Recently, researchers have 

proposed several associative classification methods [4-11] that aim to build accurate and 

efficient classifiers based on association rules. Research studies prove that AC methods 

could achieve higher accuracy than some of the traditional classification methods, 

although the efficiency of AC methods depends on the user-defined parameters such as 

minimum support and confidence. Other important approaches are clustering methods 

(unsupervised learning) studied in [12-14].  These clustering techniques are split into 

two main parts: partitional and hierarchical clustering. In partitional clustering [15,16], 

objects are grouped into disjoint clusters such that objects in the same cluster are more 

similar to each other than objects in another cluster. Hierarchical clustering [17], on the 

other hand, is a nested sequence of partitions. In the bottom-up method, larger clusters 

are built by merging smaller clusters, while the top-down method starts with the one 

cluster containing all objects and divides into smaller clusters. 

In this research work, we propose new associative classification methods based on 

hierarchical agglomerative clustering (complete linkage). We define the new normalized 

distance metrics based on direct and indirect measures to measure the similarities 

between CARs, which we later use to cluster CARs in a bottom-up hierarchical 

agglomerative fashion (firstly, we group the class association rules based on their class 

label and then rules that are in the same group are clustered together). Once we cluster 

the rules, the natural number of clusters is identified for each group of CARs by cutting 

the dendrogram from the point that achieves the maximum difference between two 

consecutive cluster heights.  

Once CARs are clustered, we define a “representative” CAR within each cluster. We 

propose two methods of extracting the “representative” CAR for each cluster, (1) we 

choose the CAR based on database coverage and (2) based on cluster center.  

We have performed experiments on 14 selected datasets from the UCI Machine 

Learning Database Repository [18] and compared the performance of our proposed 

methods with the 8 most popular associative and classical classification algorithms 

(Decision Table and Naïve Bayes (DTNB) [19], Decision Table (DT) [20], FURIA (FR) 

[21], PART (PT) [22], C4.5 [23], CBA [3], Ripple Down Rules (RDR) [24], Simple 

Associative Classifier (SA) [25]). 

The rest of the paper is organized as follows. Section 2 highlights the related work to 

our research work. The problem statement and our goals are provided in section 3. Our 

proposed method is described in section 4. Section 5 highlights the experimental 

evaluation. Conclusions and future plans are given in Section 6. The Acknowledgement 

and References close the paper. 
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2. Related Work 

The novelty in our proposed approach is in the way we select “strong” class association 

rules, how we cluster them and how we choose the “representative” class association 

rule for each cluster. Other related research also deals with the notion of clustering 

CARs, but all of them use different approaches. This section presents these related 

approaches to clustering CARs and emphasizes the similarities and differences related 

to our proposed approach. 

In [26], researchers have proposed a new method to cluster the association rules by 

K-means (partitional) clustering algorithm. The main goal of this research is the 

clustering of discovered association rules to make it easy for users to choose the best 

rules. The algorithm is divided into 4 steps: (1) ARs generated from the frequent pattern 

by the “APRIORI” algorithm is extracted; (2) interestingness measures such as Lift, 

Cosinus, Conviction and Information Gain are computed for all rules generated in step 

1; (3) a set of association rules is partitioned into disjoint clusters by using K-means 

algorithm; they try to cluster the rules which have the smallest similarities degree 

between them, and Euclidian and Degree of similarity distances are used to apply the K-

means algorithm; (4) finally, they classify the group of rules from the best to the worst 

by using a centroid of each cluster. Our proposed method uses the hierarchical 

agglomerative approach for clustering CARs instead of k-means and employs a 

different way of selecting “strong” CARs in the first place. The distance metric used by 

our approach during clustering is also different. 

The FURIA (Fuzzy Unordered Rule Induction Algorithm) [21] is a rule based 

classification method which is a modified and extended version of RIPPER [32] 

algorithm. FURIA learns fuzzy rules instead of conventional rules and unordered rule 

sets (namely a set of rules for each class in a one-vs-rest scheme) instead of rule lists. 

Moreover, to deal with uncovered examples, it makes use of an efficient rule stretching 

method. The idea is to generalize the existing rules until they cover the example. 

In [33], we produced a relatively simple, descriptive and accurate classifier (J&B) by 

exhaustively searching the entire example space. More precisely, we select the strong 

class association rules according to their contribution for improving the overall 

coverage of the learning set. J&B has a stopping criterion in the rule-selection process 

based on the training dataset‟s coverage. In our current research, we just applied J&B 

method without stopping criterion in the representative CAR-selection process. Since 

the number of clusters (the size of the classifier) is identified with different strategy, we 

don‟t need to apply stopping criterion in this approach. 

Another approach is conditional market-basket difference (CMBP) and conditional 

market-basket log-likelihood (CMBL) methods proposed in [27]. This approach uses a 

new normalized distance metric to group association rules. Based on the distances, 

agglomerative clustering is applied to cluster the rules. The rules are further embedded 

in a vector space with the use of multi-dimensional scaling and clustered using self-

organizing maps. This method is very similar to ours, but we propose a new normalized 

distance metric based on “direct” and “combined” distances between class association 

rules, whereas “indirect” measures are used based on CARs support and coverage. 

Mining clusters with ARs [28] is another related approach. Here the rules are first 

generated using the “APRIORI” algorithm, but an “indirect” distance metric (based on 

coverage probabilities) is later used to find the similarities between rules. Rules are then 

clustered using a top-down hierarchical clustering method for finding clusters in a 
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population of customers, where the list of products bought by the individual clients is 

given. Once the rules are clustered, a specific distance metric is introduced to measure 

the quality of the clustering. 

Another interesting clustering-based approach [29] is “Tightness” which quantifies 

the strength of binding between the items of an association rule. The idea is that certain 

items in the application domain might get bound together because they are so strongly 

correlated that they often occur together in transactions. This tightness of binding is not 

covered by traditional measures like support or confidence. They build their distance 

function based on indirect measures, that is, the items in AR that obtain the maximum 

and minimum support. Our proposed methods are all utilized different distance metrics 

based on “direct” and “combined” measures.  

The absolute market-basket difference (AMBD) approach discussed in [30] also aims 

to cluster the ARs. The CAR-generation part of this method is similar to ours. The 

procedure is similar except for the clustering part. They focus on clustering the sorted 

(support and confidence based) association rules with the same consequent. The key 

differences are in the clustering part: indirect distance metric is used to cluster the rules 

(the distance gives the percentage of examples in the dataset that are not covered by 

both rules), whereas our methods use different distance metrics. 

3. Problem Definition and Contributions 

We assume that a normal relational table is given with N examples (transactions). Each 

example is described by A distinct attributes and is classified into one of the M known 

classes. Since our algorithm supports just attributes of a nominal type (like the vast 

majority of association rule miners), we had to perform discretization on numeric 

attributes in some cases (the details about discretization are provided in Section 5). The 

goals and contributions of our proposed approach are the following: 

1. Generate “strong” CARs that satisfy some user-defined minimum support and 

minimum confidence constraints; 

2. Propose new normalized similarity measures based on the “direct” and 

“indirect” distances between two class association rules; 

3. Cluster class association rules by using this normalized similarity measure and 

automatically determine the optimal number of clusters for each class value; 

4. Define two methods of extracting a representative CAR for each cluster to 

produce the final, compact and meaningful classifier; 

5. Experimentally, show the usefulness of our methods in reducing the number of 

CARs, while retaining the classifier‟s accuracy. 

4. Proposed Method 

Our approach (Compact, Accurate and Descriptive Associative Classifier) can be 

divided into 4 steps mentioned in the previous section. Each of these 4 steps is 

presented in detail in the following 4 subsections. 
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4.1. Generating the Strong Class Association Rules 

We discuss how to discover the strong CARs from frequent itemsets in this subsection. 

Generation of ARs is usually split up into two main steps: first, minimum support is 

applied to find all frequent itemsets from the training dataset; second, we use these 

frequent itemsets and minimum confidence to generate strong association rules. 

Discovering of CARs is also followed to the same procedure as in AR-generation. The 

only difference is that in the rule-generation part, the consequence of the rule contains 

only the class label in CAR-generation while the consequence of rule in AR-generation 

can include any frequent itemset.                           

In the first step, the “APRIORI” algorithm is used to find the frequent itemsets. The 

„downward-closure‟ technique is used in the “APRIORI” algorithm to accelerate the 

searching procedure by reducing the number of candidate itemsets at any level. The 

“APRIORI” finds the 1-frequent itemset, then, the 1-frequent itemset is used to generate 

the 2-frequent itemset and so on. If it finds any infrequent itemsets at any level, it is 

removed in place, because infrequent itemsets cannot generate frequent itemset. The 

“APRIORI” performs this process before computing their support at any level to reduce 

the time complexity of the algorithm. 

After all frequent itemsets are generated from the training datasets, it is 

straightforward to generate the strong CARs that satisfy both minimum support and 

minimum confidence constraints from frequent itemsets found in the first step. 

Confidence of the rule can be computed by the following formula: 

                               𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐴 → 𝐵 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 _𝑐𝑜𝑢𝑛𝑡 (𝐴∪𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 _𝑐𝑜𝑢𝑛𝑡 (𝐴)
.                                       (1) 

The equation (1) is expressed by support count of itemset, where A is a premise 

(itemset in the left-hand side of the rule), B is a consequence (class label in the right-

hand side of the rule),  support_count ( )A B  is the number of transactions that 

matches the itemsets A B , and  support_count(A) is the number of transactions that 

matches the itemsetsA. Strong class association rules that satisfy the minimum 

confidence threshold can be generated based on the above equation, as follows: 

 All nonempty subsets S are generated for each frequent itemset L and a class 

label C; 

 For every nonempty subset S of L, output the strong rule R in the form of  

“SC” if,  
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 _𝑐𝑜𝑢𝑛𝑡 (𝑅)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 _𝑐𝑜𝑢𝑛𝑡 (𝑆)
≥min_conf, where min_conf is the minimum 

confidence threshold. 

4.2. Distance Metrics 

Once we generate strong class association rules in 4.1, our next goal is to cluster them. 

Since we intend to apply hierarchical agglomerative clustering, we must define a way of 

measuring the similarity between CARs, that is, how far two rules are apart. 

Unfortunately, there is not any distance metric for CARs. However, researchers have 

proposed some indirect distance metrics for association rules, namely, Absolute Market 
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Basket Difference (AMBD), Conditional Market-basket Probability (CMBP), and 

Conditional Market-basket Log-likelihood (CMBL) [27] and “Tightness” [29]. 

Indirect Distance Metrics 

We highlight the indirect distance metric for association rules in this section. We call 

rule distances that are obtained from the data Indirect Distance Metrics. An indirect 

distance is defined as a function of the market-basket sets that support the two 

considered rules. 

To begin with a simple distance measure (AMBD) introduced to compute the 

similarity between association rules. Let 𝑟𝑢𝑙𝑒1:𝐴 ⇒ 𝐶 and 𝑟𝑢𝑙𝑒2:𝐵 ⇒ 𝐶 be two 

association rules, the distance is defined between rules in terms of the number of 

market-baskets that they differ in (meaning one rule is supported, but not the other). 

Based on the number of non-overlapping market-baskets, a distance metric 𝑑𝐴𝑀𝐵𝐷  

between rule1 and rule2 can be defined by the following equation: 

𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2
𝐴𝑀𝐵𝐷 =   𝑚 𝐵𝑆𝑟𝑢𝑙𝑒 1  +  𝑚 𝐵𝑆𝑟𝑢𝑙𝑒 2  − 2 ∗  𝑚 𝐵𝑆𝑟𝑢𝑙𝑒 1 ,𝐵𝑆𝑟𝑢𝑙𝑒 2           (2) 

Where, BS is the both side of the rule, that is, the itemset for the association rule. 

m(BS) denotes the set of transactions (baskets) matched by BS and |m(BS)| is the 

number of such transactions.  

Equation (2) illustrates that rules valid for exactly the same baskets have a distance 

of zero. Rules applying to disjoint sets of baskets have a distance equal to the sum of the 

numbers of transactions for which each rule is valid. There are several problems with 

this measure. One such problem is that it grows as the number of market-baskets in the 

database increases. This can be corrected by normalizing (dividing the measure by the 

size of the database) and it is appropriate for rules only with the same consequent while 

this approach is intuitive. However, the measure is still strongly correlated with support. 

High support rules will on average tend to have higher distances to everybody else. This 

is an undesired property. For example, two pairs of rules, both pairs consisting of non-

overlapping rules, may have different distances. High support pairs have a higher 

distance than low support pairs. 

Based on the previous approach, another indirect distance measure in the CMBP 

method is proposed as an improvement of AMBD using the support values of two 

association rules. Researchers tried to solve two problems that occurred in AMBD: (1) 

it grows as the database grows, and (2) due to the focus on support values, rules with 

high support will on average tend to have higher distances to everybody else. To solve 

the above-mentioned problems, they proposed the new indirect distance metric based on 

conditional probabilities. Using a probability estimate for distance computation has 

many advantages. Probabilities are well understood, are intuitive, and a good measure 

for further processing. The distance 𝑑𝐶𝑀𝐵𝑃  between two rules rule1 and rule2 is the 

(estimated) probability that one rule does not hold for a basket, given at least one rule 

holds for the same baskets. This distance is defined as follows: 

𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2
𝐶𝑀𝐵𝑃 = 1 −

 𝑚 𝐵𝑆𝑟𝑢𝑙𝑒 1 ,𝐵𝑆𝑟𝑢𝑙𝑒 2  

 𝑚 𝐵𝑆𝑟𝑢𝑙𝑒 1  + 𝑚 𝐵𝑆𝑟𝑢𝑙𝑒 2  − 𝑚 𝐵𝑆𝑟𝑢𝑙𝑒 1 ,𝐵𝑆𝑟𝑢𝑙𝑒 2  
        (3) 
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With this metric, rules having no common market baskets are at a distance of 1, and 

rules valid for an identical set of baskets are at a distance of 0. The CMBP does not 

suffer from the support correlation problem of AMBD. Let us call a distance interesting 

if it is neither 0 nor 1. Rule pairs with an interesting distance are called good neighbors. 

In most real databases, the majority of all rule pairs are not good neighbors. Manual 

exploration of a rule‟s good neighbors showed that intuitive relatedness was captured 

very well by this metric. For example, rules involving different items but serving equal 

purposes were found to be close good neighbors. Super-set relationships of the itemsets 

associated with the rules often lead to very small distances. 

The new “Direct” Distance Metric 

We compute the distance between two rules by ignoring the class label because we are 

clustering the rules belonging to the same class label. When we apply indirect distance 

measures to our proposed method, we get a larger natural number of clusters, that is, the 

classifier includes a larger number of rules. Therefore, we propose a new normalized 

Item Based Distance Metric (IBDM) in this research work by considering the 

differences in rule items. 

Let 𝑅 = {𝑟1 , 𝑟2,… . , 𝑟𝑛 } be a set of class association rules found from relational 

dataset D that are defined by 𝐴 = {𝑎1 , 𝑎2,… . , 𝑎𝑚 } distinct items (attribute‟s value) 

classified into 𝐶 =  𝑐1 , 𝑐2,… . , 𝑐𝑙  known classes. Each rule is denoted as follows:  

𝑟 =  𝑥1 , 𝑥2 ,… . , 𝑥𝑘 → {𝑐} where,   𝑥1 , 𝑥2 ,… . , 𝑥𝑘 ⊆ 𝐴 and 𝑐 ∈ 𝐶 for ⩝ 𝑟 ∈ 𝑅. 

Given two rules 𝑟𝑢𝑙𝑒1, 𝑟𝑢𝑙𝑒2 ∈ 𝑅: 

𝑟𝑢𝑙𝑒1 =  𝑦1 , 𝑦2 ,… . , 𝑦𝑠 →  𝑐  
𝑟𝑢𝑙𝑒2 =  𝑧1 , 𝑧2,… . , 𝑧𝑡 → {𝑐} 

Where 𝑦1 , 𝑦2 ,… . , 𝑦𝑠 ⊆.𝐴,  𝑧1, 𝑧2 ,… . , 𝑧𝑡 ⊆.𝐴, and 𝑐 ∈ 𝐶. We compute the 

similarity between 𝑟𝑢𝑙𝑒1 and 𝑟𝑢𝑙𝑒2 as follows: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑞 𝑟𝑢𝑙𝑒1, 𝑟𝑢𝑙𝑒2 =  

 𝑖𝑓 𝑦𝑞 = 𝑧𝑞  | 𝑦𝑞 = ∅ & 𝑧𝑞 = ∅ , 0;

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑦𝑞 = ∅ & 𝑧𝑞 ≠ ∅ | 𝑦𝑞 ≠ ∅ & 𝑧𝑞 = ∅ , 1; 

𝑒𝑙𝑠𝑒  2 (𝑦𝑞 ≠ 𝑧𝑞).

        (4) 

Where q is the index of rule items that cannot exceed from border value (defined 

below).  

Equation (4) expresses how close two rules are one from another. If rules have 

similar items, then the distance function has a low value. An empty rule item is 

considered closer than a different rule item. 

𝑏𝑜𝑟𝑑𝑒𝑟 = 𝑀𝑎𝑥 𝑠, 𝑡 ;                                          (5) 

border is the length of the longest rule, (5) is used to normalize the distance metric. 

The distance between two rules is denoted as follows: 

𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2
𝐼𝐵𝐷𝑀 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑏𝑜𝑟𝑑𝑒𝑟
𝑖=1 2 × 𝑏𝑜𝑟𝑑𝑒𝑟              (6) 

Distance (6) ranges between 0 and 1. CARs having the same items and the same size 

are at a distance of 0, CARs containing the different items are at a distance of 1. 
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The new “Combined” Distance Metric 

Since conditional market-basket distance is appropriate for the rules having the same 

consequent, we decided to propose a new Weighted and Combined Distance Metric 

(WCDM) by combining direct (IBDM) and indirect distance (CMBP) measures. When 

we apply CMBP distance to our proposed method, we got a larger number of clusters on 

some datasets. WCDM combines direct measure (rule items) and indirect measure (rule 

coverage). Both distance metrics (IBDM and WCDM) have their advantage: on some 

datasets IBDM produces lower number of rules with higher accuracy while WCDM 

achieves better results on some other datasets. The weighted distance 𝑑WCDM  between 

two rules rule1 and rule2 is defined as follows: 

𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2
𝑊𝐶𝐷𝑀 = 𝛼 × 𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2

𝐼𝐵𝐷𝑀 + (1 − 𝛼) × 𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2
𝐶𝑀𝐵𝑃                         (7) 

where, 𝛼 is a weight parameter. We set 𝛼 = 0.5 parameter, the final weighted and 

combined distance measure is described as follows: 

𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2
𝑊𝐶𝐷𝑀 = 0.5 × 𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2

𝐼𝐵𝐷𝑀 + 0.5 × 𝑑𝑟𝑢𝑙𝑒 1,𝑟𝑢𝑙𝑒 2
𝐶𝑀𝐵𝑃 .                           (8) 

4.3. Clustering  

Clustering algorithms aim to group similar examples; the examples in the same cluster 

should be similar and dissimilar to the examples in other clusters. There are two types of 

hierarchical clustering algorithms: top-down (divisivehierarchical clustering) and 

bottom-up (hierarchical agglomerative clustering). Bottom-up algorithms initially 

assume each example as a single cluster and then merge the two closest clusters in every 

iteration until all clusters have been merged into a unique cluster that contains all 

examples. The resulting hierarchy of clusters is represented as a tree (or dendrogram). 

The root of the tree is the unique cluster that gathers all the examples; the leaves are 

considered as clusters with only one sample. The top-down approach is the opposite of 

the hierarchical agglomerative clustering method. It considers all examples in a single 

cluster, and then it splits the clusters into smaller parts until each example forms a cluster 

or until it satisfies the stopping condition. 

We apply the complete linkage method ofhierarchical agglomerative clustering. In 

the complete linkage (farthest neighbor) method, the similarity of two clusters is the 

similarity of their most dissimilar examples, therefore, the distance between the farthest 

groups are taken as an intra-cluster distance. We assume that we have given 𝑁 × 𝑁 

distance matrix D, where N is the total number of rules (that is, total number of 

clusters). The clusters are numbered 0,1,..,(N-1) and m is the sequence number of 

clusters. L[k] is the level of the k-th clustering and the distance between two clusters cl1 

and cl2 is defined as D[cl1,cl2]. Complete linkage of the hierarchical agglomerative 

clustering algorithm is outlined in algorithm 1. 

We need to apply hierarchical clustering algorithm twice: first, we apply AHCCLH 

algorithm to find the cluster heights that we will use later to identify the optimal number 

of clusters. In this case, number of cluster S=1 and distance matrix are defined as input 

parameters. Because if S=1, then, AHCCLH iterates N-1 times to find the heights of all 

the clusters. Second, AHCCLC is utilized to identify the cluster of class association 
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rules. In AHCCLC, we provide the number of cluster S (found by using the cluster 

heights) and distance matrixto identify the clusters of CARs. 

 
Algorithm 1: Agglomerative Hierarchical Clustering with Complete Linkage 

(AHCCLH: Heights || AHCCLC: Clusters) 

 
Input: a distance matrix D and number of clusters S 

Output: Cluster heights (AHCCLH), Cluster of CARs (AHCCLC) 

1. Initialization: Each rule is a unique cluster C at level 0 (L[0]=0), sequence number m=0 

and the optimal number of cluster S is identified, so, to get the intended number of 

clusters (S), the algorithm should iterate K times K=N–S; 

2. Compute: Find the most similar pair of clusters, cl1 and cl2and merge them into a single 

cluster C to form the next clustering sequence m.Increase the sequence number by one: 

m=m+1 and set the new level L[m]=D[cl1,cl2]; 

3. Update: Update the distance matrix D, by removing the rows and columns corresponding 

to cl1 and cl2 and adding a new row and column corresponding to the new cluster.The 

distance between the new cluster (cl1,cl2) and old cluster k is calculated as D[(cl1, 

cl2),k]=max{D[k,cl1], D[k,cl2]}; 

4. Stopping condition: if m=K then returnL (AHCCLH) || C (AHCCLC)and stop, otherwise 

go to step 2. 

 

When we cluster the rules, we need to find the number of clusters. We get the 

“natural” number of clusters by “cutting” the dendrogram at the point that represents the 

maximum distance between two consecutive cluster merges. The algorithm that 

identifies the “natural” number of clusters is presented in Algorithm 2. 

 
Algorithm 2: Computing the optimal number of clusters 

 
   Input: an array of cluster heights   

   Output: Optimal number of cluster  

1: Max_height_difference=cluster_height[1]-cluster_height[0];  

2: Opt_number_of_cluster= 1;  

3:       N=cluster_height.length; 

4: for (k=2; k≤ N; k++) do begin 

5:             if (cluster_height[k]-cluster_height[k-1])>Max_height_difference then 

6:               Max_height_difference= cluster_height[k]-cluster_height[k-1]; 

7:  Opt_number_of_cluster=N-k; 

8:             end if 

9:        end for  

10:  return Opt_number_of_cluster 

 
The input to Algorithm 2 is a set of cluster distances that are calculated during the 

building of the dendrogram (so-called cluster “heights”). The output is the “natural” 

number of clusters. In lines 1-3 the total number of clusters generated by hierarchical 

clustering is stored. Lines 4-7 outline the main part of the algorithm, 

Opt_number_of_clustersgets to the point where the difference between two consecutive 

cluster heights will be maximum. Since we start from 0, Opt_number_of_clustersis 

equal to (N-k). The last line returns the obtained result. 
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4.4. Extracting the Representative CAR 

Once we found all clusters, our final goal is to extract the representative CAR for each 

cluster to form our meaningful, compact and descriptive associative classifier. In this 

research work, we propose two methods of extracting the representative CAR for each 

cluster. 

Representative CAR based on Cluster Center 

In this method, we choose the CAR which is closer to the center of the cluster as a 

representative, that is, the representative CAR must have the minimum average distance 

to all other rules. Algorithm 3 defines the procedure. 

 
Algorithm 3: A Representative CAR based on Cluster Center (RCC) 

 
   Input: a set of class association rules in CARs array    

   Output: Arepresentative class association rule  

1: N=CARs.length; 

2:      Fill(Dist, 0); 

3:      min_avg_distance=Integer.Max.value; 

4:      for (i=0; i≤ N;i++) do begin 

5:          for (j=0; j≤ N;j++) do begin 

6:             Dist[i]=Dist[i]+IBDM(CARs[i], CARs[j]) | WCDM(CARs[i], CARs[j]); 

7:          end for 

8:          avg_distance=Dist[i]/N; 

9:          if (avg_distance<min_avg_distance then 

10:             min_avg_distance= avg_distance; 

11:         representative_CAR_index=i: 

12:        end if 

13:     end for  

14:  return CARs[representative_CAR_index]; 

 
The first line gets the number of CARs. We use the distance array “Dist” (line 2) to 

compute the distance from the selected CAR to all other CARs (we use one of the 

distance measures described in section 4). Initial value ofmin_avg_distance in line 3 is 

the maximum value of the integer and it is used to store the minimum average distance 

in line 10. Lines 4-9 find the index of the representative CAR that has the minimum 

average distance to all other rules and the last line returns the representative CAR. 

Representative CAR based on Database Coverage 

We decided to propose this method to improve the overall coverage and classification 

accuracy, while the first method (RCC) suffers to achieve reasonable coverage on some 

certain datasets. Since we are clustering similar rules having the same class value, it is 

unnecessary to think about the outer-class overlapping problem (that means some 

samples from different classes have very similar characteristics), but we should avoid 

the inter-class overlapping problem (several rules that belong to same class may cover 

the same samples). We bypass this problem by selecting the representative CAR based 
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on database coverage. First, we find a rule that has maximum database coverage, then 

we check if the first CAR classifies at least one new example, then we get it as a 

representative CAR, otherwise we continue. Once we find the representative, we 

remove all the examples covered by a representative CAR. The procedure is outlined in 

algorithm 4. 

Algorithm 4: A Representative CAR based on Database Coverage(RDC) 

 
Input: a set of class association rules in CARs array, a training dataset D 

andclassified_traindataarray     

   Output: Arepresentative class association rule  

1:  N=CARs.length; 

2:    CARs= sort(CARs, coverage); 

3:    Representative_CAR = CARs[1]:  

4:    for i:=1 toN do begin 

5:            for j:=1 toD.length do begin 

6:                 if classified_traindata[j]=false then  

7:  if CARs[i] classifies D[j] (e.g. CARs[i].premise⊆D[j].premise) then 

8:   classified_traindata[j]=true; 

9:                    contribution=contribution+1: 

10:  end if 

11:                end if 

12:            end for 

13:            ifcontribution>0 then 

14:                  Representative_CAR = CARs[i]: 

15:  break; 

16:        end if 

17:     end for  

18: return Representative_CAR; 

 
In this approach (RDC), we first sort (line 2) the class association rules in coverage 

descending order, and we start checking rules from first to last (line 4). If a rule 

classifies at least one new example (line 13), that is, if CAR premise (left-hand side of 

the rule) matches the premise of the training dataset (line 7), we return that rule as a 

representative (line 13-18), otherwise we continue. If any rule cannot be a 

representative, then, the algorithm returns the first rule (line 3) which has the highest 

coverage as a representative.       

Finally, our proposed approach is represented in algorithm 5. 

Lines 1-2 generate the strong CARs that satisfy the user-specified minimum support 

and minimum confidence constraints from training dataset D by using the “APRIORI” 

algorithm. The third line sorts the CARs in confidence and supports descending order 

according to the following criteria: 

𝑅1and 𝑅2 are two CARs, R1 is said to have a higher rank than R2, denoted as 𝑅1 > 𝑅2, 

 If and only if,  𝑐𝑜𝑛𝑓 𝑅1 > 𝑐𝑜𝑛𝑓(𝑅2);  or 

 If 𝑐𝑜𝑛𝑓 𝑅1 = 𝑐𝑜𝑛𝑓(𝑅2) but, 𝑠𝑢𝑝𝑝 𝑅1 > 𝑠𝑢𝑝𝑝(𝑅2); or 

 If 𝑐𝑜𝑛𝑓 𝑅1 = 𝑐𝑜𝑛𝑓(𝑅2) and 𝑠𝑢𝑝𝑝 𝑅1 = 𝑠𝑢𝑝𝑝 𝑅2 ,  𝑅1has fewer attribute 

values in its left-hand side than 𝑅2does; 

 If all the parameters of the rules are equal, we can choose any of them. 
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Algorithm 5: Learning the proposed Associative Classifier 

 
   Input: A training dataset D, minimum support and minimum confidence  

   Output: Associative classifier  

1: F=frequent_itemsets(D, minsup); 

2:      R=genCARs(F, minconf); 

3:      R=sort(R, minsup, minconf); 

4:      G=Group(R);  

5: for (i=0; i≤ number_of_class;i++) do begin 

6:          Distance=IBDM(G[i]) | WCDM(G[i]); 

7:          Cluster_heights=AHCCLH(Distance, 1); 

8:          N=optimal_number_of cluster(Cluster_heights);  

9:          Cluster=AHCCLC(Distance, N); 

10:        Fill(classified_traindata, false); 

11:        for (j=0; j≤ N;j++) do begin 

12:               Y= RDC(Cluster[i], D, classified_traindata) | RCC(Cluster[i]); 

13:               Associative_Classifier.add(Y); 

14:         end for 

15:     end for  

16:  return Associative_Classifier; 

 
CARs are grouped according to their class label in line 4. For each group of CARs 

(lines 5-15), the distance matrix is constructed by using one of the distance measures 

defined in subsection 4.2 (line 6), the hierarchical clustering algorithm complete linkage 

method (AHCCLH) computes the cluster heights (distances between clusters) by using 

the distance matrix in line 7 and these heights (distances) are used to find the optimal 

number of clusters (line 8). Then, we apply the hierarchical clustering algorithm 

(AHCCLC) again to identify the clusters of CARs (a Cluster array stores the list of 

clustered CARs). Since we are clustering the class association rules class by class, we 

need a “classified_traindata” array to store the information about classified examples, 

that is, we update this array for the same class only. When we start the clustering of 

CARs for a new class, we need to initialize the “classified_traindata” array. In lines 11-

14, the representative CAR is extracted by using one of the methods described in 

section 4.4 for each cluster and added to our final classifier. The last line returns the 

descriptive, compact and meaningful classifier. The classification process of proposed 

methods is shown in algorithm 6. 

Algorithm 6 predicts the class label of the test example by using the classifier. The 

first line files the class_count array with 0 (the size of class_countarray equals to the 

number of classes). For each rule in the classifier (line 2), if the rule can classify the 

example correctly, then we increase the corresponding class count by one and store it 

(lines 3-5).In lines 7-10, if none of the rules can classify the new example correctly, 

then the algorithm returns the majority class value. Otherwise, it returns the class value 

that is the most common among the rules that classify the test example. 

We built the following different classifiers: “DC” method is built based on direct 

distance measure (IBDM) and the method for extracting a representative CAR is based 

on cluster center (RCC), “DDC” method is formed based on direct distance measure 

(IBDM) and the method for extracting a representative CAR is based on database 

coverage (RDC), and “CDC” method is formed based on combined distance measure 
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(WCDM) and the method for extracting a representative CAR is based on database 

coverage (RDC). 

 
Algorithm 6: Classification process of our proposed approaches   

 
   Input: A Classifier and a test_example 

   Output: Predicted class 

1: Fill(class_count, 0);  

2: for each rule 𝑦 ∈ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟do begin 

3:           if y classify test_example then 

4:                class_count[y.class]++; 

5:           end if 

6:      end for 

7:      if max(class_count)==0  then 

8:            predicted_class=majority_class; 

9: else  predicted_class= max_index(class_count); 

10:     end if 

11:     return  predicted_class 

 

5. Experimental Results 

We evaluated our classifiers by comparing them with 8 well-known rule-based 

classification algorithms on classification accuracy and the number of rules. All 

differences were tested for statistical significance by performing a paired t-test (with a 

95% significance threshold). 

Associative classifiers were run with default parameters minimum support = 1% and 

minimum confidence = 60% (on some datasets, however, minimum support was lowered 

to 0.5% or even 0.1% and confidence was lowered to 50% to ensure “enough” CARs 

(“enough” means at least 5-10 rules for each class value- this situation mainly happens 

with imbalanced datasets) were generated for each class value). For all other 8 rule 

learners we used their WEKA workbench [31] implementation with default parameters. 

Since AR learning does not support numeric attributes, all numeric attributes (in all 

datasets) were pre-discretized with WEKA‟s “class-dependent” discretization method. 

The description of the datasets and input parameters are shown in Table 1. 

Furthermore, all experimental results were produced by using a 10-fold cross-

validation evaluation protocol. 

Experimental results on classification accuracies (average values over the 10-fold 

cross-validation with standard deviations) are shown in Table 2.  

We can observe from Table 2 that our proposed associative classifiers achieved 

comparable average accuracies (DC: 80.7%, DDC:81.5% and CDC:82.0% respectively) 

to other classification models on selected datasets. Interestingly, CDC significantly 

outperforms all rule-learners on the “Breast Cancer” (except DDC), “Hayes-root” and 

“Lymp” datasets, while on the “Car.Evn”, “Nursery” and “Monks” datasets, our 

proposed methods obtained worse accuracy than all other algorithms (except for SA). 

Standard deviations of accuracy results decrease with an increasing number of examples 

in a dataset, which is expected behavior. 
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Table 1. Description ofdatasets and AC algorithm parameters  

Dataset # of 

attributes 

# of 

classes 

# of 

records 
Min 

support 

Min 

confidence 

# of analyzed 

rules 

Breast Can 10 2 286  1% 60% 1000 

Balance 5 3 625  1% 50% 218 

Car.Evn 7 4 1728  1% 50% 1000 

Vote 17 2 435  1% 60% 500 

Tic-Tac-Toe 10 2 958  1% 60% 3000 

Nursery 9 5 12960  0.5% 50% 3000 

Hayes-root 6 3 160  0.1% 50% 1000 

Lymp 19 4 148  1% 60% 1500 

Spect.H 23 2 267  0.5% 50% 3000 

Abalone 9 3 4177  1% 60% 1000 

Adult 15 2 45221  0.5% 60% 5000 

Insurance 7 3 1338  1% 50% 722 

Monks 7 2 432  1% 50% 800 

Laptop 11 3 1303  1% 50% 1480 

Table 2. Overallaccuracies with standard deviations: 

Dataset DTNB DT C4.5 PT FR RDR CBA SA DC DDC CDC 

Breast.Can 70.4±4.1  69.2±6.7  75.0±6.9  74.0±4.0  75.1±5.3  71.8±5.7  71.9±9.8  79.3±4.4  81.2±4.0  81.9±4.1  82.6±4.5 

Balance 81.4±8.1  66.7±5.0  64.4±4.3  76.2±5.6  77.5±7.6  68.5±4.3  73.2±3.8  74.0±4.1  72.8±2.4 73.2±2.9  73.2±3.0 

Car.Evn 95.4±0.8  91.3±1.7  92.1±1.7  94.3±1.0  91.8±1.1  91.0±1.8  91.2±3.9  86.2±2.1  85.8±1.4  88.5±1.2 87.1±1.6 

Vote 94.7±3.4  94.9±3.7  94.7±4.4  94.8±4.2  94.4±2.8  95.6±4.1  94.4±2.6  94.7±2.3  92.9±2.5  93.2±2.8  90.6±2.3 

Tic-Tac-Toe 69.9±2.7  74.4±4.4  85.2±2.7  94.3±3.3  94.1±3.1  94.3±2.9  100.0±0.0  91.7±1.5  87.3±1.3  91.8±1.0  92.4±1.1 

Nursery 94.0±1.5  93.6±1.2  95.4±1.4  96.7±1.7  91.0±1.4  92.5±1.5  92.1±2.4  91.6±1.2  88.5±1.1  89.3±1.1  92.3±0.9 

Hayes-root 75.0±7.2  53.4±8.3  78.7±8.4  73.1±9.7  77.7±8.7  74.3±7.1  75.6±10.9  73.1±6.0  79.9±5.7  77.8±5.2  82.7±6.1 

Lymp 72.9±9.0  72.2±8.3  76.2±8.7  81.7±9.0  80.0±8.2  78.3±7.3  79.0±9.7  73.7±5.1  78.4±6.7  80.0±6.1  84.0±6.4 

Spect.H 79.3±2.7  79.3±1.6  80.0±9.0  80.4±5.6  80.4±2.2  80.4±2.2  79.0±1.6  79.1±2.1  81.5±0.7  81.3±1.1  82.8±1.3 

Abalone 62.1±1.3  61.8±1.5  62.3±1.2  62.3±1.1  61.7±1.6  60.8±0.8  61.1±1.0  61.0±0.9  61.0±1.1  60.7±1.0  60.7±1.2 

Adult 73.0±4.1  82.0±2.3  82.4±4.7  82.1±4.7  75.2±3.2  80.8±2.7  81.8±3.4  80.8±2.6  81.9±2.4  82.0±2.6  82.8±3.0 

Insurance 74.2±1.1  75.7±1.6  75.8±1.4  75.0±1.8  75.8±1.4  73.4±1.7  75.5±2.0  74.5±1.6  74.0±1.1  74.2±1.1  73.2±1.5 

Monks 98.9±0.9  98.9±0.9  98.9±0.9  98.9±0.9  98.9±0.9  97.1±0.7  97.8±1.4  92.1±1.3  92.5±0.8  93.6±0.9  91.1±0.8 

Laptop 75.7±2.6  72.9±2.9  75.3±2.3  74.5±2.9  75.4±2.1  73.2±1.8  75.4±2.0  72.0±1.4  71.6±2.1  73.8±2.3  72.6±1.7 

Average(%): 80.0±3.5 77.6±3.6 81.2±4.1 82.7±4.0 82.1±3.5 80.8±3.2 82.0±3.9 80.3±2.6 80.7±2.4 81.5±2.4 82.0±2.5 

Statistically significant testing (wins/losses counts) on accuracy between DC and 

other classification models is shown in Table 3. W: our approach was significantly 

better than compared algorithm; L: selected rule-learning algorithm significantly 

outperformed our algorithm; N: no significant difference has been detected in the 

comparison. 

Table 3. Statistically significant wins/losses counts of DC method on accuracy: 

 DTNB DT C4.5 PT FR RDR CBA SA DDC CDC 

W 6 6 4 2 3 3 3 3 1 1 

L 5 4 5 7 5 5 5 2 3 4 

N 3 4 5 5 6 6 6 9 10 9 



Distance based Clustering of Class Association Rules to Build...           805 

Table 3 illustrates that the performance of DC method on accuracy was better than 

DTNB, DT and SA methods. Although DC obtained similar result with C4.5 and DDC 

(there is no statistical difference on 10 datasets out of 14), it is eaten by all other 

methods according to win/losses counts. However, on average, the classification 

accuracies of DC are not much different from those of the other 8 rule-learners. 

The same experiment on DDC is shown in Table 4. Since DC is compared with DDC 

in Table 3, it is not included in Table 4. 

Table 4. Statistically significant wins/losses counts of DDC method on accuracy: 
 DTNB DT C4.5 PT FR RDR CBA SA CDC 

W 5 5 4 2 2 3 3 4 2 

L 4 3 3 5 4 5 4 1 3 

N 5 6 7 7 8 6 7 9 9 

It can be seen from the table that DDC‟s performance on accuracy is better than DC. 

It outperformed the DTNB, DT, C4.5, SA and DC methods (by win/losses counts).  

Table 5. Statistically significant wins/losses counts of CDC method on accuracy: 
 DTNB DT C4.5 PT FR RDR CBA SA 

W 6 6 6 4 5 5 4 4 

L 5 4 6 5 6 3 6 1 

N 3 4 2 5 3 6 4 9 

CDC achieved the statistically comparable results in terms of classification accuracy 

with “classical” and “associative” classification approaches. CDC statistically lost to 

C4.5, FR and CBA methods on 6 datasets out of 14, while it outperformed the rest of 

the algorithms except PT.   

The comparison between our methods and other classification methods on the 

number of classification rules is shown in Table 6. Since DC and DDC differ in the 

representative CAR selection process, the number of classification rules generated by 

both methods stays the same. Thus, DC and DDC methods are merged in Table 6. 

Experimental evaluations on the number of classification rules show that DC and 

DDC significantly outperforms all other rule-learners on 8 datasets out of 14 (except 

CDC) and it produces classifiers that have on average far fewer rules than those 

produced by the other 8 rule-learning methods included in the comparison.  

Our proposed methods generated a reasonable smaller number of rules on bigger 

datasets compared to other classification methods. Even though our approaches could 

not achieve the best classification accuracies on “Car.Evn”, “Nursery” and “Laptop” 

datasets, it produced the statistically smallest classifier on those datasets.  

Experimental evaluations on the number of classification rules show that DC and 

DDC significantly outperforms all other rule-learners on 8 datasets out of 14 (except 

CDC) and it produces classifiers that have on average far fewer rules than those 

produced by the other 8 rule-learning methods included in the comparison.  

Our proposed methods generated a reasonable smaller number of rules on bigger 

datasets compared to other classification methods. Even though our approaches could 

not achieve the best classification accuracies on “Car.Evn”, “Nursery” and “Laptop” 

datasets, it produced the statistically smallest classifier on those datasets.  
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Table 6. Number of CARs: 

Dataset DTNB DT C4.5 PT FR RDR CBA SA DC&DDC CDC 

Breast.Can 122 22 10 20 13 13 63 20 8 9 

Balance 31 35 35 27 44 22 77 45 34 79 

Car.Evn 144 432 123 62 100 119 72 160 32 32 

Vote 270 24 11 8 17 7 22 30 6 6 

Tic-Tac-Toe 258 121 88 37 21 13 23 60 24 17 

Nursery 1240 804 301 172 288 141 141 175 79 80 

Hayes-root 5 8 22 14 11 10 34 45 19 80 

Lymp 129 19 20 10 17 11 23 60 5 7 

Spect.H 145 2 9 13 17 12 4 50 8 5 

Abalone 165 60 49 71 20 57 131 155 14 14 

Adult 737 1571 279 571 150 175 126 130 13 88 

Insurance 23 48 21 49 22 22 84 62 18 20 

Monks 12 36 14 8 12 10 40 26 14 14 

Laptop 101 101 72 60 28 32 41 75 19 18 

Average(%): 241 235 76 81 55 46 63 78 21 34 

CDC got an unexpected larger number of rules (this is mainly imbalanced and 

discretized datasets) on “Hayes-root” and “Balance” datasets.  

Table 7. Statistically significant wins/losses counts of DC and DDC method on rules: 

 DTNB DT C4.5 PT FR RDR CBA SA CDC 

W 11 11 10 10 11 9 12 14 3 

L 2 2 0 3 2 4 1 0 2 

N 1 1 4 1 1 1 1 0 9 

Table 7 shows that C4.5 and SA methods could not produce statistically smaller 

classifier than DC and DDC methods on any datasets. The most importantly, DC and 

CDC generated statistically smaller classifiers than all other models on bigger datasets 

(over 1000 examples), which was our main goal in this research.   

CDC statistically got the worse result than all methods on “Balance” (except CBA) 

and “Hayes.R” datasets in terms of classification rules. 

Our main goal in proposing the DDC and CDC methods is to improve the overall 

coverage (shown in Table 9) and accuracy achieved by the DC method. Experimental 

results show that we could achieve our goal: DDC and CDC gained better average 

classification accuracy with 81.5% and 82% (this is still not the best result in terms of 

average accuracy, but 0.8% and 1.3% higher than the DC method). Average coverage of 

DDC (90.4%) and CDC (90.5%) increased to 6% compared to DC (84.4%). More 

precisely, the overall coverage of DDC and CDC was improved on 9 datasets and they 

achieved better classification accuracies on 8 datasets out of 14 compared to DC. 

However, DC produced a comparable associative classifier with all other “classical” and 

“associative” classifiers. 
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Table 8- Statistically significant wins/losses counts of CDC method on rules: 

 DTNB DT C4.5 PT FR RDR CBA SA 

W 11 11 9 10 10 8 11 12 

L 2 3 2 3 2 4 1 2 

N 1 0 3 1 2 2 2 0 

Table 9- Overall Coverage: 

Dataset DC DDC CDC 

Breast Cancer 65.2 72.0 72.7 

Balance 74.5 82.8 86.3 

Car.Evn 88.7 100.0 100.0 

Vote 88.4 86.9 85.1 

Tic-Tac-Toe 89.0 92.0 86.0 

Nursery 90.4 98.1 100.0 

Hayes-root 100.0 100.0 100.0 

Lymp 81.0 90.0 88.4 

Spect.H 80.9 80.7 79.4 

Abalone 74.1 87.6 78.9 

Adult 100.0 100.0 100.0 

Insurance 81.5 89.5 100.0 

Monks 82.4 86.7 90.6 

Laptop 86.1 99.0 100.0 

Average(%): 84.4 90.4 90.5 

On the other hand, accuracy of DC, DDC and CDC was higher than its coverage on 

“Breast cancer”, “Vote” and “Monks” datasets. This fact is not surprising, since 

uncovered examples get classified by the majority classifier. When the overall coverage 

is above 85%, proposed methods tend to get a reasonably high accuracy on all datasets. 

All of our proposed classifiers achieved the best accuracy on “Breast Cancer” and 

“Spect.H” datasets among all rule-learner approaches while CDC generated slightly 

higher number of classification rules comparing to DC and DDC, but on average all of 

our proposed method achieved the best result in terms of classification rules. Evaluation 

of our proposed classifiers is shown in Fig 1. 
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Fig 1. Comparisonof performance of our proposed associative classification models 

Fig 1 illustrates that all three methods obtained similar average accuracy. Although 

CDC gained better coverage than DC, it got worse result in terms of the number of 

classification rules than that method. 

The most important advantage of our proposed methods was to generate a smaller 

classifier on bigger datasets. 

6. Conclusion and Future Work 

Experimental evaluations show that we could somehow achieve our intended goal in 

this research to produce a compact and meaningful classifier by exhaustively searching 

the entire example space using constraints and clustering. Our DC, DDC and CDC 

classifiers were able to reduce the number of classification rules while maintaining a 

classification accuracy that was comparable to state-of-the-art rule-learning 

classification algorithms. Moreover, we showed in the experiments that our classifiers 

were able to reduce the number of rules in the classifier by 2-4 times on average 

compared to the other rule-learners, while this ratio is even bigger on datasets with a 

higher number of examples. 

All three proposed associative classifiers have their advantage on some certain 

datasets; they are even comparable to each other on the number of generated rules and 

classification accuracy. 

The main drawback of our proposed methods is their time efficiency. In future work, 

we plan to parallelize DC, DDC, and CDC to bring their time complexity at least a bit 

closer to state-of-the-art “divide-and-conquer” rule-learning algorithms. 
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