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Abstract. Online social networks are the main choice of people to maintain their 

social relationships and share information or opinions. Estimating the actions of a 

user is not trivial because an individual can act spontaneously or be influenced by 

external factors. In this paper we propose a novel model for imitating the 

evolution of the information diffusion in a network as well as possible. Each 

individual is modeled as a node with two factors (psychological and sociological) 

that control its probabilistic transmission of information. The psychological factor 

refers to the node’s preference for the topic discussed, i.e. the information 

diffused. The sociological factor takes into account the influence of the neighbors’ 

activity on the node, i.e. the gregarious behavior. Agenetic algorithm is used to 

automatically tune the parameters of the model in order to fit the evolution of 

information diffusion observed in two real-world datasets with three topics. The 

reproduced diffusions show that the proposed model imitates the real diffusions 

very well. 

Keywords: social networks, information diffusion, psychological factors, 

sociological factors, genetic algorithm. 

1. Introduction 

The use of social networking websites is currently the most widely used form of 

communication. Social networks help us to keep in touch with our friends, create new 

relationships, develop our social life, but these can also influence our decisions 

especially when a lot of information is false or we may even become dependent through 

their excessive use. Socialization on social networks has taken on a great extent and the 

number of users has increased considerably. When analyzing social networks, we focus 

on discovering patterns of human interactions. Thus, we can observe the social 

structures, and the actions and friends of an individual are no longer random, but can be 

modeled according to well-defined rules. If we were to analyze how people interact, we 

might find that they do not make random connections with one another (e.g. some talk 

constantly, others often, and some never do). The use of social networks allows users to 

send and receive messages (both public and private), share photos, videos and gives 

them the opportunity to join certain groups. We can say that online communication 

means have become employed in all aspects of everyday life, from business to social 
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life. Thus, online social networks not only connect many users, but also collect data on 

their daily interactions. Given these collections, we can analyze how information is 

transmitted through social networks, which is a topic of great interest. 

In this paper we propose a model that imitates the information diffusion as well as 

possible, referring to the behavior of users from a real point of view, both at the 

psychological and social level. In modeling the individual from a psychological point of 

view, his/her decision in the transmission of information is a restricted one. This 

restriction consists in the fact that the individual has a certain interest in the information, 

but this information may also be useful or not for him/her. In modeling the individual 

from a sociological point of view, we consider the gregarious behavior of the individual 

regarding the transmission of information, namely that he/she is influenced by the 

activity of his/her neighbors. For both models, we take into account both the information 

credibility, and the fact that users are bored with certain information, either according to 

the passage of time or depending on the amount of information received. We also use a 

genetic algorithm to automatically learn the model parameters based on the real 

information diffusion. This model is applied on two real datasets [1, 2], and the results 

are promising. 

In the literature there are many factors considered to influence the information 

diffusion, but it is important how these factors are modeled and combined. In our model 

we introduce the following influencing factors: the boredom of an individual, the 

activation degree of an individual that is correlated with his/her interest in information 

and the usefulness of the information, the login rate depending on a certain time of day 

(daytime/nighttime) etc. The main contribution of this paper is the combination of these 

influencing factors in a model in order to reproduce the decision of an individual in an 

agent-based simulation as well as possible. Another contribution is the automatic 

learning of certain parameters of the diffusion model. This is a great advantage because 

the evolutions of the diffusions may be different depending on a certain topic being 

discussed. Moreover, by combining psychosocial modeling with automatic learning of 

parameters, our model is able to extract the relevant characteristics from various 

evolutions of diffusion. To the best of our knowledge, no other models have been 

proposed so far in the literature that combine these influencing factors and automatically 

adapt their parameters for different diffusion evolutions. 

The paper is organized as follows. In Section 2 we present some contributions related 

to information transmission models. In Section 3 we describe our model, and the 

experimental results are shown in Section 4. Finally, in Section 5 the conclusions and 

some development directions are included. 

2. Related Work  

An analysis of how information is spread through online social networks (OSNs) and 

simulation of user behavior based on their posts is presented in [3]. The method 

proposed in this paper uses a stochastic multi-agent approach, in which each agent is in 

fact a user of the social network. The analysis is made on Barack Obama’s Twitter 

network in the 2012 US presidential race. The authors show what happens if the central 

source of the network is inactive, more precisely the node that represents Barack Obama 
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and also highlights the impact of eliminating the most active users in the process of 

information diffusion. By impact it is understood that the number of messages sent by 

users is constantly affected over time. Experimental results show that eliminating the 

first 100 most active users has a greater impact on the number of messages than 

removing the central source node. 

In [4], the authors model the information diffusion using agents with well-defined 

states, similar to the epidemic SIR (Susceptible, Infected, Recovered) model and use 

two datasets from the Twitter social network to compare the efficiency of the proposed 

model regarding the realistic simulation of the diffusion. The model introduced in this 

paper is based on the fact that those users who may know that a rumor is false, will not 

spread messages that deny these rumors. Therefore, recovered users will not influence 

their neighbors, allowing them to recover as well. They use a synthetic scale-free 

network of 1000 nodes and the Euclidean distance to evaluate the difference between the 

actual and the simulated diffusion results. The authors compare the Euclidean distance 

of their model with a basic model and obtain a smaller distance for both datasets, so a 

more realistic information diffusion. 

A basic model for rumor propagation is proposed in [5] and consists of node-level 

modeling. Nodes can have well-defined states, each state allowing specific actions such 

as spreading the information, ignoring it etc. As in our work, node activity is modeled in 

discrete time events, which is why the authors can model various time constraints, such 

as: some actions of the nodes are completed after a certain period of time, a node checks 

its information from friends at least once 24 hours and at most once an hour. The 

proposed model contains a large number of parameters, this being a general impediment 

in the complex models, hence our motivation to use a genetic algorithm for automatic 

parameter learning. The authors also use synthetic networks and conclude that those 

networks with scale-free topology are more suitable for analyzing the simulation of 

information diffusion. 

In [6], a multi-agent model is proposed to reproduce the real transmission of 

information in scale-free networks. In addition, the authors also propose a mechanism to 

combat the spread of false information. Each agent has the opportunity to choose 

whether or not to transmit the information depending on his preparation level on a 

particular topic, which is a random threshold assigned to him. The authors propose three 

different ways in which an agent can spread information: spontaneous visualization, 

collective influence and communication persuasion. An analysis of the real information 

diffusion is made on a Twitter dataset with the announcement of the discovery of the 

Higgs Boson [1] in which the authors track the activity of the active users in the network 

to highlight the evolution of information diffusion. We also follow this aspect in our 

paper on the same dataset. Running the model on networks of different sizes, the authors 

observe the same form of diffusion and assume that their model does not depend on the 

size of the network, but only on the simulation parameters. Also, to study the spread of 

false information, the authors use the real dataset where fake news was spread during the 

Occupy Wall Street protest. In order to model the spread of fake news, the authors 

introduce in their model a new type of agent that is able to recognize fake news and alert 

its neighbors. In this experiment, based on the number of posts of users over time, they 

obtain a good dynamic of the event on networks of different sizes. 

A spatio-temporal characterization of the information diffusion process and a model 

that describes the dynamics of information spreading on the Higgs dataset [1] are 
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presented in [7]. Regarding the spatial and temporal characteristics of the observed data, 

the authors studied the behavior of the user both at the global (macroscopic) and 

individual (microscopic) levels. The users’ activities are: posting message (tweet), 

sharing post (re-tweet) or replying to existing tweets. Starting from the observed 

characteristics, the proposed diffusion model takes into account the fact that a user no 

longer posts a certain period of time after having a recent post. Also, the authors 

introduce two different rates of activation or deactivation of nodes that are time-varying 

and can be independently modified. The probability that a node will post a message is 

also influenced by the number of its neighbors who repeatedly post over time. Their 

model has a good accuracy in reproducing the information diffusion and could be 

applied in other processes of diffusion of social networks. 

A protocol in which the network becomes more immune to the spread of false 

information based on the evidence theory (Dempster-Shafer theory and Yager’s rule) is 

presented in [8]. Their model is based on the choice of two source nodes, one that 

transmits true information and one that transmits false information. The effects of the 

collision of the two pieces of information through the network are shown, but also the 

effect of using the evidence after establishing the ground truth. This approach based on 

the evidence theory plays an important role in the individual’s decision to transmit or not 

the received information. The authors also consider the confidence degree of the 

neighbors regarding the character of the information spread by a certain source. Once 

the ground truth is established, the authors show how the spread of false information is 

blocked. Also, the work [9] is an extended version of the work [8] in which the 

following case studies are considered: different positioning of the source nodes, a source 

node might not always transmit the same information during a simulation, use of a larger 

network, adding new connections to the original networks and analyzing the number of 

messages during information diffusion. 

There are many other approaches that analyze the process of information diffusion 

through the network. For example, a dynamic model is proposed in [10] to investigate 

the influence of node activity on the information spread process. Through an active 

node, the authors refer to the fact that it can contact all its neighbors, while an inactive 

node can only communicate with its active neighbors. The behavior of the model is 

studied on both homogeneous and heterogeneous networks. In [11], the authors study 

the dynamics of the information diffusion on homogeneous social networks in which 

they consider a mechanism to combat false information. A stochastic model for 

information diffusion is proposed in [12] and the authors mention the limited attention 

property of the users, in which they may lose some of the received messages if they have 

many connections. In [13], an extension of the Susceptible-Infected diffusion model is 

proposed, in which the authors include elements of human dynamics, such as bursty and 

limited attention, with a significant impact on the diffusion process. In [14] a 

competitive model of information diffusion is presented, which consists in the 

simultaneous spread of two different pieces of information. A diffusion model called GT 

is presented in [15], in which the nodes are considered intelligent and rational agents 

and have two types of payoff: a social and an individual one. Also, the proposed model 

can be used to predict what behavior the users will have in a certain time frame. 

Other models of information diffusion are also presented in surveys on this topic: 

[16-18]. 
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3. Model Description 

In this paper we propose a protocol of information diffusion in social networks in which 

we take into account as many realistic factors as possible in order to model the 

individual’s decision to transmit information or not. We consider both the personality of 

the individual from a psychological point of view, as well as his degree of sociability. 

We model user behavior using two categories of influences: internal and external. These 

categories are presented by [19] in a detailed analysis of consumer behavior. Some 

examples of internal influences of a consumer’s behavior presented by the authors are 

perception, motivation, learning, memory, attitude, and the main external influences are 

those of groups or different factors of a society (e.g. demographic or cultural factors). 

We refer to these internal factors as psychological factors of an individual, while 

external factors are correlated with sociological factors. These terms can be jointly 

referred to as “psychosocial” factors. In psychological modeling we chose the 

perception and motivation of an individual as internal factors: perception is modeled as 

the usefulness of information, while motivation is modeled as a combination of the 

individual’s interest and the usefulness of information. In sociological modeling, we 

chose the external factors related to the influence of the neighbors on an individual. 

In addition, we propose that an individual may be influenced by the information 

credibility when making a decision in its transmission. The credibility of the information 

or the credibility of the source of information is difficult to assess. In an online social 

environment, a user usually assesses credibility based on certain indicators provided by 

the social platform. For example, in [20] the authors analyze the relevance of certain 

indicators on Twitter based on which users try to assess the credibility of posts. The 

most important indicators are those that refer to an official source, or posts that contain 

links, facts, informative or professional messages. To analyze these indicators, the 

authors chose different evaluators to judge the credibility of the posts and used the 

majority vote for the final evaluations. The aforementioned credibility indicators cannot 

be used in our model because we do not make an analysis based on the content of the 

messages. However, in [20] the authors show that the number of posts is also an 

indicator of credibility. Therefore, in our model we propose to use the number of the 

neighbors’ messages as an indicator of information credibility. We propose that the 

information held by a node has an initial credibility, which is a value in the range (0, 1]. 

In our model there are two ways in which a node can have information: it is assigned to 

it by simulation (source node or informant node) or it can receive it from neighbors 

(special node). The mechanism for determining credibility applies only to special nodes. 

Majority voting is an intuitive strategy to model an individual’s decision when multiple 

options are available. For example, [20] and [21] use majority voting to assess the final 

credibility of posts, and [22] uses majority voting as a mechanism for modeling the 

gregarious behavior of a node. The majority vote cannot be applied in our model 

because the credibility of the information is not a categorical variable, but a real one. 

Therefore, as an alternative, we propose that a node weigh the credibility of information 

received from neighbors. Moreover, in this model we assume that the credibility of the 

information increases as it is discussed more. To achieve this growth, we increase the 

weight of that credibility received from the neighbor with the highest number of 

messages. 
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Users cannot always send information, but only during certain periods. We start from 

the premise that they log on to a social platform with a certain average login rate. 

Most of the parameters of the proposed model are learned using a genetic algorithm. 

Therefore, having a diffusion model and the automatic learning of the parameters, our 

objective is to obtain an accurate evolution of the information diffusion, comparing it 

with the real diffusion. 

The first dataset we use contains both the structure of a social network on Twitter and 

the activity of users during the announcement for the discovery of the Higgs Boson. The 

second dataset does not contain the structure of the network, but only the activity of 

users in the Twitter social network on certain topics, of which we have chosen two, 

namely: “lipstick on a pig” and “fundamentals of our economy are strong”. We chose 

datasets that contain the timestamps of communication between users. Based on these 

timestamps, we managed to extract the evolution of information diffusion. Regarding the 

second dataset, the subjects were chosen at random. 

3.1. User Login Rate and User Handling 

When a person initiates an activity on a social network, we say that by this action he or 

she logs in. For this purpose, we choose that users have an average login rate (λlogin) 

following a negative exponential distribution law according to equation (1), where u 

represents a randomly generated number in the range [0, 1) and tlogin is the time period 

between two successive logins of a user expressed in minutes: 

ln(1 )
login

login

u
t




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(1) 

For example, if an individual logs in every two hours, then the average login rate is 

1 1
0.0083

2[ ] 2 60[ ]
login

h m
   


 logs per minute. For this login rate, one can see in 

Fig. 1 on the Y axis that tlogin is generated in an interval of approximately [0,600] 

minutes. We can also see that we have a higher chance of generating short duration 

times and we mark with the dotted line the duration of 200 minutes, i.e. in about 80% of 

cases we will have small values. 

We consider that the nodes are handled in the order of the login duration. Thus, after 

the login duration of a node has been generated, it is added to a sorted list. We chose to 

increment the simulation clock in discrete steps, where each step represents a period of 

one minute. After each increment of the simulation clock, the list is checked to identify 

which nodes are able to log in, i.e. a minute has passed and some nodes may be able to 

log in. A node that is able to log in is extracted from the list and then it is checked 

whether it can transmit its information to its neighbors according to the two models 

(from a psychological and sociological point of view). Subsequently, a new time period 

is generated for this node and it is added back to the list, such way that the list remains 

sorted (i.e. the node that has the smallest login period is placed first in the list). 

 



 A Novel Information Diffusion Model Based...           709 

0

100

200

300

400

500

600

700

0.0 0.2 0.4 0.6 0.8 1.0

Ti
m

e 
p

er
io

d
 (m

in
u

te
s)

u - uniform random variable
 

Fig. 1. Generation of time between two successive logins according to the uniformly distributed 

random variable u 

Before describing how we handle nodes, we specify that in our model we have three 

types of nodes, namely: source node, special node and informant node. A source node 

holds the information and its transmission is based only on the basic probability attached 

to the node. Also, the transmission of a source node is not influenced by the information 

credibility or by the psychosocial modeling. A source node will change its type into a 

special node when at least one piece of information is received from one of its 

neighbors. If the source node does not receive any information from its neighbors, it 

automatically becomes a special node after a period of time to avoid the continuous 

transmission of messages. The second type of node, the special node, has a transmission 

probability that is determined according to the two models and it is also influenced by 

the information credibility. The last type of node, the informant node, has 100% 

probability of transmission and 100% credibility for information. We propose this type 

of node for the moment when we want to suddenly encourage socialization between the 

nodes, i.e. several nodes adopt the information when it is transmitted very often. 

Informant type nodes spread information for a certain period of time (Tmax_informant), after 

which they become special nodes.  

3.2. Transmission of Information 

In the initial phase only the source nodes hold the information along with the credibility 

attached to it. After a node has logged in, its decision to transmit or not the information 

is a probability determined according to the type of node: 

,

,

1 ,

b

send f

P source node

Prob P special node
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

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
  

(2) 

where Pb is the basic probability (the same for all nodes), and Pf is the final probability 

determined according to the psychosocial modeling. Depending on this probability, if 

the node has the chance to transmit the information, it will spread the information to all 

its neighbors along with the credibility attached. A node can transmit information 
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multiple times due to repeated logins and also a node counts the information received 

from each of its neighbors separately. The special node has a particular behavior when it 

spreads information. For this type of node, we determine a final probabilityPf, which is 

based on both the psychological and sociological modeling and also on the information 

credibility: 

( ) ( )f P p S S tP P W P W InfoCred n    
 

(3) 

where Ppis the probability from the psychological modeling, Psis the probability from 

the sociological modeling, Wpand Wsare weights that control the impact of Pp and Ps, 

and InfoCred(nt) is the credibility that the node nt has on the information. InfoCred(nt) is 

computed based on all information received from the neighbors of the nt node. 

3.3. Determining the Credibility that a Node Has on the Information  

In our model, a node stores statistics for each neighbor. Thus, when a node receives 

information from a neighbor, it stores the information credibility and also the number of 

messages received. The node has these two fields separately for each neighbor. We 

choose that the information from certain neighbors should be more important or less 

important depending on the number of messages received. To determine the information 

credibility of a transmitter node (nt), we weight each credibility received from neighbors 

according to equation (4), where v represents the number of neighbors of node n, and 

InfoCred(i) is the credibility received from neighbor i: 

1
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The weight Wi associated with the neighbor i is computed as the ratio between the 

number of information received from the neighbori and the total number of the 

information pieces received from all the neighbors: 

( )i
i

total

Info v
W

Info


 

(5) 

In order to implement a mechanism for increasing the credibility of information, we 

choose that the maximum weight should be encouraged by a percentage increase. In 

other words, we take into account to a greater extent the credibility of that neighbor who 

transmitted the highest number of messages: 

*
max max max credW W W W  

 
(6) 

max max( ), 1,...,iW W i v 
 (7) 

where W
*

max is the maximum adjusted weight, and Wcred represents a parameter that 

controls the increase in credibility (the same for all nodes). The value of the control 

parameter Wcred is learned using the genetic algorithm.  
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This process can indeed be manipulated by artificially developing a high number of 

neighbors or another approach by spamming messages [20]. We do not use a mechanism 

for detecting and correcting such manipulations, but we propose a simple mechanism for 

combining the information that a user has from friends. 

In Fig. 2 we show an example on a small network in which we determine the 

credibility that node 3 has for the information. 

 

Fig. 2. Example for computing the information credibility of a node 

3.4. Modeling the Individual from the Psychological Point of View 

Regarding the modeling of the individual from the psychological point of view, we 

propose that his/her decision to spread or not the information (probability Pp) should be 

influenced by the individual’s activation degree and an attenuation factor. We also 

consider the basic probability of the node (Pb) and a weight for the activation degree 

(Wact): 

pPAttenuationp act bP Activation W P   
 

(8) 

We propose that the node’s activation degree should be correlated both with the 

node’s interest for information and with the level of usefulness of the information. 

Therefore, we define the following measures: Ninterest is the level of interest that the node 

has for the information and Nusefulnessis the level of usefulness of the information. Ninterest 

and Nutil have the same definition domain: integers in the range [1, 10]. Before starting 

the simulation, we initialize Ninterest from each node with a random value in the range [1, 

10], thus each node has its own interest for the information. Nusefulness is attached to the 

information that is spreading and this measure does not differ from one node to another. 

Nusefulness is also initialized with a random value in the range [1,10]. Our model is capable 

of spreading a single type of information during the simulation, thus the value of 

Nusefulness remains constant. Ninterest and Nusefulness are used to determine the node’s 

activation degree and this step is done before the node transmits the information: 
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(9) 

where Maxinterest and Maxusefulness are the maximum limits for Ninterest and Nusefulness. The 

node’s activation degree is directly proportional to both Ninterestand Nusefulness. Basically, 

the activation degree increases in greater proportion as both levels (Ninterest and Nusefulness) 

increase (Fig. 3). 
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Fig. 3. Example of activation degree for Ninterest=5 and Ninterest =10 

Using this approach, we want to model various boundary cases. For example, when 

the interest of a node is very high, but the usefulness of the information is low, we can 

say that the activation degree has a small value. This behavior is due to the fact that 

although the node is very interested in information, the reduced utility of the information 

does not satisfy the node. The behavior is the same if Ninterest is small and the Nusefulness is 

very large: the information is satisfactory, but the individual has no interest in it. We 

also attach a weight (Wact) for the activation degree in order to control the impact it has 

on the sending probability of the psychological model (Pp). Depending on the diffusion 

evolution, the value of the Wact weight is learned by the genetic algorithm in the range 

[0.2, 1]. 

As a topic is discussed more often, the number of messages received by the node 

increases. We propose that the node should get bored of the topic discussed as the number 

of messages received becomes larger. In other words, we introduce an attenuation (10) 

that depends on the total number of messages received by a node (Msgtotal) from all its 

neighbors and by an attenuation factor (Fattenuation) learned by the genetic algorithm. 

attenuation total

p

F Msg

v
PAttenuation e





 

(10) 

We divide the exponent into the total number of neighbors (v) because we would 

obtain different results for networks of different sizes. The total number of messages of 

a node in a small network is smaller than in a large network (where the nodes have more 

neighbors).  
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a)                                                                         b)  

Fig. 4. Example of attenuation for a) Fattenuation = 0.5; b) Fattenuation = 1 

In Fig. 4 we show the attenuation evolution according to the number of messages 

received from a certain number of neighbors for two cases: Fattenuation = 0.5 and Fattenuation 

= 1. In the case of a node with 10 neighbors and 40 received messages, one can see that 

the attenuation AttenuationPp changes as follows: when Fattenuation is 0.5, 

0.25
pPAttenuation  (Fig. 4.a), and when Fattenuation is 1, 0.07

pPAttenuation  (Fig. 

4.b). 

3.5. Modeling the Individual from the Social Point of View 

In this type of modeling we focus on the percentage of active neighbors of the node 

because we want the probability provided by this modeling (Ps) to depend only on the 

activity of its neighbors and not on the amount of information received by the node. To 

model this probability, we start from a sigmoid function (Psocial_infl) to which we include 

an attenuation (AttenuationPs): 

inf ss social_ l PP P Attenuation 
 

(11) 

inf
inf

1

1 neighbors social_ l
social_ l (θ Pct F )

P
e
  


  

(12) 

We choose the sigmoid function (12) because, considering its shape, we want 

Psocial_inflto have a lower value in the beginning, when the number of active neighbors is 

relatively small. Then, as users discuss more, we want Psocial_inflto have a sudden increase 

at one point, thus modeling the social behavior of a node. In order for the evolution of 

the sigmoid function to start from the origin on the X axis and not from the negative 

domain, we introduce a parameter θ with the value –5. Also, we introduce in Psocial_infla 

social influence factor (Fsocial_infl) in order to control the shape of the curve. We show in 

Fig. 5 the impact of Fsocial_inflfor two different values, 5 and 10. These values are actually 

the limits of this parameter. 
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Fig. 5. Evolution of Psocial_inflfor two values of Fsocial_infl: 5 and 10 

We choose the value 5 for the lower limit of Fsocial_infl because in this case the sigmoid 

function shape is incomplete and one can see that Psocial_inflreaches the maximum value of 

0.5. This is the situation in which the individual is weakly influenced by the percentage 

of his active neighbors. We choose the value 10 for the upper limit of Fsocial_inflbecause 

we want a complete sigmoid shape. Therefore, Psocial_infltends to value 1, modeling the 

fact that an individual is more influenced by the activity of his neighbors. The 

Fsocial_inflparameter, which represents the social influence of the node, is not learned by 

the genetic algorithm, but is randomly generated in the range [5, 10] for each node at the 

beginning of the simulation. As in the case of psychological modeling, we introduce an 

attenuation (AttenuationPs) in the probability Ps (11) to simulate the fact that a node gets 

bored with the activities of its neighbors. In Ps probability, the node does not take into 

account the amount of information from its neighbors, but the number of active 

neighbors expressed as a percentage. Therefore, AttenuationPs (13) does not dependent 

on the number of messages received by the node, but we choose to be time dependent. 

However, a node does not have many neighbors active at the beginning of the diffusion, 

so it is important to choose a start time (T) from which we can consider that the 

neighbors of the node are quite active. We choose to define the moment T when Ws>Wp, 

i.e. when probability Ps is more important than probability Pp. We consider that this 

criterion is suitable because the weight of Ws is dependent on the percentage of active 

neighbors of the node: 
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In Fig. 6 we show an example where the moment T is defined. The Ps probability is 

affected by the attenuation AttenuationPs from the beginning of time T. After defining 

the moment T, we can also determine the elapsed time (Telapsed) to evaluate the degree of 

attenuation. 
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Fig. 6. Example in which the moment T is defined 

The elapsed time (14) is the difference between the current simulation time 

(Simulation_clock) and the start time T. We normalize Telapsed according to a maximum 

socialization time (Tmax_socialization) to obtain a period expressed in percentages and which 

is specific to each node. Thus, AttenuationPs tends to 0 (maximum attenuation for Ps) as 

Telapsed tends to 100%. In our model, Tmax_socialization is the time required for a node to 

become completely bored with the activity of its neighbors. Each node has its own value 

for Tmax_socialization and is generated randomly at the beginning of the simulation with a 

period between 1 and 7 days. In this way, each node has a different period length in 

which it gets bored with the activity of its neighbors. The genetic algorithm controls 

AttenuationPs by learning the parameter Fsocial_tolerance defined on the range [1, 15]. 
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Fig.7. Example of attenuation for a) Fsocial_tolerance = 1 b) Fsocial_tolerance = 15 

In Fig. 7 we show two examples for the evolution of AttenuationPs. One can see a 

severe attenuation when Fsocial_tolerance =15, i.e. probability Ps is completely suppressed 

when the elapsed time is 30% of the Tmax_socialization. In the case of Fsocial_tolerance=1, the 

attenuation is very low and 0.4
SPAttenuation   at 100% elapsed time. 

3.6. Determining the Weights 

The final sending probability (Pf) for a special node (3) depends on the Pp and Ps 

probabilities. Pp and Ps are weighted by Wp and Ws, which are complementary weights 

(i.e.Wp = 1 – Ws). So, we will only discuss about Ws, which is defined as follows: 
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(15) 

where Pctneighbors is the percentage of active neighbors of the node, and Fact_social_modelis a 

control parameter. We say that a node is active if it has transmitted at least one 

information, so the weights Wpand Ws are not influenced by the number of messages 

from the neighbors of a node. Instead, Wp and Ws are influenced by the state of the 

neighbors (i.e. active or inactive node).  
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Fig. 8. Evolution of Ws for Fact_social_model= 0.8 and Fact_social_model= 2 

We control the evolution of the weight Ws by using the parameter Fact_social_model. In 

this way we actually control the degree of an individual to be influenced by others, or 

how quickly the individual adopts a gregarious behavior. In Fig. 8 we show the 

evolution of Ws for two values of the parameter Fact_social_model: 0.8 and 2. These two 

values are in fact the limits in which Fact_social_modelis learned by the genetic algorithm. 

If a node has, for example, 40% active neighbors, one can see that 25%sW  when 

Fact_social_model has the value 0.8 and 55%sW  when Fact_social_model has the value 2. 

Therefore, when the value of Fact_social_model is higher, the node is more encouraged to 

follow its neighbors during information diffusion. Also, the login rate of a node is 

influenced by Ws during the simulation: 

,
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We choose a lower login rate (λnormal) for a node when it is not strongly influenced by 

the activity of its neighbors and a higher login rate (λsocial) when the node has a 

gregarious behavior: 
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Moreover, we consider a change in the login rate of the nodes depending on the time 

of day. Thus, we define two time periods (17): the time interval 11AM – 11PM is 

considered the daytime period (λlogin remains unchanged for users), and the time interval 



 A Novel Information Diffusion Model Based...           717 

11PM – 11AM is considered the nighttime (λlogin is halved for each user). In this way, 

we model the fact that users are less active at night. 

3.7. Learning the Model Parameters 

The proposed information diffusion protocol contains a large number of parameters that 

influence the evolution of the diffusion. It is difficult to adjust so many parameters in 

order to obtain an evolution of the diffusion as close as possible to the real one. The 

automatic learning of the parameters is the solution that helps us in this problem and we 

have chosen to use a genetic algorithm. In Table 1 we show the parameters of our 

diffusion model that are learned by the genetic algorithm, and in Table 2 we show the 

parameters that are not learned. 

Table 1. The parameters of the diffusion model that are learned by the genetic algorithm 

Parameter Definition range Comment 

λnormal [120, 240] The login rate used by the nodes with a small 

number of active neighbors (e.g. the minimum 

value means 1 login every 120 minutes) 

λsocial [30, 60] The login rate used by the nodes with a high 

number of active neighbors 

Tmax_informant [1, 90] The maximum time period (in minutes) in which 

an informant node spreads the information 

Fattenuation [0.01, 1] Attenuation factor for probability Pp 

Wcred [0.01, 0.2] The control weight over increasing the 

information credibility over time 

Fact_social_model [0.8, 2] Control factor to adjust the evolution of the Ws 

weight 

Fsocial_tolerance [1, 15] Control factor to adjust the attenuation of the Ps 

probability 

Wact [0.2, 1] The control weight of the activation level from 

the Ppprobability 

Table 2. The parameters of the diffusion model that are not learned by the genetic algorithm 

Parameter Definition range Comment 

Fsocial_infl [5,10] Control factor to adjust the evolution of Pinf_social 

Source nodes 5% Percentage of source nodes 

Informant nodes 30% Percentage of informant nodes 

Pb 0.8 The basic probability of the nodes 

Tmax_socialization [1, 7] The maximum time period (in days) in which a 

node becomes bored with the activity of its 

neighbors 

CredInfo 0.3 Initial credibility of the information (used by the 

source nodes) 

Tstart_informant Depending on the 

real diffusion 

The time when the informant type nodes 

activate and suddenly encourage the spread of 

information 
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3.8. The Genetic Algorithm 

Background. Genetic algorithms are based on the principles of natural selection [23], 

which states that the survival of an organism consists in the survival of the most adapted 

species. For a species to survive in time, the following stages are required: selection, 

reproduction and mutation. The selection process consists in the fact that certain 

organisms of the species better tolerate the environment in which they live and, 

consequently, have a greater chance of survival. Thus, these organisms are more adapted 

(fitted) to the environment, due to specific genes (the set of all genes is called a 

chromosome). More adapted organisms have a higher chance of reproducing. In the 

crossover process, parents transmit certain genes to the offspring. The new generation 

that results from the crossover is a new epoch and this process represents a way to 

simulate the evolution of the species over time. However, selection and reproduction are 

not sufficient to ensure long-term improvement of an organism’s adaptation. Also, there 

is the possibility that an organism will suffer changes of the genes that did not result 

from the crossing of the parents and these changes may lead to a better adaptation of the 

new individual. The process in which these new genes suffer unexpected changes is 

called mutation. 

By analogy with the search for solutions to a problem, the genetic algorithm is based 

on the concept of biological evolution to simulate a finite number of epochs in order to 

find the most fitted individuals that ultimately represent the desired solutions. [24]. The 

set of all individuals of an epoch is called population. In our case, the genetic algorithm 

learns certain parameters (Table 1) to obtain an evolution of the information diffusion as 

close as possible to the real one. The real evolution of diffusion and the result provided 

by our diffusion model from a particular individual are both represented as a one-

dimensional array. We choose that the stop condition of the genetic algorithm should be 

given by the iteration of a certain number of epochs. The following operations are 

performed at each epoch: selection, crossover and mutation. 

Selection. There are different methods of selecting parents to create the new generation, 

and we choose the tournament selection. The basic idea for this type of selection is as 

follows: 

 We sample k random individuals from the current population and choose the one with 

the best fitness as a parent (k=2 in our case); 

 The procedure is repeated to select more parents. 

We also use the elitism operation in which we get the individual with the best fitness 

from the previous population and add it to the new population. In this way we will never 

lose the best solution found throughout the epochs. 

Crossover. After the selection process is completed, the selected parents (i.e. mating 

pool) are used for crossover. We choose pairs of two parents to create children with new 

genes for the new population. In Fig. 9 we show how the parents are paired. If the 
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number of created children is not sufficient to create the new population at the expected 

size, then the pairs of parents are crossed again to obtain other children. 

 

Fig. 9. The way the parents are paired for mating 

In our case, the genes from each individual have a real numerical representation, and 

we use the arithmetic crossover: 

(1 )i i iz x y     
 (18) 

where xi and yi are the i-th gene of the two parents, zi is the i-th gene of the child, and α 

is a uniformly distributed random number in the interval [0, 1]. 

Mutation. Each gene of a new child has a small chance of undergoing unexpected 

changes. This unexpected event represents the mutation operation. We choose the 

random resetting mutation, in which the value of a gene is replaced by a random value 

from its given range (Table 1). 

General Pseudocode. Below one can see the general pseudocode of a genetic algorithm 

(Algorithm 1), as used for the experiments in the present paper. 

Algorithm 1. The proposed algorithm 

1. For epoch = 1 to MAX_EPOCH do 

2. //Compute the fitness of all individuals in the 

3.   //population. The dissemination of information is 

4.   //simulated for each individual and is compared to the 

5.   //real one 

6. Compute_fitness(Population); 

7. //Parent selection for the mating pool 

8. Mating_pool = Selection(Population); 

9. //Elitism: the best individual is always chosen for the 

10.   //next population 

11. Best_individual = Best(Population); 

12. //Empty the population and keep only the best individual 

13. Clear_population(Population); 

14. Population.Add(Best_individual); 

15. //Create (MAX_INDIVIDUALS - 1) children 

16. Children = Crossover(Mating_pool, MAX_INDIVIDUALS - 1); 

17. //Modify newly obtained children 

18. Final_children = Mutation(Children); 

19. //Add children to the population 

20. Population.Add(Final_children); 

21. End 

22. //The best solution obtained 

23. Get_parameters(Best_individual); 
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The Fitness Function. The fitness of an individual, which is used in the selection 

process, is computed using a fitness function that is problem specific. In our case, the 

fitness function (19) computes the difference between the real and the simulated 

diffusion using the Euclidean distance, where Oi is a sample from the real diffusion, Si is 

a sample from the simulated diffusion, and N is the size of the arrays. 
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(19) 

In our case, a better individual will have a lower value for f: the smaller the f, the 

closer the individual is to the optimal solution. 

In Fig. 10 we show an example in which the parameters of each individual are used in 

the information diffusion model to provide an evolution of the diffusion. Then, the 

obtained evolution can be compared with the real one using the fitness function to obtain 

the fitness of an individual. 

 

Fig. 10. Example of fitness computation for each individual 

In our case, the genetic algorithm has the following configuration: epochs – 100, 

population size – 100 individuals, and mutation rate – 10%. This algorithm aims to learn 

8 parameters from our diffusion model, shown in Table 1. 

4. Experimental Results 

4.1. Description of the Two Real-World Datasets 

In order to evaluate the efficiency of our information diffusion model, we use two real 

datasets that contain the activity of users over time. We use the genetic algorithm to 

learn the parameters of our information diffusion model for each real diffusion of a 

dataset. The first dataset is a collection of information on the activity of Twitter users 
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during the announcement for the discovery of the Higgs Boson [1], which also contains 

the network structure. The activity of a user on Twitter represents his/her action to share 

a piece of information he/she saw on a neighbor’s page (retweet). The shared 

information is visible to all of the user’s neighbors. The dataset also contains the 

timestamps when users share their information. Therefore, we can extract the activity of 

users over time and correlate it with the evolution of information diffusion, i.e. the target 

solution used by the genetic algorithm. The second dataset, memetracker9 [2], is a large 

collection of data in which the exchange of information between users is described by 

text messages or links to other web pages. This dataset contains the diffusions of several 

topics that are collected over several months. The diffusion of each topic discussed by 

users is easily identified in paper [25], and we choose two of them: “lipstick on a pig” 

and “fundamentals of our economy are strong”. The diffusion evolutions from each 

dataset are provided to the genetic algorithm to learn the parameters of our diffusion 

model and to obtain evolutions as close as possible to the real ones. 

4.2. Results for the Higgs Dataset 

For the Higgs dataset, we apply the genetic algorithm on a synthetic network of 1000 

nodes with scale-free topology because the original network contains 456,626 nodes and 

14,855,842 connections, which results in a very high simulation time and cannot be used 

in the genetic algorithm. In [6], the authors state that the evolution of information 

diffusion in scale-free networks is similar even if the networks have different sizes. 

Thus, we can apply the genetic algorithm without having to simulate a very large 

network. 

The parameters learned by the genetic algorithm are initialized with random values in 

their specific range (Table 1), and it is expected to obtain weaker solutions in the first 

epochs. In Fig. 11 we show an evolution example of the best solutions from each epoch 

on the diffusion of the Higgs dataset and one can see that the solutions are drastically 

improving in the first 20 epochs. We consider that 100 epochs is an acceptable stop 

condition for the genetic algorithm because no significant improvements can be 

observed for a higher number of epochs. 
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Fig. 11. The best fitness obtained at each epoch 

In the case of the Higgs dataset, we show in Fig. 12.a the evolution of the information 

diffusion obtained by our diffusion model on the 1000-node synthetic network. The 
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continuous line represents the real evolution of the diffusion, while the dotted line 

represents the diffusion obtained by our model. The simulated diffusion is obtained by 

counting the active nodes at intervals of one hour. Then, we use the learned values of the 

diffusion model parameters to run a simulation on the real network provided by this 

dataset. 
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a)                                                                   b)  

Fig. 12. Simulated diffusion on: a) synthetic 1000-node network, b) real network 

We show the result in Fig. 12.b and one can see that the obtained diffusion is close to 

the real one, except that the simulated diffusion has a greater attenuation. We could not 

make any further adjustments of the parameter values on this large network because it 

takes a day to run 2-3 simulation rounds. 

We mention that for the Higgs dataset we do not use the modeling for the daytime 

and nighttime periods because users had different geographical positions on several 

distant continents, according to [7], and our algorithm does not take into account 

different times of the day between users. 

Using a Community Network. Given that real networks contain many communities, we 

want to observe the impact of using a synthetic network with communities in our 

information diffusion model. The motivation of this study is due to the fact that the 

simulated diffusion has a greater attenuation (Fig. 12b). Regarding the high peak 

obtained with our model on the real network (Fig. 12b), in our investigations we observe 

a very similar behavior when we use a synthetic network with communities. This 

community network has 1000 nodes and was generated using the Gaussian random 

partition graph [26]. In Fig. 13a, one can see the evolution of simulated diffusion both 

on the real network and on the network with communities. These evolutions are 

provided by our model using the parameters learned by the genetic algorithm on the 

synthetic scale free network. Due to the similarity between these two evolutions, we use 

the genetic algorithm to learn the parameters of the diffusion model on this network with 

communities. We want to simulate the diffusion of information on the real network with 

two different sets of parameters: the first set is learned by the genetic algorithm on the 

synthetic scale free network and the second set is learned on the synthetic network with 

communities. We can observe in Fig. 13b that the simulation of the real network with 

the second set of parameters now has an evolution closer to the real diffusion. Based on 

these observations we can say that a limitation of our model is the choice of a synthetic 

network with a certain topology. 



 A Novel Information Diffusion Model Based...           723 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 20 40 60 80 100 120 140 160

A
ct

iv
e 

n
o

d
e

s 
(%

)

Time (hours)

Parameters learned from the scale free synthetic network

Real diffusion Simulated: real network Simulated: community network

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 20 40 60 80 100 120 140 160

A
ct

iv
e 

n
o

d
es

 (
%

)

Time (hours)

Simulations with the real network

Real diffusion Scale free network parameters Community network parameters

 

a)                                                                   b)  

Fig. 13. Comparative simulations: a) real network and community network, b) real network with 

different model parameters 

4.3. Results for the memetracker9 Dataset 

The second dataset (memetracker9) is very large and contains conversations between 

users for several months, between 2008 and 2009. This dataset does not provide the real 

network, so we show experimental results using only the 1000-node synthetic network. 

In paper [25], the authors provide a picture that contains various diffusions from this 

dataset and highlight the main phrases (i.e. the topic of discussions) for each diffusion. 

In our work, we use specific keywords to extract the diffusion of the following two 

topics from September 2008: “lipstick on a pig” and “fundamentals of our economy are 

strong”. The keywords used to identify the phrases of the first topic are “lipstick” and 

“pig”, while for the second topic we use the keywords “strong”, “economy” and 

“fundamentals”. Our diffusion model is capable of providing a single evolution of the 

diffusion for a single topic discussed by users. In Fig. 14 we stack the diffusion of the 

two topics on the same plot to easily observe the different time periods in which these 

diffusions are active and also it is easier to compare the evolution of the diffusions with 

those of [25]. The continuous lines represent the real diffusions and the dotted lines are 

the simulated diffusions. We also distinguish the two topics by line width: high width for 

the “lipstick on a pig” topic, and low width for the second topic. The simulated diffusion 

is obtained by counting the active nodes at six-hour intervals. 

The evolution of diffusion from each topic is obtained by a separate simulation using 

the genetic algorithm, therefore the parameters learned for the diffusion model have 

different values for the two topics. Regarding the parameters that are not learned with 

the genetic algorithm, the main difference between the simulation of the two topics is 

that we change Tstart_informant, which is the moment when the information is suddenly 

spread (i.e. users discuss a lot about the given topic). Although the diffusion model is 

applied on the synthetic network, one can see in Fig. 14 that the obtained diffusion is 

very close to the real one. 

In our model we propose that the user login rate depends on the time of day (i.e., day 

or night). In [27] a detailed analysis of user activity is presented on two datasets and a 

certain sinusoidal periodicity is observed in this activity. The authors notice that these 

activities are periodic at 24-hour intervals on both datasets. They also illustrate the 
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activity of users during a week, and an interesting aspect is that they identify a consistent 

drop in activity during weekends on both datasets. Our model does not take into account 

an attenuation of user activity during weekends, therefore it cannot reproduce these low 

amplitudes of periodicity as the real data (e.g. Fig. 14, time frame 230-270 or 460-480). 
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Fig. 14. Information diffusion simulation for two topics in the memetracker9 dataset 

4.4. Influence of Parameters 

In this section we make an analysis for some of the individual parameters of our 

diffusion model. The impact of a parameter can be analyzed separately by simulating the 

diffusion if we keep all the parameters constant and adjust only the parameter of interest. 

If we refer to the parameters learned by the genetic algorithm, we can show, for 

example, the impact of the login rate (Fig.15) and that of the boredom of the nodes (Fig. 

16). Depending on the two models we have: 

 psychological modeling: normal login rate (λnormal), boredom over the amount of 

information (Fattenuation) 

 sociological modeling: social login rate (λsocial), boredom over the activity of 

neighbors (Fsocial_tolerance) 
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a)                                                                       b)  

Fig. 15. Login rate modeling: a) normal login rate; b) social login rate 
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a)                                                                       b)  

Fig. 16. Boredom modeling: a) over the amount of information; b) over the activity of neighbors 

We can see that the parameters of sociological modeling have a great impact on 

diffusion. The continuous black line represents the simulated diffusion using the values 

of the parameters obtained with the genetic algorithm. The other two evolutions are 

obtained by varying a single parameter (the one of interest) to observe its impact on the 

diffusion. 

Unlike other works (e.g. [5, 6]) in which the parameters are manually adjusted 

through repeated simulations, we present a model in which its parameters are 

automatically learned, and the obtained diffusions are very promising compared to the 

real ones. 

5. Conclusions 

Developing models capable of imitating the information diffusion on a social network is 

a challenging task at the moment. In this paper we propose such a model that imitates 

the diffusion of information as well as possible. The model is based on stochastic node-

level decisions. Each node has its own set of rules by which its actions are defined. The 

decision of a node, whether or not to transmit information, is modeled both from a 

psychological point of view and from a sociological point of view. In modeling from the 
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psychological point of view, we propose that the decision of a node should be influenced 

by its preferences on the content of the information. On the other hand, when modeling 

from the sociological point of view, we propose that the decision of the node should be 

influenced by the activity of its “friends”, i.e. we model the gregarious behavior of the 

node. Also, most of the parameters of our diffusion model are learned by means of a 

genetic algorithm to eliminate the effort of adjusting their values. Then, we can use the 

learned values in the proposed diffusion model to obtain an evolution of information 

diffusion as close as possible to the real one. We use two datasets that contain real 

diffusions, and the results show that our model reproduces them very well. 

However, one must take into account the fact that there is no unique model for all 

situations. One goal of our work was to show that the proposed model with psychosocial 

factors is capable of approximating real data. But every case will likely need different 

values of the parameters, which can be found through automatic search using genetic 

algorithms or other optimization methods, e.g. based on gradients. 

As a future direction of investigation, one can investigate the inclusion of additional 

parameters in the model (such as those accounting for weekend activity or the different 

geographical distribution of users on different continents), in order to further increase 

the prediction accuracy. One must also consider the trade-off between increase 

flexibility and the growth of the search space, while applying the automatic 

determination of parameter values. 
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