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Abstract. The creation of a Machine Learning system is a typical process that is 

mostly automated. However, we may address some problems in the during 

development, such as the over-training on the training set. A technique for 

eliminating this phenomenon is the assembling of ensembles of models that 

cooperate to make predictions. Another problem that almost always occurs is the 

necessity of the human factor in the data preparation process. In this paper, we 

present DrCaptcha [15], an interactive machine learning system that provides 

third-party applications with a CAPTCHA service and, at the same time, uses the 

user's input to train artificial neural networks that can be combined to create a 

powerful OCR system. A different way to tackle this problem is to use transfer 

learning, as we did in one of our experiments [33], to retrain models trained on 

massive datasets and retrain them in a smaller dataset. 

Keywords: machine learning, neural networks, transfer learning, interactive 

machine learning, ensemble techniques. 

1. Introduction 

A typical process for building a machine learning system starts with the preparation of 

the data by an expert. This process could be very long and expensive since it must be 

done manually. Then follows the construction of a model using a learning algorithm on 

these data. After training, the model is evaluated and if its performance is satisfiable it 

can be used for predictions in unseen data? But if not this long training process starts 

again after tweaking the parameters of the learning algorithm.  This procedure, many 

times involves a little trial and error and is repeated until the model performance is 

sufficient. Depending on the learning algorithm, the size of the training set and the 

hardware used this process could take from some hours to months! Another problem that 

occurs very often during the training phase is the over-fitting of the trained model to the 

training data. That makes the model lose its ability to generalize on unseen data. In this 

paper, we will try to tackle those problems by using transfer learning [20], ensemble 

[11] and interactive machine learning [18] techniques as proof of concept. 

First, let's take the problems one by one. In order to start training a model, we need to 

have a sufficient amount of labeled data, and very often the labeling of this dataset must 

be done by a human. Our approach to this issue is to outsource the labeling to a service 
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we created, that will be used by third-party applications, and use the user's data to 

prepare our dataset. The next problem we face is the long training time that does not 

allow the fast formation of a model along with the overtraining of the model in the 

training set. Our approach to this problem is not overcomplicating things and create 

simple and neat machine learning models that can be trained in a very short time and 

give us feedback very fast. But this comes with a price, since the simple models may not 

be as accurate as the complex models. To overcome this issue we can construct 

ensembles of models and use those instead. Most of the time we will find out that the 

ensemble generalizes better than any of the models that make it up. This technique is 

also useful when the training set is very small and/or the learning algorithm becomes 

prone to over-fitting. 

Having that in mind, we developed “DrCaptcha” a machine learning application that 

will serve as a Proof of Concept for the solutions we are proposing. “DrCaptcha” is an 

interactive machine learning (iML) application. The purpose of this application is to 

take advantage of the feedback provided by users and use it to optimize a machine 

learning model. The purpose of this model is to perform Optical Character Recognition 

(OCR) on handwritten characters. The latter has attracted the interest of many 

researchers [5, 6, 7, 8, 9, 13] with very good results. Our solution to the problem focuses 

primarily on the minimization of the data preparation phase. We then focus on the speed 

of the training phase along with the avoidance of overfitting. Our goal was to achieve 

state-of-the-art results with the above limitations.   

“DrCaptcha“ initially provides users with an automated CAPTCHA system with the 

ability to distinguish whether the user is a human or a machine. The system then 

compares the values given by the user with the values stored in the database for the 

CAPTCHA, and if these values match then the system recognizes that the user is human 

and otherwise not. 

The difference of this system from the classic CAPTCHA systems is that the system 

itself, for some of the images, does not know all the characters. If the system verifies 

that the user input matches the data in the database, it will take the user values for the 

non-classified digits, and classify them according to the values given by the user (see 

Fig. 1.). In case the user login is incorrect, the system will not classify the characters. In 

this way, the user provides implicit feedback to the system by classifying characters, 

which will be used later to train machine learning models. This functionality is available 

through a GUI and an API. 

Based on the classified characters the application trains some artificial neural 

networks. After training and evaluating them, stores their training parameters, structure, 

and the confusion matrix. The latter will be used to synthesize ensembles of models that 

operate in the manner described later in this paper. 

After the training of the neural networks, an administrator can create an ensemble of 

neural networks and assign weights to each of them. This ensemble acts as a meta-model 

that takes the prediction from the base classifiers and then decides which prediction to 

output. When a user creates or makes a change to this ensemble, the application 

evaluates it using a test set and saves its parameters again. 
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Fig. 1. How our CAPTCHA service works  

Finally, the application provides a more interactive evaluation method where the user 

can "paint" a character and ask the system which character it is. The system will then 

retrieve the ensemble with the highest accuracy from the database, and give the user its 

prediction. 

Also, if the base classifiers disagree and there are more than one dominant 

predictions, the system may come up with alternative results for an input. This can be 

extremely useful for an optical character recognition system. For example with the 

addition of some extra rules, even word corrections can be made. One possible solution 

that takes advantage of this feature is, for the system to be expanded to use a dictionary, 

and look at the different predictions given by the neural network ensemble, and 

comparing them with the dictionary, making the necessary corrections until the word 

matches with a word in the dictionary. 

2. Related Work 

2.1. Interactive Machine Learning 

Interactive Machine Learning (iML) is a very promising tool for enhancing both human 

and computer capabilities. In the past, attempts have been made to create classifiers 

from humans manually using interactive machine learning systems. Those systems 

usually follow the same pattern - the training of a machine learning model using training 

data, and the evaluation of this model by a human. The feedback from this evaluation is 

considered for the creation of another model. This process repeats until the model 

performance is sufficient. 

One interesting iML application is CueFlik [1]. CueFlik is an image web search 

application that allows users to quickly create their own rules for re-ranking images 

based on their visual characteristics. Users can then re-rank any future Web image 

search results according to their rule. This approach can extend the capabilities of 

existing computer vision methods to make a web search application more efficient. 
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ReGroup [2] (Rapid and Explicit Grouping) is a system that applies end-user 

interactive machine learning to help people create custom, on-demand groups in online 

social networks. It works by observing a person’s normal interaction of adding members 

to a group while learning a probabilistic model of group membership which it uses to 

suggest both additional members and group characteristics for filtering a friend list. 

Also, some attempts have been made to enable users to explicitly create classifiers. 

These methods are particularly helpful because an expert should not expect the 

automatic algorithm to discover something obvious. When such systems used by a 

domain expert, background knowledge is automatically exploited because the user is 

involved in almost every decision that leads to the induced models. 

In [3], an interactive machine learning system was put in place which enabled its 

users to create a decision tree with a graphical environment by drawing a line between 

the points (corresponding to samples) that were graphically represented for a feature 

using in a two-dimensional visual interface. In [4] transparent boosting tree was 

proposed which visualizes both the model structure and prediction statistics of each step 

in the learning process of gradient boosting tree to user, and involves user’s feedback 

operations to trees into the learning process such as add/remove a tree, select feature 

group for building a new tree, remove a node on the current tree and expand a leaf node. 

The system also allows the users to go back to any previous model in the learning loop. 

2.2. Optical Character Recognition with Neural Networks 

One of the most prevalent methods of machine learning is artificial neural networks. 

EMNIST [8] is the widely used benchmark for the hand-written recognition task. 

Multiple works [5, 6, 7, 8, 9, 13] have used machine learning models on the EMNIST 

dataset and have achieved very good results.  

In [8], EMNIST’s balanced dataset used as input for both a linear classifier and 

OPIUM-Based classifiers [10] with a different number of hidden neurons each. [6] 

proposed a deep neural network that is composed of two auto-encoder layers, with 300 

and 50 neurons respectively and one softmax layer. [7] proposed a neuro-evolutionary 

algorithm that evolves simple and successful architectures built from embedding, 1D 

and 2D convolutional, max pooling and fully connected layers along with their hyper-

parameters. 

2.3. Ensemble Techniques 

Such methods improve the predictive performance of a single model by training multiple 

models and combining their predictions. In the past, several attempts have been made in 

creating ensembles, with impressive results [11]. 

One way to increase the performance of a machine learning model is to learn multiple 

weak classifiers and boost their performance using a boosting algorithm. One 

disadvantage of those is that they require re-training based on the misclassified samples, 

and this may slow down the learning process. [12] proposed an aggregation technique 

that combines the output of multiple weak classifiers that do not require any re-training. 
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As a result, the training process is very fast while the model achieves state-of-the-art 

results. Another advantage of this framework is that it can combine classifiers that were 

created using different algorithms. 

In recent years there have been a few attempts to combine the ensemble techniques 

and deep neural networks approaches [11]. While most of them center around 

developing an ensemble of deep individual neural networks, techniques like dropout 

split the initial neural network into several pieces at training time, to avoid over-fitting. 

Such techniques aim to reduce complex co-adaptations of neurons since a neuron cannot 

rely on the presence of particular other neurons in an individual neural network. Thus 

the neural network is forced to learn more robust features [16]. 

2.4. Transfer Learning 

As stated earlier in this paper, the collection of data is complicated and expensive, 

making it extremely difficult to build a large-scale, high-quality annotated dataset due to 

the expense of data acquisition and labeling. Transfer learning [20] is the methodology 

of transferring knowledge from a source domain to a target domain. Usually, the size of 

the source domain is much larger. This process enables us to tackle problems with 

insufficient training data, which has a tremendously positive effect on many areas that 

are difficult to improve because of inadequate training data [21]. The main idea is that a 

deep neural network learning process is similar to the processing mechanism of the 

human brain, and it is an iterative and continuous abstraction process. The network's 

front-layers can be treated as a feature extractor and identify low-level features of 

training data. At the same time, subsequent layers can extract more high-level features 

that provide the network with the information needed to make the final decision.  

By assuming that the neural network can learn low-level features from another 

dataset, we can take a neural network train it on a huge dataset, acquire a lot of low-level 

features, and retrain a part or all of it with a smaller dataset. This process will enable our 

model to take advantage of the low-level features learned from the first dataset and 

combine them with the high-level features learned from the second smaller one to make 

better predictions. For example in [22] the Inception-v3 [28] was used with weights 

trained on ImageNet [26] dataset and achieved 70.1% accuracy on CIFAR-10 dataset 

[23] and 96.5% on Caltech Faces dataset [24]. While transferring knowledge from a 

model trained on a labeled dataset is ideal, we can also transfer knowledge from models 

trained on unlabeled datasets. In [25], a new machine learning framework was develop 

called “self-taught learning” that uses models trained using unlabeled data for 

classification tasks. Another benefit that emerges is that the first half of the process - the 

training on the huge dataset - can be done once and use the low-level features learned on 

various more specialized datasets making the training cycle for these much smaller.  

3. Ensemble Methodology 

The method described in this section is an ensemble technique that uses artificial neural 

networks as base classifiers. Any type of neural network could be used. The only 
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limitation is for the classifier to give the normalized probabilities for each category as a 

result. Although we are using neural networks, any type of classifier could be used as 

long as the above limitation applies. 

This method combines a series of models of artificial neural networks (base 

classifiers), M1, M2, . . . , Mk, aiming at creating an improved model, M*. To understand 

this concept, let's say we have a patient and we want to make a diagnosis based on his 

symptoms. Rather than asking for a doctor's opinion, we can ask for an opinion from 

many. So if we see that the majority of doctors agree on a diagnosis, then we can choose 

it as the final diagnosis. The final diagnosis can be made by a majority, where the vote 

of each doctor has the same weight. The majority of voters of a large group of doctors 

may be more reliable than majority voting by a small group or only one. This is the case 

in most cases for an ensemble of classifiers. 

The structure of artificial neural networks is not particularly relevant, as long as the 

last layer has a softmax activation so that the output layer gives us what normalized 

probability that the input sample can belong to. Let us call this probability pi,j where i 

denote the class, and with j the model from which it emerged. That is, the probability pi,j 

is the probability for class i by the artificial neural network j. We also can have k 

training sets, D1, D2,. . . , Dk, where Di (1 ≤ i ≤ k) is used to create the Mi classifier. 

Each of the models of artificial neural networks M1, M2,. . . , Mk has a weight  

w1, w2,. . . , wk which is normalized so that the total weights for all artificial neural 

networks are 1. Continuing with the previous example, we assume that we place weights 

on the value of diagnosis for each doctor, based on the accuracy of previous diagnoses 

they have made or based on their specialty. The final diagnosis is then a combination of 

weighted diagnoses. In the case of artificial neural networks, we can compare education 

with the training parameters and the structure of the neural network. An examination of 

previous diagnoses can be likened to the examination of the confusion matrix. 

Let us now pass a sample X as an input to all artificial neural networks. At the final 

layer of each model Mi, we will have the probability of each class for the input. Then we 

multiply all outputs of the artificial neural network Mi with the weight of the artificial 

neural network. The same action will be done for all neural networks of the ensemble, 

and at the end of the process, the probabilities of each model will be added by category, 

with the corresponding categories of all the models of the ensemble. The category with 

the largest sum of probabilities will be the output class. 

Fig. 2. shows schematically how this method works. On the left side are the base 

classifiers. On each base classifier, each output neuron is associated with the 

corresponding neuron that handles the class. The above structure looks intuitive to an 

artificial neural network in which the output layer is not connected with all the neurons 

of the previous layer. 

This process is mathematically described by Eq. 1. and Eq. 2. In those, with P i we 

denote the sum of the probabilities for class i by all neural networks. With pi,j we denote 

the probability given by the network j the class, for the class i. With wj we denote the 

weight of the neural network j, while the number of classes is c. 

Pi= ∑
j= 1

k

pi , j w j

 

(1) 
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class= argmax(P1, P2,...,Pc)  
(2) 

The advantage of this method is that it does not only take into account the only 

prediction made by neural networks. The result is deduced from the probabilities given 

by artificial neural networks for each class as output. Thus, the result is not only 

deducted as a weighted vote but also the confidence of the base classifiers in their 

prediction. Continuing our diagnosis example, now we take into account the confidence 

of each doctor along with the previous ones. 

As for the choice of weights for each artificial neural network, this can be done 

automatically by considering the accuracy of the model in a validation set with Eq. 3 

where wi is the weight for neural network i, ai is the accuracy of the neural network i, 

and k is the total number of neural networks in the ensemble.  

wi=
a

i

∑
j= 1

k

a
j

 

 

(3) 

  

This setting can also be done manually by an administrator who can adjust weights by 

looking at the accuracy of each neural network and other statistics. Those statistics could 

be different metrics such as precision, sensitivity, specificity, and f-mesure or additional 

insights we can extract from the confusion matrix of the ensemble and each base 

classifier. The administrator could also consider the data gathered during each base 

classifier's training phase, such as the number of epochs, batch size, the increase or 

decrease of loss, and accuracy on each epoch indicating the level of over-training of 

each classifier. 

Last but not least, the administrator should manually test the ensemble with their data 

(excluding train and test set), see how the ensemble and each base classifier behave and 

adjust the weights accordingly. Repeating this process multiple times ensures the 

classifier's quality and, with each iteration, enhances the ensemble more and more with 

human expertise.  

The whole process can be summarized by the following Аlgorithm 1. 

Algorithm 1. The proposed algorithm 

1. Training: 

 1. Train all base classifiers (neural networks) with the training 

set(s). 

 2. Test all base classifiers with a test set. 

 3. Manually add weights to the base classifiers. (Add more base 

classifiers to the ensemble and adjust weights) 

 

2. Prediction: 

 1. Make predictions with all the base classifiers and extract the 

probabilities for each one. 

 2. Compute the overall probability for each class. 

 3. The ensemble prediction is the class with the highest 

probability. 
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Fig. 2. Schematic representation for the proposed model 

 



 DrCaptcha: An Interactive Machine Learning Application           695 

 

4. Context of Experimental Study 

To test this methodology, we created two ensembles on two different datasets. The first 

one was capable of performing optical character recognition tasks, while the second one 

was a system that can detect pneumonia from chest x-rays. The base classifiers used in 

the first set of experiments were custom made neural networks (shallow, deep, and 

convolutional). However, on the second set of our experiments, we used existing state-

of-the-art neural network architectures with some modifications to prepare them for the 

task. This way, we can confirm that our methodology works regardless of the 

architecture used. 

4.1. Optical Character Recognition System   

The OCR system predicts handwritten digits, uppercase, and lowercase characters. The 

dataset used for training was the EMNIST’s balanced dataset which consists of 47 

classes. For the creation of this system, we designed four neural networks which are 

described later in this section. Then we used these networks to assemble an ensemble.  

The first artificial neural network to be implemented is a simple neural network with 

10000 hidden neurons. The network takes an image (matrix) of 28x28 as input and 

converts it to a vector of size 784. Then it passes this image from a dense layer with 

10000 neurons using ReLU [14] function as an activation function and then a 50% 

dropout layer so that the network is not over-trained. Finally, there is a dense layer with 

47 neurons (as many as the categories of EMNIST’s balanced). The activation function 

of the last layer is a softmax function. The categorical cross-entropy was used as a cost 

function with an adadelta [17] optimizer was used as a cost function. This neural 

network had about 85.05% accuracy. 

The second artificial neural network is a deep neural network consisting of 8 layers. 

The network takes an image of 28x28 as an input and converts it to a vector of size 784. 

It then passes the image to a dense hidden layer of 4096 neurons with the ReLU 

activation function. It then goes through a 10% dropout layer. Then we still have a dense 

layer with 1024 neurons that also uses ReLU as an activation function. Then we have 

another 10% dropout layer. Finally, we have a dense layer with 512 neurons and a ReLU 

activation function followed by a 10% dropout layer. The last dense layer has 47 

neurons. The activation function of the last layer is the softmax function. The categorical 

cross-entropy was used as a cost function with an adadelta optimizer. This neural 

network achieves an approximate accuracy of 85.07%. 

The third artificial neural network is a deep convolutional neural network consisting 

of 8 layers. The first layer is a convolutional layer with 32 filters, a kernel size of 3x3 

and the ReLU activation function. This layer takes as an input a 28x28 image and 

produces as output 32 images of 32x26, one for each filter. The next layer is also a 

convolutional layer the same as the previous one but this time with 64 filters that take 

the previous layer’s images as input and produces 64 output images matrices  of size 

24x24. These “images” go to a max-pooling layer with a 2x2 window size that reduces 

the size of them to 12x12. The convolutional component of the network ends with a 

50% dropout layer. Then we have a layer that undertakes to take the images of the 
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convolutional neural network and converts them to a vector of size 9216. This vector 

enters a dense layer with 1024 neurons and a ReLU activation function followed by a 

dropout layer with a percentage of 25%. Finally, we have a dense layer with 47 neurons 

and a softmax activation function. The categorical cross-entropy was used as a cost 

function, with an adagrad [18] optimizer. This neural network achieved an average 

accuracy of 88.24%. 

The fourth artificial neural network is a deep convolutional neural network consisting 

of 8 layers. The first layer is a convolutional layer with 32 filters, kernel size of 3x3 and 

ReLU activation function. This layer takes as an input a 28x28 image and produces as 

output 32 images of size 32x26, one for each filter. The next layer is also a 

convolutional layer identical to the previous one, which takes the previous layer’s output 

as input and produces 32 24x24 “images”. These images go to a max-pooling layer with 

a 2x2 window size that reduces the size of the images to 12x12. The convolutional part 

of the network ends with a 25% dropout layer. Then we have a layer that takes the 

output matrices of the convolutional network and converts them to a vector of size 4608. 

This vector enters as an input to a dense layer with 512 neurons and a ReLU activation 

function, followed by a dropout layer of 50%. Finally, we have a dense layer with 47 

neurons and softmax as the activation function. The categorical cross-entropy was used 

as the cost function with an adagrad optimizer. This neural network achieved an 

approximate accuracy of 88.5%. 

We choose these four neural networks to ensure the robustness of our ensemble 

technique by using different styles of neural network architectures. The first one was a 

primitive type of neural network with only one hidden layer, favoring simplicity over 

complexity.  The second one was a deep neural network that had multiple hidden layers, 

generally capable to learn more difficult tasks than the first one. The other two were 

convolutional neural networks that generally train faster and perform better at image 

classification tasks such as optical character recognition. 

Subsequently, we joined the networks designed above to create an ensemble. The 

weights assigned to those can be seen in table 1. These numbers were assigned after an 

intensive study of neural network performance on the test set. The overall accuracy of 

the ensemble in the EMNIST’s balanced test set was about 88.89% which was almost 

0,4 % more accurate than the most accurate neural network in the ensemble. 

Table 1. Accuracy and weights of each neural network in the OCR ensemble. 

Neural Network Accuracy Weights 

1st 85.06 % 10.09 % 
2nd 85.07% 10.09 % 
3rd 88.24 % 34.78 % 
4th 88.5% 43.48% 

4.2. Pneumonia Detection System 

To ensure our methodology's robustness, we performed another set of experiments on 

the ChestXRay2017 [27] dataset. Specifically, we created an ensemble of classifiers that 

is capable of detecting pneumonia from chest x-rays. To assemble that ensemble, we 
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used four state-of-the-art neural networks, InceptionV3 [28], ResNet50 [29], Xception 

[30], and VGG16[31]  with some modifications to prepare these neural networks for the 

task.  

We removed the output layer of each. In its place, we added a global polling layer 

followed by a dense layer of 256 neurons, followed by a 50% dropout layer and an 

output layer with two neurons and a softmax activation function. These networks were 

pre-trained on ImageNet [26] dataset, and we retrained them on ChestXRay2017 using 

categorical cross-entropy as loss function and Nadam [32] as the optimizer. In table 2, 

you can see the accuracy and the weights assigned to these networks. 

Table 2. Accuracy and weights for each base classifier in the pneumonia detection ensemble. 

Neural Network Accuracy Weights 

Inception-v3 94.39 % 40 % 
ResNet50 92.63 % 20 % 
Xception 93.43 % 20 % 
VGG16 93.59 % 20 % 

5. Experiments and Results 

The dataset used for our first set of experiments was the balanced version of EMNIST’s 

balanced dataset which consists of 47 classes of digits lowercase and uppercase letters. 

The official EMNIST’s balanced dataset consist of 112,800 training samples, and 

18,800 test samples. The samples for the two sets were taken by different groups of 

people. We trained our models on the official training set and tested it with the official 

test set. 

For the second set of experiments, we used the ChestXRay2017 dataset, which 

contains 5856 X-Ray images 5232 for the training set and 624 for the test set divided 

into two classes, pneumonia and normal. 37.5% of the cases were chest x-rays of healthy 

people, while 62.5% were of patients with pneumonia. The dataset has an equal 

distribution of the two classes in training and test sets.  

5.1. Training on EMNIST 

We trained our models for twenty epochs and a batch size of 256 on a Quad-core Intel 

Core i5-4460. Table 3 shows the difference in training time between us and our main 

competitors, TextCaps [13]. In our environment, TextCaps training took 1 day, 20 hours 

and 12 minutes to run for the whole training set while the training time for our 

methodology was only about two hours and 50 minutes. That’s about 15 times faster 

than our main competitors! 

 



698           Rafael Glikis, Christos Makris, and Nikos Tsirakis 

 

Table 3. Training performance comparisons between TextCaps [13] and DrCaptcha using the 

whole EMNIST’s balanced training set 

Method Training time (minutes) 

TextCaps [13] 2652 minutes 

DrCaptcha 172 minutes 
 

From our experiments, it can be seen that training time was significantly better for 

our methodology. That’s very important for every machine learning methodology since 

training time is directly related to more expensive equipment and more expenses in 

general. Subsequently, methodologies with low training time and low hardware 

requirements are more likely to be used by non-tech users and small businesses on old 

hardware and mobile devices. Another advantage of our methodology and other 

ensemble methods is that we can add more models to our ensemble later to make our 

model even stronger. The latter can be done with only a few clicks in our application. 

5.2. EMNIST Test Set Performance 

Table 4 illustrates the accuracy achieved by different methods on the EMNIST’s 

balanced dataset. It can be seen that we were able to surpass most of the existing 

methods including EDEN [7].  

Table 4. Performance comparisons between methods for the EMNIST’s balanced dataset 

Method Accuracy 

  OPIUM-Based classifiers [8] 78.02% 

CSIM [5] 85.77% 

Maximally Compact and Separated Features with Regular Polytope Networks 

[9] 

88.39% 

A mixture model for aggregation of multiple pre-trained weak classifiers [12] 88.39% 

EDEN [7] 88.3 % 

TextCaps [13] 90.46 % 

DrCaptcha 88.89 % 
 

Even though we were not able to outperform TextCaps in the  accuracy performance, 

we are very close, and this performance gap will not make much difference in a real-life 

application. In addition we highlight that with our methodology if the prediction a model 

in the ensemble and another or more predictions are likely to be true then our model 

returns all of them. This smart heuristic will make a lot of difference in a real-life 

application, and in some situations could be even better than mathematically defined 

accuracy. 

5.3. Training on ChestXRay17 

We trained the four neural networks on an NVIDIA GeForce GTX 1050 (640 Cuda 

cores, compute capability 6.1). The training took place for a maximum of 40 epochs for 

all of them, but we stopped training if the loss function stopped getting better for at least 
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five epochs. We also divided each epoch into 50 steps. Because the training set was 

small for the task, we also performed some random data augmentation for each image 

during training. Specifically, we performed rotations from 1° to 15°, zooms from 1% to 

20%, and shifts within the range of 1-10% both vertically and horizontally. The average 

training time for each base classifier was 44 minutes. 

5.4. ChestXRay17 Test Set Performance 

The results of our ensemble were way better than each base classifier individually.  

Specifically, the ensemble achieved 95.51% accuracy, 97.43% precision, 95.47% 

sensitivity, 95.57 % specificity, and the f1 score was 96.44%.  A summary of each base 

classifier's performance metrics can be found in table 5. 

Table 5. Performance comparison between the ensemble and base classifiers on ChestXRay17. 

Classifier Accuracy Precision Sensitivity Specificity f-1 

  Inception V3 94.39 % 95.89 % 95.16 % 93.07 % 95.53 % 

ResNet50 92.62 % 93.33 % 94.79 % 89.16 % 94.05 % 

Xception 93.58 % 97.94 % 92.27 % 96.19 % 95.02 % 

VGG16 93.42 % 93.33 % 96.04 % 89.38 % 94.66 % 

Ensemble 95.51 % 97.43 % 95.47 % 95.57 % 96.44 % 
 

Given the fact that the distribution of training (and test) data was highly imbalanced 

(62.5% - 37.5%), the best metric for measuring the ensemble's overall performance is 

the f-1 score which, as we can see, is better than each base classifier individually. 

6. Conclusion 

In this paper, we dealt with the problem of optical character recognition and its solution 

by implementing an interactive machine learning system. The accuracy of the system 

results is quite encouraging, as we managed to achieve up to 88.89% of the EMNIST’s 

balanced with a total of 47 classes representing lowercase, uppercase and numeric 

characters in only about two hours and 50 minutes. In addition, our methodology 

enables us to make proper use of the secondary predictions of our model. The latter 

could make a significant difference in a real-life application since it enables a user to 

extend this methodology to fill his needs in order to build a more complete system. 

By using user-interactivity, we have solved the problem of labeling additional data as 

we can insert new images, and let application users label images. This is a great help as 

labeling many images would require many hours of extra work. With this approach we 

can provide more data during the training phase of our models, hoping to achieve even 

better results in the future.  

The abundance of data is crucial in the implementation of a machine learning system. 

Interactivity satisfactorily solves the problem of labeling, but finding data, especially in 

the case of images, is not a particularly easy process. One way to find more data is to 

artificially expand the training set with data augmentation techniques, as we did in our 
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second set of experiments. Data augmentation makes the dataset expansion a painless 

process that can further enhance our models, which we can train with more data to tackle 

the problem of over-training more effectively. We can also train our models with a large 

dataset from an entirely different domain and use transfer learning techniques to retrain 

our models with a smaller dataset and transfer the knowledge acquired from the first 

dataset to the field that we are interested in. 

In addition to expanding the training set, interactivity also serves to synthesize all 

artificial neural networks. A user can look at the statistics (such as the confusion matrix) 

of various neural networks, and use them to synthesize a set based on them and assign 

them the appropriate weights to achieve the desired performance. 

Although these ensembles achieve high performance, they add extra complexity to 

the system. Also, the system gets slower as new models are added to the set. Many 

researchers today are looking for ways to simplify such systems by exporting the 

functionality and performance of a set of machine learning models to a simpler model 

that ideally should have the same behavior and performance as the ensemble. 
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