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Abstract. The topology of multi-region opportunistic sensor networks is 

evolving, and it is difficult to identify the key nodes in the networks by traditional 

key node identification methods. In this paper, a novel method based on the 

improved TOPSIS method is proposed to identify the key node from the ferry 

node. The dynamic topology information is represented by the graph model which 

is modeled by the temporal reachable graph. Based on the temporal reachable 

graph, three attributes are constructed to identify the key node, which are average 

degree, betweenness centrality and message forwarding rate. The game theory 

with a combination weighting method is employed to combine the subjective 

weight and objective weight, so as to obtain the combined weight of each 

attribute. The TOPSIS method is improved by the combined weight. The key node 

is identified by the improved TOPSIS. The experiments in three simulation 

situations show that, compared with the TOPSIS method and MADM_TOPSIS 

method, the proposed method has better accuracy for the key node identification 

in the network. 

Keywords: multi-region opportunistic sensor network, key node, combination 

weight, TOPSIS. 

1. Introduction 

Multi-region opportunistic sensor networks (MOSNs) are a type of self-organizing 

network which can collect sensor data through the movement of nodes and encounters 

between nodes. Part of the concept of MOSNs is derived from mobile ad hoc networks 

(MANETs) and delay-tolerant networks (DTNs), such as the Intermittent links, 

temporal paths, real-time messages, etc. [1] MOSNs consist of nodes and links between 

nodes. The node that has the greatest influence on the network structure and function is 

called a key node. The events that the key node is attacked or failed may lead the 

networks to be paralyzed. By identifying the key node, MOSNs can be optimized in 

advance to improve its security and robustness. Hence how to accurately and efficiently 

identify the key node in MOSNs is a hot topic. 
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Aim at solving this problem, lots of indicators have been proposed [2], such as 

degree centrality [3], betweenness centrality [4], eigenvector centrality [5], Katz 

centrality [6], etc. Although these methods can identify the key nodes in complex 

networks from different perspectives, the adaptability and accuracy are easily affected 

by the factors such as the network structure and scale. On this basis, some researchers 

combine multiple indicators to identify the key nodes, thereby improving applicability 

and stability. The reference [7] defines four parameters to represent the influence of a 

node in social networks. The direct influence spread and indirect influence spread are 

used to indicate the influence of a node on other nodes. The direct overlaps and indirect 

overlaps reflect the conflict between nodes. Then, the technique for order preference by 

similarity to an ideal solution (TOPSIS) is used to combine these parameters to obtain 

the influence of each node. Fei et al. [8] believe that the interaction between nodes 

follows the inverse-square law, and the node importance is evaluated by combining the 

degree centrality of nodes and the distance between nodes. The experiments show that 

the accuracy of the method is higher than some well-known centrality indicators. 

The location of a node in the network determines its importance. Korn et al. [9] are 

inspired by the fact that the H-index quantifies the contribution of scholars in 

informatics and use the H-index to evaluate the node importance. If a node has 𝑛 

neighbor nodes whose degree is not less than 𝑛, then the H-index of the node is 𝑛. 

Kitsak et al. [10] use K-shell to judge the location of nodes in the network and think that 

the nodes in the core location usually are more important. The Ks of each node is 

determined by separating the nodes from the network according to the order of residual 

degrees from small to large, and it considers fully the global characteristics of nodes. 

But the K-shell is not suitable for some special networks such as the tree networks and 

star networks. When the node remaining degree is less than the current number of 

iterations, the iteration cannot be carried out properly. Lü et al. [11] propose that the H-

operation based on the degree centrality converges to the Ks of the node. The view can 

avoid possible errors in the K-shell process and improve the monotonicity of the 

evaluation results. Based on the reference [11], Shao et al. [12] propose an important 

node identification method based on the H-operation in dynamic networks. This method 

takes the smaller value in the past H-index and the present Ks as the initial value of the 

H-operation, so that the important nodes can be found quickly at every moment. 

However, the topology of complex networks usually is changing, the nodes and 

edges may appear or disappear at any time, and the network is called a temporal 

network [13]. In recent years, some researchers have begun to identify the key node in 

the temporal network. Zhang et al. [14-18] model MANETs as time-varying graphs to 

represent the topology of temporal networks. Based on the previous research, Zhang et 

al. [19] define a new metric called criticality that can measure node importance 

accurately in MANETs, and the experiments show that attacking the key node identified 

by the criticality has a greater impact on network performance than some centrality 

indexes. Based on the view that the node importance depends on their neighbors, the 

reference [20] proposes a temporal information aggregation process to identify the key 

node in temporal networks. Arrigo et al. [21] utilize the sparse version of dynamic 

communicability matrix to estimate node importance and rank for nodes, and the 

experiments show that this method can rank the list of highly central nodes accurately 

with a lower level of storage, and the cost is only linearly with the number of time 

points. Abbas et al. [22] divide the data into past time window and future time window 

based on user-object binary networks, to identify and predict the key node (the popular 
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or important objects in the future) in e-commerce networks and social networks. Xiao et 

al. [23] predict the most powerful persuaders based on machine learning in social 

networks. The reference [24] proposes coverage centrality in temporal networks. It is 

found that the most of nodes with high centrality are located in a small time window 

near a certain time. The majority of information in temporal networks is only 

transmitted by the minority of nodes, and there is a bottleneck period in the transmission 

process. 

Different from the general temporal networks, there are three types of nodes in 

MOSNs, which are sink node, ferry node, and sensor node. The sink node collects all of 

the messages generated from the sensor region and sends them to the server. The ferry 

node walks along fixed or random routes in the sensor region and forwards the 

messages from the sensor region to the sink node. The sensor node is fixed in the sensor 

subregion and generates the messages that contain sensor data. The key node must be 

found from the ferry node. The main contributions of this paper are as follows: 

(1) The dynamic topology information is represented by the graph model which is 

modeled by the temporal reachable graph. Based on the temporal reachable graph, three 

attributes are constructed to identify the key node, which are average degree, 

betweenness centrality and message forwarding rate. 

(2) The TOPSIS method is improved by the combined weight. The game theory with 

a combination weighting method (GTCW) is employed to combine the subjective 

weight and objective weight, so as to obtain the combined weight of each attribute.  

(3) This paper uses the simulator ONE to conduct simulation experiments in three 

experimental scenarios. The simulation results show that compared with methods such 

as the TOPSIS method and MADM_TOPSIS method, the method proposed in this 

paper has better accuracy for the key node identification in MOSNs. 

The paper is organized as follows: The problem description and definitions about the 

temporal reachable graph are presented in section 2. The key node identification method 

based on the improved TOPSIS (GTCW_TOPSIS) is introduced in section 3. The 

experiments and results are shown in section 4. The conclusion and prospect are given 

in section 5. 

2. Problem Description and Definitions 

2.1. Problem Description 

Due to various reasons such as node damage, signal attenuation, and geographical 

environment, the sensor region of MOSNs may be divided into multiple subregions in 

practical application. MOSNs consist of one sink node, several sensor nodes, and 

several ferry nodes. The sink node is fixed and used to collect the sensor data from 

sensor nodes. The sensor node is placed in the sensor region and senses environmental 

conditions. The ferry node moves between the sink node and the sensor region, and 

forwards the messages from the sensor region to the sink node by the "carry-store-

forward" mechanism. The process of communication is as follows: Firstly, the ferry 

node receives the messages from the sensor region when it passes through the sensor 

region. Then, the ferry node saves the messages in the cache unit it encounters with 
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other ferry nodes or the sink node. Finally, the ferry node sends the messages to the sink 

node. 

In order to reduce the complexity of the research, a sensor subregion is regarded as a 

region node instead of considering every sensor node separately. Compare with the 

sensor node, the ferry node plays a vital role in the communication between the region 

node and the sink node, and the topology of MOSNs changes with the location of the 

ferry node. It is obvious that the ferry node is the most valuable node besides the sink 

node, so the key node is selected among the ferry nodes. As shown in fig. 1, some 

sensor nodes collect data in the region node 𝑅1, the ferry node 𝐹1 serves as a bridge to 

deliver messages between the region node 𝑅1 and 𝑅4, and when 𝐹1 encounters with 𝐹2, 

it will send the messages received from 𝑅1 to 𝐹2. The event that 𝐹1 is damaged is likely 

to cause the region node 𝑅1 to be separated from the network. 

Sink

Sink node

Ferry node

Sensor node

Region node

R4

F2

R3

F3

R2

R1

F1

 

Fig. 1. The scenario graph of MOSNs 

2.2. Definitions 

In order to realize the effective transmission of sensor data, through the mechanism that 

location of the ferry node changes, the network structure of MOSNs is frequently 

changed. Aiming to represent the dynamic topology information and reduce the 

temporal information loss, the temporal reachable graph is used to model MOSNs. 

Definition 1: The temporal reachable graph 𝐺 =  𝐺1 , 𝐺2 , 𝐺3, ⋯ , 𝐺𝐿  is a set that is 

composed of several ordered graphs during the observation period [0, 𝑇], where 𝐿 is the 

number of temporal reachable subgraphs, 𝐺𝑙 =  𝑉𝑙 , 𝐸𝑙 , 𝑊𝑙 , 𝑙 = 1,2,3, ⋯ , 𝐿 is the 𝑙𝑡ℎ  

temporal reachable subgraph. 𝑉𝑙  is the node set in 𝐺𝑙 , and it consists of the sink node 𝑆, 

the ferry node set 𝐹 and the region node set 𝑅, 𝐸𝑙  is the edge in 𝐺𝑙 , 𝑊𝑙  is the edge 

weights set in 𝐺𝑙 . The key node will be found in 𝐹. 

Definition 2: The set 𝑊𝑙  in 𝐺𝑙 =  𝑉𝑙 , 𝐸𝑙 , 𝑊𝑙  is defined in (1): 

𝑊𝑙 =  𝑤𝑎𝑏
𝑙 |∀𝑎, 𝑏 ∈ 𝑉𝑙  𝑎𝑛𝑑  𝑎, 𝑏 ∈ 𝐸𝑙                                   (1) 

In which 𝑤𝑎𝑏
𝑙  is the number of connections between the node 𝑎 and the node 𝑏 in 𝐺𝑙 . 

According to the Definition 1 and 2, considering the changes of the network structure in 

each time window, the subnet in the interval  𝑡𝑙−1, 𝑡𝑙  is aggregated as 𝐺𝑙 , the temporal 

reachable subgraph sequence  𝐺1, 𝐺2, 𝐺3 , ⋯ , 𝐺𝐿  are shown in fig. 2. 
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Fig. 2. Temporal reachable subgraphs 

As shown in Fig. 2, in 𝐺1 and 𝐺𝐿, there are two edges between 𝑅1 and 𝐹3, 𝑤𝑅1𝐹3
1  and 

𝑤𝑅1𝐹3
𝐿  are the edge weight between 𝑅1 and 𝐹3, and there is not edge between 𝑅1 and 𝐹3 

in 𝐺2. In summary, the edge weight is aggregated at every temporal reachable subgraph 

to construct the temporal reachable graph, and as shown in Fig. 3. 

 

Fig. 3. Temporal reachable graph 

Definition 3: In MOSNs, the messages eventually are aggregated to the sink node 

along the temporal reachable path. As for the region node 𝑅𝑖  and the sink node 𝑆, if 

there is an edge sequence  𝑅𝑖 , 𝑥1 ,  𝑥1, 𝑥2 ,  𝑥3, 𝑥2 , … ,  𝑥𝑛−1, 𝑆  that exists in the 

network 𝐺, the sequence is a temporal reachable path from 𝑅𝑖  to 𝑆. In Fig. 3, the 

messages can be transmitted from 𝑅1 to 𝑆 by two temporal reachable paths: 𝑅1 → 𝐹1 →
𝑆 and 𝑅1 → 𝐹3 → 𝐹1 → 𝑆. Different from the traditional path, the edges that make up a 

temporal reachable path must follow the order of time, which results in lower usability 

of paths than that in static networks. Hence, the temporal reachable path is applied to 

representing the information of message transmission. The temporal reachable paths are 

shorter, the communication and interaction are easier between a pair of nodes. 

3. Identifying Key Node 

In this section, we define three attributes of the ferry node as indicators, then calculate 

the combination weight by the game theory with a combination weighting method [26]. 

Based on the above model, we propose a method named GTCW_TOPSIS to identify the 

key node. 
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3.1. Three Attributes of Ferry Node 

Definition 4: In the subgraph 𝐺𝑙 , the average degree 𝐴𝐷𝐹𝑖
 of the ferry node 𝐹𝑖  is defined 

in (2): 

𝐴𝐷𝐹𝑖
=

  𝜔𝐹𝑖𝑅𝑗
𝑙𝐿

𝑙=1
𝑁
𝑗=1

𝐿
                                                   (2) 

In (2), 𝐿 denotes the number of the temporal reachable subgraph, 𝑁 is the number of 

nodes in the network. The average degree reflects the relation with the surrounding 

nodes. In general, the greater the average degree, the more important the ferry node. 

Definition 5: The betweenness centrality 𝐵𝐶𝐹𝑖
 of 𝐹𝑖  is defined in (3): 

𝐵𝐶𝐹𝑖
=  

𝑔𝑅𝑗 𝑆

𝐹𝑖

𝑔𝑅𝑗 𝑆

|𝑅|
𝑗=1                                                    (3) 

Where 𝑅𝑗  is a region node in the network, 𝑆 is the sink node, 𝑔𝑅𝑗𝑆
 denotes the 

number of the temporal reachable path from 𝑅𝑗  to 𝑆, 𝑔𝑅𝑗𝑆
𝐹𝑖  denotes the number of the the 

temporal reachable path through 𝐹𝑖  in 𝑔𝑅𝑗𝑆
. The betweenness centrality reflects the 

ability that the ferry node affects the message transmission paths from the region node 

to the sink node. The larger the betweenness centrality, the more important the ferry 

node. 

Definition 6: The message forwarding rate 𝑀𝐹𝑅𝐹𝑖
 of 𝐹𝑖  is defined in (4): 

𝑀𝐹𝑅𝐹𝑖
=

𝑚𝐹𝑖

 𝑚𝑅𝑗
|𝑅 |
𝑗=1

                                                    (4) 

Where 𝑚𝑅𝑗
 denotes the total number of the messages forwarded from 𝐹𝑖  to 𝑆, 𝑀𝑏  

denotes the total number of the messages generated by 𝑅𝑗 , the message forwarding rate 

reflects contribution of the ferry node to message delivery in MOSNs. 

3.2. Attribute Weights 

The subjective weight 𝜔1 and objective weight 𝜔2 of the attributes are obtained by the 

analytic hierarchy process (AHP) and entropy method respectively. By constructing a 

basic weight set 𝑊 =  𝜔1 , 𝜔2 , the combination weight is defined in (5): 

𝜔 =  𝛼𝑘𝜔𝑘
𝑇2

𝑘=1 , 𝜔𝑘 ∈ 𝑊                                           (5) 

The combination weights consist of 𝜔1 and 𝜔2, where 𝛼𝑘  is the weight coefficient of 

different 𝜔𝑘 . Then, we minimize the deviation of 𝜔 and 𝜔𝑘 , as show in (6): 

𝑚𝑖𝑛  𝛼𝑘𝜔𝑘
𝑇 − 𝜔ℎ

𝑇2
𝑘=1  2                                            (6) 

According to the differential nature of the matrix, equation (7) is the condition that 

optimizes the first derivative of (6): 

 𝛼𝑘𝜔ℎ𝜔𝑘
𝑇 = 𝜔ℎ𝜔ℎ

𝑇2
𝑘=1                                              (7) 
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The corresponding linear equation as shown in (8): 

 
𝜔1𝜔1

𝑇 𝜔1𝜔2
𝑇

𝜔2𝜔1
𝑇 𝜔2𝜔2

𝑇  
𝛼1

𝛼2
 =  

𝜔1𝜔1
𝑇

𝜔2𝜔2
𝑇                                         (8) 

The weight coefficient vector  𝑎1 , 𝑎2  is obtained in (8), and we normalize  𝑎1, 𝑎2  

according to [27]: 

𝛼∗ =
𝛼𝑘

 𝛼ℎ
2
ℎ=1

                                                         (9) 

Finally, the weight coefficient normalized vector 𝛼∗ is substituted into (5), and the 

combination weight 𝜔∗ is calculated in (10): 

𝜔∗ =  𝛼𝑘
∗𝜔𝑘

𝑇2
𝑘=1                                                 (10) 

3.3. Estimation Algorithm 

In this paper, the key node is identified by a new method called GTCW_TOPSIS. The 

steps used to identify the key node in MOSNs are as follows: 

(1) Construct normalized decision matrix 

It is assumed that there are 𝑛 ferry nodes in the network so that the corresponding 

solution set denoted by 𝐹 =  𝐹1, 𝐹2, 𝐹3, … , 𝐹𝑁 , the attributes of each ferry node are 

denoted by the attribute set 𝐴 =  𝛼1, 𝛼2, 𝛼3 , where α1 is 𝐴𝐷, α2 is 𝐵𝐶, α3 is 𝑀𝐹𝑅. The 

decision matrix is expressed as (11): 

𝑋 =  𝑥𝑖𝑗  𝑛×3
                                                     (11) 

Where 𝑥𝑖𝑗 (𝑖 = 1,2,3, ⋯ , 𝑛; 𝑗 = 1,2,3) is the 𝑗𝑡ℎ  attribute of the 𝑖𝑡ℎ  ferry node. 

The normalized decision matrix is obtained by the vector normalization method 

according to (12) ~ (13): 

𝑌 =  𝑦𝑖𝑗  𝑛×3
                                                     (12) 

𝑦𝑖𝑗 =
𝑥𝑖𝑗

  𝑥𝑖𝑗
2𝑛

𝑖=1

                                                      (13) 

(2) Construct weighted normalized decision matrix 

The combination weight of each attribute is calculated by (5) ~ (10), and the weight 

of 𝑗𝑡ℎ  attribute is denoted as 𝜔𝑗
∗. The weighted normalized decision matrix 𝐸 is denoted 

as (14): 

𝐸 =  𝑒𝑖𝑗  𝑛×3
=  𝜔𝑗

∗𝑦𝑖𝑗  𝑛×3
                                         (14) 

Where 𝑒𝑖𝑗 = 𝜔𝑗
∗𝑦𝑖𝑗  𝑖 = 1,2,3, ⋯ , 𝑛; 𝑗 = 1,2,3 . 

(3) Determine the positive ideal solution 𝐴+ and the negative ideal solution 𝐴− 

The maximum value of each attribute constitutes a positive ideal solution 𝐴+, and the 

negative ideal solution 𝐴− is composed of the minimum value of each attribute. As 

shown in (15) ~ (18). 

𝑒𝑗
+ = 𝑚𝑎𝑥

𝑖
 𝑒𝑖𝑗  𝑖 = 1,2,3, … , 𝑛; 𝑗 = 1,2,3                               (15) 
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𝑒𝑗
− = 𝑚𝑖𝑛

𝑖
 𝑒𝑖𝑗 |𝑖 = 1,2,3, … , 𝑛; 𝑗 = 1,2,3                                (16) 

𝐴+ =  𝑒𝑗
+|𝑗 = 1,2,3                                              (17) 

𝐴− =  𝑒𝑗
−|𝑗 = 1,2,3                                              (18) 

(4) Calculate the Euclidean-Distance from each solution to 𝐴+ or 𝐴− 

The Euclidean-Distance from each solution to 𝐴+ or 𝐴− is the deviation between 

them. 

𝑑𝑖
+ =    𝑒𝑖𝑗 − 𝑒𝑗

+ 
23

𝑗=1                                          (19) 

𝑑𝑖
− =    𝑒𝑖𝑗 − 𝑒𝑗

− 
23

𝑗=1                                          (20) 

(5) Calculate the closeness from each solution to 𝐴+ and 𝐴− 

The closeness of the node 𝑖 indicates how close the solution is to the positive ideal 

solution. 

𝑐𝑖
+ =

𝑑𝑖
−

𝑑𝑖
++𝑑𝑖

−                                                     (21) 

Where 0 < 𝑐𝑖
+ < 1. 

(6) Construct closeness set 𝐶+ =  𝑐1
+, 𝑐2

+, 𝑐3
+, ⋯ , 𝑐𝑛

+ , and the node with the largest 

𝑐𝑖
+ is suspected to be a key node. 

(7) The steps 1~6 is repeated for 𝑘 times, the time that each ferry node is identified to 

be a suspected key node is recorded, and the ferry node with the most times is the key 

node. 

3.4. Verification of Results 

The node removal method is utilized to verify the experiment result, and the whole 

network delivery success rate (WNDSR) of the network which a node is removed is 

compared with that of the complete network, the process is repeated until all ferry nodes 

are removed. The WNDSR can be used to reflect the performance of MOSNs. If the 

event that a node is removed makes the greatest reduction in the WNDSR, the node is 

the key node. 

Definition 7: In MOSNs, the whole network delivery success rate is defined as: 

𝑊𝑁𝐷𝑆𝑅 =
𝑚𝑆

 𝑀𝑅𝑖
|𝑅 |
𝑖=1

                                             (22) 

Where 𝑚𝑆 denotes the total number of messages received by the sink node 𝑆 during 

the observation period [0, 𝑇]. 
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4. Experiments and Analysis 

In this section, we use the WNDSR as a basis for identifying the key node and compare 

the accuracy that the key node is identified by the GTCW_TOPSIS method the TOPSIS 

method [27] and MADM_TOPSIS method [28] under three different scenarios. 

4.1. Experiments 

Three scenarios are simulated by the simulator ONE. ONE is an opportunity network 

simulator developed by the University of Helsinki in Finland. The parameters of the 

three scenarios are shown in Table 1. 

Table 1. The parameters in the three scenarios. 

parameter name value 

Radius of region node 50 m 

region node cache 20 M 

Radius of ferry node 100 m 

ferry node cache 50 M 

Date transfer rate 250 kB/s 

Router Epidemic Router 

Message survival time 10 min 

As shown in fig. 4, there are one sink node (s), six ferry nodes (fa, fb, fc, fd, fe and 

fg) and five region nodes (ra, rb, rc, rd and re) in scenario 1. There are 20 sensor nodes 

in each region node. Among the six ferry nodes, the movement model of fa, fg, fd and 

fe is the random way point model, they walk randomly between the sensor region and 

the sink node, and the movement model of fb and fc is the movement based map model. 

Without considering the node whose movement model is the random way point model, 

the movement track of fb passes through re, the movement track of fc passes through ra, 

fb and fc can communicate with s. 

 

Fig. 4. Scenario 1 
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As shown in fig. 5, there are one sink node (s), six ferry nodes (fa, fb, fc, fd, fe and 

fg) and five region nodes (ra, rb, rc, rd and re) in scenario 2. There are 20 sensor nodes 

in each region node. The movement models of the six ferry nodes are the movement 

based map model. fc, fe and fg can connect with s directly, fa, fb and fd cannot 

communicate with s directly, and the movement track of fa and fd passes through ra, rb 

and rc, the movement track of fb passes through re and rd, the movement track of fc 

passes through re, the movement track of fe and fg passes through ra. 

 

Fig. 5. Scenario 2 

As shown in fig. 6, there are one sink node (s), six four nodes (fa, fb, fc and fd) and 

three region nodes (ra, rb, and rc) in scenario 3. There are 20 sensor nodes in each 

region node. The movement models of the four ferry nodes all are the movement based 

map model. Among them, the movement track of fa and fb passes through rb and ra, fc 

walks between ra and rb, and fb walks between ra and rc. 

 

Fig. 6. Scenario 3 
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4.2. Results 

The time window is set to 10 minutes for each experiment, and the experiments are 

repeated 200 times in each scenario, the results obtained are shown in fig. 7~9. 

From fig. 7-9, we imply that the key nodes of scenario 1-3 are fb, fc and fd. The 

number of identifying the suspected key node by the GTCW_TOPSIS method is more 

than the others. Although the key node in MOSNs can be identified by the three 

methods, the effectiveness of the three methods needs to be verified by the WNDSR. If 

the WNDSR is the lowest, after the key node identified by the GTCW_TOPSIS method 

is removed, the method proposed in this paper is effective. 

 

Fig. 7. The results of scenario 1 

 

Fig. 8. The results of scenario 2 
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Fig. 9. The results of scenario 3 

4.3. Verification 

In the experiments, we remove a ferry node every 200 minutes and compute the 

WNDSR of the remaining network until every node is removed once. Aiming to reduce 

the error caused by randomness, the simulation experiments are repeated 10 times. The 

WNDSR is shown in fig. 10-12, wsall denotes the WNDSR before removing ferry 

nodes, wsda denotes the WNDSR after the fa is removed, wsdb denotes the WNDSR 

after the fb is removed, the significance of wsdc, wsdd, wsde and wsdg is same as wsda 

and wsdb. 

 

Fig. 10. WNDSR of scenario 1 
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Fig. 11. WNDSR of scenario 2 

 

Fig 12. WNDSR of scenario 3 

In fig. 10, the removal of fb notably reduces the WNDSR, therefore fb is the key 

node. As in fig. 11, the removal of fc leads to a crucially decrease of the WNDSR, 

therefore fc is the key node. From fig. 12, it shows that the removal of fd significantly 

reduces WNDSR, therefore fd is the key node. In summary, the results show that the 

key nodes identified by the method proposed all align with the real key node in the 

scenario 1~3. It can verify that identifying the key node in MOSNs by the method 

proposed is feasible. It can be seen from Fig. 4-6, the time that the key node is identified 

by the TOPSIS method and MADM_TOPSIS method is significantly less than the 

proposed method, which indicates that the proposed is the best in the three methods. 
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4.4. Accuracy 

According to fig. 7~9, the accuracy of the GTCW_TOPSIS method, TOPSIS method 

and MADM_TOPSIS method are shown in fig. 13. There are some ferry nodes that 

move with the random way point model in scenario 1, so the accuracy of the three 

methods is similar. In scenario 2 and scenario 3, the accuracy of the GTCW_TOPSIS 

method is 65% and 98%, which is obviously higher than the TOPSIS method and 

MADM_TOPSIS method. 

 

Fig. 13. Estimation accuracy 

5. Conclusions 

Aiming to identify the key node in MOSNs, first of all, we focus on the characteristics 

that the topology changes frequently, and use the temporal reachable graph to model 

MOSNs. Based on this model, the average degree is defined to reflect the activity of the 

ferry node in the network. The betweenness centrality is defined to reflect the ability of 

the ferry node to control the path between the region node and the sink node. The 

messages forwarding rate is defined to reflect the contribution on delivering messages 

generated by the region node to the sink node. Secondly, we use the average degree 

centrality, the betweenness centrality and the messages forwarding rate as the attributes 

of identifying the key node, the subjective weight and objective weight of each attribute 

are obtained by the AHP method and the entropy method respectively, and the GTCW 

method is used to calculate the combination weight of each attribute. Thirdly, we use 

the combination weight to construct the decision matrix and identify the key node in 

MOSNs by the TOPSIS method. Finally, the experiments in three scenarios are used to 

verify the effectiveness and evaluate the performance of the GTCW_TOPSIS method. 

In the future, we will further analyze the characteristics of MOSNs to propose more 

node importance attributes and apply the method based on the GTCW_TOPSIS method 

to other dynamic networks. 
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