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Abstract. Microgrid is a small-scale cyber-physical system, and it generally suf-
fers from various uncertainties. In this paper, we investigate the secure control prob-
lem of a benchmark microgrid with system uncertainties by using data-driven edge
computing technology. First, the state-space function of the benchmark microgrid
system is formulated, and parameter uncertainties are taken into consideration. Sec-
ond, a novel data-driven intelligent computing method is derived from the model-
based reinforcement learning algorithm, which only requires system data instead
of system models. By utilizing this computing method, the optimal control policy
can be obtained in the model-free environment. Third, the Lyapunov stability theory
is employed to prove that the uncertain microgrid can be asymptotically stabilized
under the optimal control policy. Finally, simulation results demonstrate the control
performance can be improved by tuning the parameters in the performance index
function.

Keywords: edge computing, microgrid system, secure control, reinforcement learn-
ing.

1. Introduction

Nowadays, a large-scale power system is generally composed of several distributed
microgrids. With the system operating, a variety of unexpected uncertainties, which severely
affect the system stability, are inevitable. Especially for microgrids, the system security
issue deserves much attention. In this paper, we will study the secure control problem of
a benchmark microgrid [5,13,14,23]. This benchmark microgrid consists of three main
parts: power generation, loads and distributed energy storages. The power generation in-
cludes regular generation (microturbine), and supplies energy for the demands of various
loads.

However, due to the intermittent power injection from photovoltaic arrays and sud-
den change of load demands, the unbalance between power supply and demand may oc-
cur, which will cause the frequency fluctuations and threaten the security of the entire
microgrid. Thus, we incorporate distributed energy storages (electric vehicles) into this
microgrid to compensate the unbalance. The system data can be measured by sensors and
transmitted to the management center through the communication module. The whole mi-
crogrid is controlled by using the edge computing technology [2,3,4,24]. The schematic
diagram of edge computing for the benchmark microgrid system is shown in Fig. 1.
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Different from the traditional automatic control, edge computing is more like an in-
telligent control method which is based on computing and information, and it mainly
concerns the control strategies for dispatch and optimization. In [2], by means of road
networks, the problems of frequently moving vehicles and network connectivity were an-
alyzed, and then a modified greedy algorithm for vehicle wireless communication was
proposed for network optimization. In [3], a holistic framework to attack the QoS pre-
diction was developed in the IoT environment, and authors designed a fuzzy clustering
algorithm which was capable of clustering contextual information. In order to fully uti-
lize hidden features in edge computing environment, the work [24] presented a new ma-
trix factorization model with deep features learning via a convolutional neural network.
Since the edge computing technology has such powerful merits, this paper will utilize a
novel data-driven intelligent computing method for the secure control of the benchmark
microgrid system.

Fig. 1. Schematic diagram of edge computing for the benchmark microgrid system

Previous works regarding the frequency stability issues were mainly based on fuzzy
control [5], sliding mode control [13,14], linear matrix inequality (LMI) approach [22]
and proportion-integration-differentiation (PID) control [17]. In [12], through modeling
the disturbances and parameter uncertainties, an adaptive supplementary control method
was proposed for the power system frequency regulation. In [7], a novel second-order
sliding mode approach for multi-area power systems was developed by means of an ex-
tended disturbance observer. In [19], a new frequency control method was designed for
isolated micro-grids via double sliding mode technique. In [16], a second-order sliding
mode controller was provided for the power flow control of a hybrid energy storage sys-
tem. In [21], in order to eliminate the adverse effects of time delays in microgrid, a sliding
mode estimation controller was developed to predict time delays and handle the distur-
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bance of estimation errors. In [11], to deal with the uncertainties caused by renewable
sources, a Takagi-Sugeno fuzzy model was constructed for the microgrid, and a corre-
sponding sliding mode approach was designed. From aforementioned works, we can see
the sliding mode control technique is a powerful tool in handling the uncertainties and
disturbances.

Unfortunately, these aforementioned works were generally model-based. Due to the
existence of system uncertainties, the accurate mathematical models are unavailable, and
the model-based control strategies cannot be employed. Therefore, a data-driven secure
control method is expected, which motivates the research of this paper.

(1) The proposed data-driven secure control method integrates reinforcement learning,
optimal control theory and universal approximator.

(2) This data-driven reinforcement learning method is developed from the model-
based policy iteration algorithm. Different from other reinforcement learning methods, it
only requires system data instead of system models.

(3) For the secure control issues, the traditional model-based learning approaches will
be invalid, because system uncertainties lead to the difficulties in obtaining the accu-
rate mathematical models. As a result, the proposed model-free method becomes the first
choice.

In this paper, we investigate the secure control problem of a benchmark microgrid
with system uncertainties by using data-driven edge computing technology. The rest of
this paper is arranged as follows. First, the problem formulation is given in Section 2. Sec-
ond, three state-of-the-art reinforcement learning (RL) methods are introduced including
policy iteration (PI), value iteration (VI) and a novel data-driven intelligent computing
method in Section 3. By utilizing the data-driven computing method, the optimal control
policy can be obtained in the model-free environment. Third, in Section 4, the Lyapunov
stability theory is employed to prove that the uncertain microgrid can be asymptotically
stabilized under the optimal control policy. In Section 5, simulation results demonstrate
the control performance can be improved by tuning the parameters in the performance
index function. Finally, a brief conclusion is given in Section 6.

2. Problem formulation

The benchmark microgrid [5,13,14,23] investigated in this paper has been introduced.
Let us consider the detailed mathematical system model as below
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where ∆ψf denotes the frequency deviation; ∆ψt is the turbine power; ∆ψg is the gov-
ernor position value; ∆ψv1 represents the first electric vehicle power; ∆ψv2 is the second
electric vehicle power; Tt denotes the time constant of turbine; Tg is the time constant of
governor; Tp represents the time constant of power system; Tv1 is the time constant of
the first electric vehicle; Tv2 denotes the time constant of the second electric vehicle; kp
is the gain of power system; ks represents the speed regulation coefficient; u1, u2, u3 are
the control inputs.

Let x = [∆ψf , ∆ψt, ∆ψg, ∆ψv1, ∆ψv2]T and u = [u1, u2, u3]T . The nominal sys-
tem can be rewritten as

ẋ = Ax+Bu (2)
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As is known, a microgrid system is composed of several different units and contains
complex structures. With the system operating, internal faults and external disturbances
may lead to the change of system structures or the deviation of system parameters. Un-
fortunately, system uncertainties are generally inevitable, which may affect the control
performance. The system (2) with parameter uncertainties can be described by

ẋ = (A+∆A)x+ (B +∆B)u (3)

where u is the secure control policy, which will be designed later. The parameter uncer-
tainties ∆A and ∆B are bounded by ‖∆A‖ ≤ ∆Am and ‖∆B‖ ≤ ∆Bm, respectively.

For the microgrid system, there are two important indexes. One is for the system
states, because the frequency deviation should be strictly limited. The other one is for the
control inputs, because large control inputs may damage electrical elements and waste
unnecessary energies. Therefore, we define the performance index function as

J(x(0), u) =

∫ ∞
0

r(x(τ), u(τ))dτ (4)

where r(x, u) = xTQx + uTRu with positive definite symmetric matrices Q and R.
The matrix Q determines the oscillation amplitude of system states, and the matrix R
determines the cost of control inputs.

Given the admissible control policy u(x), the value function is expressed as

V (x(t)) =

∫ ∞
t

r(x(τ), u(x(τ)))dτ. (5)

In the classical control theory, the optimal control problem is to find out a state feed-
back control policy which can minimize the value function. Consequently, the optimal
value function can be defined as

V ∗(x(t)) = min
u

(∫ ∞
t

r(x(τ), u(x(τ)))dτ

)
. (6)
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According to the stationarity condition [18], the optimal control policy is derived by

u∗(x) = −1

2
R−1(B +∆B)T∇V ∗(x) (7)

where ∇V ∗(x) = ∂V ∗(x)/∂x and V ∗(x) should satisfy the following Hamilton-Jacobi-
Bellman (HJB) equation

0 = r(x, u∗(x)) +∇V ∗T (x)[(A+∆A)x+ (B +∆B)u∗(x)]. (8)

From the aspect of engineering, one needs to settle the HJB equation to attain the
optimal control strategy. From the aspect of theory, the HJB equation is a complex partial
differential equation, and it is difficult or even impossible to obtain its analytical solution.
To solve the HJB equation, three algorithms will be introduced in the next section.

3. A brief overview of RL algorithms

In order to achieve the optimal control policy, three iterative RL algorithms including
PI, VI and off-policy method will be reviewed in this section.

3.1. PI algorithm

Inspired by previous works [8,10,18,27], a model-based PI algorithm is given in the
following Algorithm 1. By using this algorithm, one can obtain V ∗(x) and u∗(x) as i→
∞.
Algorithm 1: PI-based RL method
Step 1: (Initialization)
Let the iteration index i = 0.
Select a small enough computation precision ε.
Choose an initial admissible control policy u(0)(x).
Step 2: (Policy Evaluation)
With u(i)(x), compute V (i+1)(x) by

0 = r(x, u(i)(x)) + (∇V (i+1)(x))T ((A+∆A)x+ (B +∆B)u(i)(x)). (9)

Step 3: (Policy Improvement)
With V (i+1)(x), update the control policy u(i+1)(x) by

u(i+1)(x) =− 1

2
R−1(B +∆B)T∇V (i+1)(x). (10)

Step 4:(Termination)
If
∥∥V (i+1)(x)− V (i)(x)

∥∥ ≤ ε on the given compact set, stop at this step;
Else, let i = i+ 1 and go back to Step 2.

Due to the easy-to-realize structure and fast convergence, PI method is popular in the
field of computer sciences. It starts from an admissible control input, and gradually ap-
proaches to the optimal solution by the steps of policy evaluation and policy improvement.



840 Shunjiang Wang et al.

3.2. VI-based integral RL algorithm

The aforementioned Algorithm 1 requires initial admissible control. Although this ini-
tial condition simplifies the process of finding optimal solutions and speeds up algorithm
convergence [9], it is impractical for some complex systems. Inspired by previous works
[6,20], we present the following VI-based integral RL algorithm which is not limited by
the initial admissible condition.
Algorithm 2: VI-based integral RL algorithm
Step 1: (Initialization)
Let the iteration index i = 0.
Set a computation precision ε.
Choose an initial value function V (0)(x) ≥ 0.
Step 2: (Policy Improvement)
With V (i)(x), compute u(i)(x) by

u(i)(x) =− 1

2
R−1(B +∆B)T∇V (i)(x). (11)

Step 3: (Policy Evaluation)
With u(i)(x), update the value function V (i+1)(x) by

V (i+1)(x(t)) =

∫ t+∆t

t

r(x(τ), u(i)(x(τ)))dτ + V (i)(x(t+∆t)). (12)

Step 4:(Termination)
If
∥∥V (i+1)(x)− V (i)(x)

∥∥ ≤ ε on the given compact set, stop at this step;
Else, let i = i+ 1 and go back to Step 2.

Fig. 2. Derivation diagram of data-driven RL method

Remark 1 Algorithm 1 is completely model-based, and it requires the knowledge of both
∆A and ∆B. Algorithm 2 is partially model-based, and it only needs the knowledge of
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∆B. Unfortunately, the accurate models of system uncertainties ∆A and ∆B are gener-
ally unavailable. As a result, both Algorithm 1 and Algorithm 2 are not practical for the
real-world engineering. A data-driven method is expected, which only needs system data
instead of accurate system models. The derivation diagram of data-driven RL method is
shown in Fig. 2. Two iteration steps of Algorithm 1 are combined in a single step in the
data-driven RL method. Through this derivation, the system models are avoided.

3.3. Data-driven RL method

In this subsection, we will introduce a model-free method, also called off-policy RL
algorithm [10,15]. In order to derive this algorithm, let us rewrite the system (3) as

ẋ = (A+∆A)x+ (B +∆B)u(i) + (B +∆B)(u− u(i)). (13)

By means of (13), we have

dV (i+1)(x)

dt
=(∇V (i+1)(x))T [(A+∆A)x+ (B +∆B)u(i)]

+ (∇V (i+1)(x))T (B +∆B)(u− u(i)). (14)

In light of (9) and (10) in Algorithm 1, Equation (14) can be rewritten as

dV (i+1)(x)

dt
= −r(x, u(i)(x)) + 2(u(i+1)(x))TR(u(i)(x)− u). (15)

Integrating both sides of (15) on the interval [t t+∆t] yields

V (i+1)(x(t+∆t))− V (i+1)(x(t))

=−
∫ t+∆t

t

r(x(τ), u(i)(τ))dτ + 2

∫ t+∆t

t

(u(i+1)(τ))
T
R(u(i)(τ)− u)dτ. (16)

Remark 2 It can be seen that the policy evaluation step in Algorithm 2 is more easy-to-
realize than that in both Algorithm 1 and data-driven RL method. The VI-based integral
RL algorithm provides a choice to solve the optimal control issue when the admissible
control is unavailable. Although Algorithm 2 contains a more relaxed initialization con-
dition, it also has several drawbacks compared with other two algorithms. By means
of initial admissible control, PI-based methods achieve faster convergence [9]. Further-
more, all the iterative control policies in the PI learning procedure are admissible, which
cannot be guaranteed in the VI method [8]. The data-driven RL method is completely
model-free, while Algorithm 2 is partially model-free. That is because the control input
matrix B is still required in Algorithm 2. Actually, when accurate system models and ad-
missible control policies are available, the traditional PI method, i.e., Algorithm 1, is a
more convenient choice. In conclusion, RL has given enough choices for different situ-
ations. The data-driven RL algorithm can cover most application demands, and the VI-
based integral RL algorithm can be used without initial admissible control. The detailed
performance comparisons among three iterative RL methods are shown in Fig. 3.
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Fig. 3. Performance comparisons among three state-of-the-art RL methods

4. Algorithm implementation and stability analysis

As is known, neural network (NN) has been proved to be a powerful universal ap-
proximator. Hence, NNs are generally utilized to implement the aforementioned RL algo-
rithms. A critic NN and an actor NN are constructed to approximate the value function and
control policy, respectively. Each NN consists of two parts including tuned NN weights
and NN activation functions. In this section, we will provide another implementation tool
called generalized fuzzy hyperbolic model (GFHM) [1,25,26]. It also has the property of
the universal approximation, and can be finally converted into the similar form as NNs.

Definition 1 [25,26] Let x = [x1, x2, · · · , xn]T be the model input and y be the single
output. x̄ = [x̄1, x̄2, · · · , x̄m]T represents the generalized input, where x̄i = xz − dzj .
wz denotes the number of transformation about xz with z = 1, 2, · · · , n. dzj is the trans-

formation constant for xz with j = 1, 2, · · · , wz . m =
n∑
z=1

wz denotes the total number

of generalized input variables. The generalized fuzzy hyperbolic rule base should satisfy
the following terms:

1. The pth fuzzy rule is expressed as
IF (x1−d11) is Fx11 and · · · and (x1−d1w1) is Fx1w1

and (x2−d21) is Fx21 and · · ·
and (x2 − d2w2

) is Fx2w2
and · · · and (xn − dn1) is Fxn1

and · · · and (xn − dnwn
)

is Fxnwn
,

THEN yp = cF11 + · · ·+ cF1w1
+ cF21 + · · ·+ cF2w2

+ · · ·+ cFn1 + · · ·+ cFnwn
,
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where Fxzj
is the fuzzy set corresponding to xz−dzj including Px (Positive) and Nx

(Negative) subsets.
2. cFzj

in the “THEN” part should be associated with Fxzj
in the “IF” part. That is,

cFzj
and Fxzj

should exist or disappear at the same time.
3. There should be 2m fuzzy rules containing all the possible combinations in both Px

and Nx subsets.

The selection of the membership function is important, which should be helpful for
the derivation of the following Lemma 1. Hence, the membership functions are given by

µPi
(x̄i) =e−

1
2 (x̄i−qi)2 ,

µNi(x̄i) =e−
1
2 (x̄i+qi)

2

(17)

where qi is a positive constant.

Lemma 1 [1,25] Let the membership functions be given by (17) and the generalized fuzzy
hyperbolic rule base be described by Definition 1. Then, the GFHM can be derived by

y(x) =

m∑
i=1

cPi
eqix̄i + cNi

e−qix̄i

eqix̄i + e−qix̄i

=

m∑
i=1

σi +

m∑
i=1

$i
eqix̄i − e−qix̄i

eqix̄i + e−qix̄i

=θ + ρT tanh(Y x̄) (18)

where σi =
cPi

+cNi

2 , θ =
m∑
i=1

σi, ρ = [$1, $2, · · ·$m]T , Y = diag{q1, q2, · · · , qm},

$i =
cPi
−cNi

2 and tanh(Y x̄) = [tanh(q1x̄1), tanh(q2x̄2), · · · , tanh(qmx̄m)]T .

The purpose of presenting Lemma 1 is to construct the similar expression form as
NNs. According to (18), the GFHM can be further rewritten as

y(x) = φT (x)W (19)

whereW = [θ, ρT ]T and φ(x) = [1, tanh(q1x̄1), tanh(q2x̄2), · · · , tanh(qmx̄m)]T . Here,
GFHM gets the same expression form as NNs, where W can be seen as NN weights and
φ(x) is similar to the NN activation function. Lemma 1 has provided the NN expres-
sion form for GFHM. Next, we will present Lemma 2 to demonstrate its property of the
universal approximation.

Lemma 2 [1,25] For arbitrary continuous function f(x) on the compact set Ω and arbi-
trary constant ε > 0, there exists at least one GFHM such that sup

x∈Ω
|f(x)− y(x)| < ε.

Based on Lemma 2, the GFHM has been proved to be a universal approximator. By
means of the form of (19), the GFHM provides another choice to implement RL algo-
rithms besides NNs. Especially for dealing with nonlinear systems, the GFHM is a pow-
erful tool in identifying nonlinear continuous functions [25].

Next, we will propose the following theorem for the stability analysis.
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Theorem 1 If the optimal control policy u∗(x) is employed, then the uncertain system
(3) can be asymptotically stabilized.

Proof. Choose the following Lyapunov function candidate:

V = V ∗(x). (20)

According to the HJB equation (8), we can obtain

V̇ =V̇ ∗(x)

=∇V ∗T (x)[(A+∆A)x+ (B +∆B)u∗(x)]

=− xTQx− u∗T (x)Ru∗(x). (21)

From (21), it is obvious that V̇ ≤ 0. Therefore, according to the Lyapunov stability
theory, the uncertain system (3) can be asymptotically stabilized under the optimal control
policy u∗(x). Furthermore, by tuning the parameters Q and R, the control performance
can be improved, which will be demonstrated in the simulation part.

The proof is completed. �

5. Simulation result

In order to illustrate the effectiveness of our proposed scheme, we present the follow-
ing simulation result. The values of system parameters for the numerical simulation are
shown in Table 1.

Table 1. Values of system parameters

Parameters Tg Tt Tp Tv1 Tv2 ks kp

Values 0.5 1 1 0.5 0.5 1 2

Through Table 1, the matrices A and B can be obtained. Let the system uncertainties
be ∆A = [0.1, 0, 0, 0,−0.2; 0, 0.1, 0, 0, 0; 0, 0, 0.2, 0, 0; 0, 0, 0, 0.2, 0; 0, 0, 0, 0, 0.2] and
∆B = [0, 0, 0; 0, 0, 0;−0.2, 0, 0; 0,−0.2, 0; 0, 0,−0.2].

Set the system initial values x(0) = [0.2;−0.3; 0.2;−0.1; 0.1]. First, we present the
simulation result without any control inputs in Fig. 4(a), where it is observed that the
system without control inputs cannot be stabilized after 8 seconds.

Second, we set Q = 0.2I5 and R = I3, and apply the associated optimal control
policy to the uncertain system. The simulation result is shown in Fig. 4(b), where we can
see the system with the optimal control policy can be stabilized after 8 seconds. Third,
we set Q = 20I5 and R = I3, and apply the associated optimal control policy to the
uncertain system. The simulation result is shown in Fig. 4(c), where it can be observed
that the system states under the optimal control with Q = 20I5 get convergence within 4
seconds. Through the simulation results of Fig. 4, we can verify the validity of Theorem
1.
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(a) System states without control

0 1 2 3 4 5 6 7 8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

S
ys

te
m

 s
ta

te
s 

w
ith

 Q
=

0.
2I

 

 

x
1

x
2

x
3

x
4

x
5

(b) System states with Q = 0.2I5
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(c) System states with Q = 20I5

Fig. 4. Comparisons of control performance among different conditions
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Fig. 5. System states x1 and x2 under different conditions



846 Shunjiang Wang et al.

In addition, we present the system states x1 and x2 under different conditions in Fig.
5(a) and Fig. 5(b), respectively. From Fig. 5, we can see the system states x1 and x2 with
Q = 20I5 achieve faster convergence and better control performance than them without
control or with Q = 0.2I5, which implies the control performance can be improved by
tuning the parameter Q in the performance index function.

From the simulation results, we can see the secure control strategy relies on the opti-
mal control theory, which implies the optimal control policy not only has the optimality
but also the robustness. The matrix Q in the performance index function plays an impor-
tant role in handling the system uncertainties and state deviation. Once the optimal control
policy is applied to the system, the security as well as the optimality will be guaranteed
by tuning the matrix Q. Different from other secure control methods, the proposed con-
trol scheme not only concerns the robustness but also the optimality of the entire control
process.

6. Conclusion

In this paper, the secure control problem of a benchmark microgrid with system uncer-
tainties has been investigated by using data-driven edge computing technology. The cor-
responding mathematical problem formulation has been derived and established. Three
state-of-the-art RL methods have been reviewed in details. The stability analysis has been
presented through the Lyapunov stability theory, which indicates the uncertain microgrid
can be asymptotically stabilized under the optimal control policy. Furthermore, simula-
tion results have demonstrated the control performance can be significantly improved by
tuning the parameters in the performance index function. In the future, it is expected that
our proposed scheme can be applied to other information systems.
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