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Abstract. Aiming at the problem of low sampling efficiency and high demand for 
anchor node density of traditional Monte Carlo Localization Boxed algorithm, an 
improved algorithm based on historical anchor node information and the received 
signal strength indicator (RSSI) ranging weight is proposed which can effectively 
constrain sampling area of the node to be located. Moreover, the RSSI ranging of 
the surrounding anchors and the neighbor nodes is used to provide references for 
the position sampling weights of the nodes to be located, an improved motion 
model is proposed to further restrict the sampling area in direction. The simulation 
results show that the improved Monte Carlo Localization Boxed (IMCB) 
algorithm effectively improves the accuracy and efficiency of localization. 

Keywords: Wireless sensor networks, Localization, Monte Carlo Boxed, RSSI, 
Motion prediction. 

1. Introduction 

Wireless sensor networks (WSN) is a wireless communication network system that 
integrates monitoring, control, wireless communication and other functions. With the 
development of wireless sensor network technology, sensors are widely used in 
environment, military, medical, space exploration and many other fields. In these 
applications, the location of sensor nodes is a very important information, locating 
technology has become the key support technology of wireless sensor networks. With 
the diversification of wireless sensor network applications and the gradual maturity of 
static network node locating technology, mobile node locating technology has attracted 
more and more attention in recent years. 

The localization algorithm of wireless sensor network nodes can be divided into 
localization algorithm based on ranging and localization algorithm based on non-
ranging. Ranging-based localization algorithm is based on AOA [1], TOA [2], TDOA 
[3], RSSI [4] and other ranging technologies to obtain the distance between ordinary 
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nodes and anchor nodes, and then use spatial geometry rules to calculate the location of 
unknown nodes through triangular localization algorithm, trilateral localization 
algorithm, multilateral localization algorithm, maximum likelihood estimation 
algorithm, etc. Non-ranging localization algorithm does not need to measure the distance 
between nodes, but calculates the location of unknown nodes by calculating the 
connectivity between unknown nodes and surrounding nodes, such as centroid 
localization [5], DV-Hop localization [6], convex programming [7], APIT [8], etc. 

Fixed wireless sensor network node localization algorithms are numerous and 
relatively mature, but the complexity of mobile node localization algorithm leads to a 
huge amount of computation, and the localization accuracy is also deficient, so it is an 
urgent need for a location strategy suitable for mobile sensor networks. 

In [9], Hu and Evans proposed a Monte Carlo-based mobile wireless sensor network 
node localization algorithm-MCL for node location of wireless mobile sensor networks. 
The algorithm proposes a simulation-based solution to estimate the posterior probability 
distribution of nonlinear discrete-time motion models. In view of the low efficiency of 
position sampling of the MCL algorithm, many improved mobile node localization 
algorithms have been developed based on MCL, such as Monte Carlo Localization 
Boxed algorithm (MCB) [10], range-based-MCL algorithm [11], RSSI-MCL algorithm 
[12], etc. The MCB algorithm establishes the sampling range of the anchor box limit 
position prediction by making full use of the one-hop (two-hop) anchor node 
information that the unknown node can perceive, which effectively improves the 
accuracy and efficiency of the node positioning [13]. However, the MCB still has a large 
and fuzzy sampling point set, and there is also much room for improvement in the 
prediction of the motion direction of the node. In addition to the above improved 
strategies, there are many researches on the localization algorithm of wireless mobile 
sensor networks based on Monte Carlo localization algorithm, such as adaptive weight 
[14], virtual anchor node [15], model prediction [16], fusion posture estimation [17] etc. 
Aiming at the problem of MCB algorithm, this paper proposes an improved MCB for 
mobile sensor networks. The algorithm further limits the sampling range of the nodes to 
be located by using the historical anchor node and its RSSI ranging, and distinguishes 
the weights of the effective sampling nodes by RSSI ranging of the surrounding anchors 
and current neighbor nodes. In addition, an improved motion model which is conducive 
to the prediction of the node's motion direction is proposed. 

The rest of the paper is organized as follows. Section 2 discusses the related 
localization algorithm MCL and MCB. Section 3 introduces the proposed IMCB from 
the aspect of improvement ideas, optimization method of sampling weight based on 
RSSI and improved motion model for sampling prediction. Section 4 provides the 
simulation results of IMCB and analyzes the comparison to existing algorithms. Finally, 
section 5 concludes the paper. 
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2. Related Work 

2.1. MCL Algorithm 

MCL algorithm has the following assumptions: all nodes are movable and the time is 
divided into several discrete time slots with equal length, and the node position is 
updated once in each time unit; the unknown node only knows its maximum moving 
distance maxv  in unit time; the communication range of each node is r.  

In the following description, tl  represents the position distribution of common nodes 

at time t . to  represents the observation value sent by anchor nodes from 1t   to t . 
0 1 48 1{ , , , , }N

t t t t tL l l l l  L  represents the possible position sampling set of nodes at time t, 

including N samples. 1( | )t tp l l   represents the prior probability of unknown node 

predicting the position at current time based on the previous time. ( | )t tp l o  represents 

the posterior probability of tl  obtained based on the observation value to . MCL 

algorithm is divided into four phases: initialization, prediction, filtering and locating. 
(1) Initialization: Each common node constructs a sampling set of its own possible 

positions 0 1 48 1{ , , , , }N
t t t t tL l l l l  L . 

(2) Prediction: The common node extracts a new sampling set tL  from the position 

information 1tL   and motion information of the previous moment. Then the possible 

node position at the current time is in the circular area vC with the center of 1
i
tl   and the 

radius of maxv . The samples in the circle are uniformly distributed: 

 
 

(1) 
 

(3) Filtering: At this phase, according to the observation values of one hop and two hop 

anchor nodes received, common node filters the invalid position samples in tL , the one-

hop neighbor node receiving the message should be in the circle with the anchor node as 
the center and r as the radius, while the two-hop neighbor node should be in the circle 
with the anchor node as the center and the radius of (r, 2r), and the position sampling 
that does not meet the condition is invalid sampling, that is: 

 
(2) 

 
 

Where s  represents an anchor node, S  represents a set of one-hop anchor nodes, and 
T  represents a set of two-hop anchor nodes. In order to obtain enough position samples, 
when the invalid samples in the sample set are filtered out, the previous prediction and 
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filtering process are repeated until the number of samples is met or the upper limit of 
sampling rounds is reached.  
(4) Locating: Finally, the estimated position _ tes p  of the common node is the average 

value of the sample set, where the weight i
tw  of the sample point is equal to 0 or 1. 

                                                              
                                                                                                                                (3) 

2.2. MCB Algorithm 

MCB algorithm is an improved method to solve the problem of low efficiency and long 
computation time caused by the ambiguity of sampling range of MCL algorithm, that is, 
the communication range of anchor nodes is used to constrain sampling area. In the 
MCB algorithm, for convenience, a circular communication domain with the anchor 
node S as the center and the communication distance r as the radius is approximated as a 
circumscribed square of the circle with the anchor node S as the center and 2r as the side 
length, called the anchor box. If a two-hop anchor node is used, the side of the anchor 
box is 4r. The other phases of the MCB algorithm are the same as the MCL algorithm, 
but the anchor node sampling box is established during the sampling phase, as shown in 
Fig.1. Sampling in the overlapping area of these anchor boxes can effectively narrow the 
sampling range, improve the sampling efficiency and quality, shorten the positioning 
time, reduce the calculation amount, and improve the positioning speed and accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Sampling in the overlapping area of the anchor boxes can effectively narrow the sampling 
range 

The anchor node sampling box is a circumscribed square overlapping area in which the 
anchor node S is the center of the circle and the communication range r is a radius. This 
area can be expressed as follows: 

_
i i
t t

t i
i t

i

l w
es p

w


S 
N 

r



An Improved MCB Localization Algorithm Based on Weighted RSSI and Motion Prediction         
783 

                           

min 1

max 1

min 1

max 1

max ( )

min ( )

max ( )

min ( )

n
j j
n
j j
n
j j
n
j j

x x r

x x r

y y r

y y r









  
  
  
  

                                              (4) 

Where minx , maxx , miny  and maxy  are the coordinate range of the sampling box, n is the 

number of anchor nodes, and jx , jy  are the horizontal and vertical coordinates of the j-

th anchor point. Fig. 1 and (4) show the case of a one-hop anchor node. If a two-hop 
anchor node is used, in the above figure and (4), 2r r . The velocity sampling box at 
the previous moment is constructed in the same way as the MCL algorithm, and then the 
intersection of the two boxes is sought. 

3. An Improved MCB Algorithm Based on weighted RSSI and 
motion prediction 

3.1. Improved MCB Algorithm 

Although, the MCB algorithm limits the sampling range of position prediction by 
making full use of the information of one-hop (two-hop) anchor nodes that unknown 
nodes can "hear", and effectively improves the accuracy and efficiency of node 
positioning [10]. However, there are still some problems in MCB: firstly, MCB can get 
the final estimated position by averaging all sampling points, without effectively 
distinguishing good sampling points from bad ones; secondly, the motion models used in 
MCB and MCL algorithm are all improved Random Waypoint Mobility Models, the 
movement direction of nodes in each time unit are arbitrarily selected. However, in 
practice, the movement direction range of nodes should be limited.  

In order to further improve the sampling efficiency of MCB algorithm and solve the 
above two problems, this paper proposes the scheme which can further reduce the 
sampling area of unknown nodes by using the historical anchor nodes, optimize the 
weight of sample points in the sampling set by using the received signal strength 
indication information between the unknown nodes and the neighbor nodes, then 
dynamically predict the movement direction of nodes in the sampling phase. 

Suppose that the anchor box has been established according to the steps described 
above, and the sampling area of the node position is reduced according to the anchor 
node information of the node to be located at time 1t  , so as to further improve the 

sampling efficiency. As shown in Fig. 2 (a), 1tn   is the position of the node to be located 

at time 1t  , tn  is the position of the node to be located at time t , and 1ts   is the 

neighbor anchor node of the node to be located at time 1t  . Because 1tn   must be in 

the communication range of 1ts  , that is, t -1 t -1d(n ,s )  must be less than r, and the 
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maximum moving distance of tn  is maxv , so tn  must be in the circle with 1ts   as the 

center and maxr v  as the radius. 

As shown in Fig. 2 (b), the distance rssd  from t -1n  to 1ts   can be calculated by the 

received signal strength. According to the above principle, tn  can be limited to a circle 

with 1ts   as the center and maxrssd v  as the radius, further reducing the limit range of 

1ts   to 1tn  . In this way, with reference to the method of MCB, the circumscribed square 

of the circle is established. 1 1( , ), ( , )t tX s j Y s j   are the abscissa and ordinate of the j-th 

anchor node at time 1t  , respectively. Then the overlap between the circle and the 
anchor box can be calculated as follows: 

 
                                   

        (5) 
 
After the sampling box has been established as above, position sampling can be 

carried out for the nodes to be located in the sampling box. 
 

 
                         (a)                                                     (b) 
 

Fig.2.  In order to further constrain the node position sampling area, the historical anchor node 
information and RSSI ranging results are used to limit the position sampling at the current time 

In the filtering phase, common nodes filter the invalid position samples in tL  

according to the observation values of one-hop and two-hop anchor nodes received. The 
basic method is the same as that of MCL algorithm, and then the restriction conditions 
of historical anchor nodes are added, namely: 
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Where, l  represents the position sampling point, s  represents an anchor node, S  
represents a set of anchor nodes, T  represents a set of two anchor nodes, and H  
represents a set of historical anchor nodes. For the limitations of the motion model on 
the sampling points, see section 3.3. In order to obtain enough position samples, when 
the invalid samples in the sample set are filtered out, the previous predictive sampling 
and filtering process are repeated until the number of samples is met or the upper limit 
of sampling rounds is reached. 

3.2. Optimization of sampling weight based on RSSI 

In the actual wireless communication, the surrounding environment is very complex. 
The reflection, diffraction and scattering of electromagnetic wave will cause the signal 
fading. In the system simulation, the lognormal shadow fading model is often used to 
characterize the channel characteristics, and the formula is as follows: 

                                        0
0

10 lgr r

d
P d P d n X

d                                  

(7) 
Where,  rP d  is the received signal strength at the distance d ,  0rP d  is the 

received signal strength at the reference distance 0d , and n  is the path loss exponent, 

which represents the path loss rate. In free space, n=2. X  is a random variable with 

Gaussian distribution of zero mean, and its standard deviation is   in dB. According to 
formula 7, the propagation distance of the signal can be calculated according to the 
received signal strength of the node, and the calculated value can be used to 
approximate the real distance between nodes. 

In this paper, RSSI ranging is used to estimate the distance between the node to be 
located and its one hop anchor node, which is stored by the node to be located. When 

positioning, it is necessary to obtain the distance rssd  between the node to be located 

and its historical anchor node at t-1 time. If the distance between node i to be located 

and one hop anchor node j obtained by RSSI ranging is 
ˆ

ijd
, for practical consideration, 

this distance cannot exceed the communication range, and the its value can be estimated 
as: 

                                             rss
ˆmin( , ) ijd d r

                                      
(8) 
This distance will be used to limit the position sampling area of the node to be located. 
The position estimation based on RSSI weight can be divided into two stages: the non-
weighted position estimation and the weighted position estimation. In the first stage, the 
common node obtains the average position estimation according to the filtered effective 
sampling points, and sends the value and its position error estimation to the common 
neighbor node; in the second stage, the common node calculates the weight through the 
RSSI distance according to the neighbor anchor node information, the neighbor node's 
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position estimation and its position error estimation, and updates the estimated position. 
The RSSI weights are calculated as follows: 

 

Fig.3. Computing sample weights according to the neighbor nodes’ RSSI 

As shown in Fig.3, O is the node to be located, S1, S2 and n are two anchor nodes and 
one common node within the communication range of the node to be located. The 
intersection of circle S1 and circle S2, namely the shadow part, is the effective range of 
O position sampling, and A and B are the two position sampling within the effective 
range. The distance between the unknown node and the anchor node and the neighbor 
node can be estimated by the signal RSSI received by the unknown node, which is 

labeled rss_s1d , rss_s2d  and rss_nd .  

The distance from the sampling point to the anchor node can be calculated according 
to the known coordinates. The distance from the sampling point to the common neighbor 
node can be approximated by the non-weighted estimated distance from the sampling 

point to the neighbor node, marked as i
td(l ,s1) , i

td(l ,s2)  and i
td(l ,n) . Considering the 

errors of RSSI ranging and neighbor node position estimation, RSSI ranging error factor 

rssi （ rssi 0  ）and neighbor node position error estimation nER  are added to the 

weight calculation. The weight calculation method is: if i
tl  satisfies three inequalities in 

equation (9) at the same time, then the weight i
t  of i

tl  plus 1. For example, the weight 

of position sampling A in Fig.3 is greater than that of B. 
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(9) 
 
The computing method of nER  is as follows: Establish a minimum rectangular box for 

the filtered effective sampling points, so that all the effective sampling points can be 
included, as shown in  Fig.4. Point es_p  is the estimated position of all the effective 

position sampling points after the non-weighted average. The variables dx  and yd  are 

the maximum errors of the sampling points in X and Y directions, then: 
 

                                                                                                                               (10) 
1. When there are three or more anchor nodes in the range of the unknown node, 

only anchor nodes are taken for the weight computing of position sampling;  
2. If the number of anchor nodes in the communication range of the unknown 

node is less than three, the neighbor nodes with the smallest nER  are used to 

supplement the number, and then neighbor anchor nodes and common nodes 
are used for the weight computing of position sampling;  

3. If the total number of neighbor anchor nodes and common nodes is less than 
three, no weight computing will be carried out, and the result of non-weighted 
position estimation in the first stage will be taken as the position estimation of 
unknown nodes. 

Fig.4. Computing the Estimation of Localization Error, where black dots represent all valid 
position samples of a neighbor's common node 

3.3. Optimization of sampling prediction based on motion model 

The basic idea of the sampling prediction optimization is that the motion model restricts 
the motion direction of the nodes, and the prediction sampling points of the unknown 
nodes should also be limited within the range of the possible motion direction. 

Improvement of motion model 
 
The motion model used in MCL algorithm simulation is an improved random middle 
point motion model, which takes the current position of the node as the starting position, 
selects any position within the deployment area of the node as the destination position to 
determine the movement direction of the node, and uses any value within the range 
(minimum rate, maximum rate) as the movement rate of the node to move towards the 
destination position. The algorithm considers that the motion in different time slots is 
independent of each other, which may cause some unrealistic motion behaviors of 

2 2
nER = dx + dy
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nodes, such as sharp turning 180 degrees. Therefore, this paper improves the motion 
model of the node on the basis of the random middle node motion model, and limits the 
motion direction of the node to a realizable range, that is, the angle between the motion 
direction of the node selected at the next moment and the original motion direction 

should be less than the maximum realizable angle. As shown in Fig.5, t -2l  and t-1l  are 

the positions of the nodes in the first two moments respectively, and tl  is the position 

where the nodes are about to arrive.   is the angle between vector 
uuuur
t -1 tl l a and 1

uuuuuur
t -2 tl l B, 

which represents the steering angle of node motion, and   is the maximum value of 

 . Therefore,   is limited to  , which avoids the unrealistic too large steering angle 

of the node in the process of motion. 
 
 
 
 
 
 
 
 
 
        

Optimization of sampling point prediction based on motion model  
 
On the basis of the above improved motion model, this paper predicts the dynamic 
motion direction of nodes based on the number of anchor nodes in the sampling phase, 
that is, the sampling is only in the range of possible motion direction of nodes. Fig. 6 is a 

direction prediction model for node position prediction sampling, in which t-2l$  is the 

node position estimation at time t - 2 , i
t-1l  is the i-th position sampling of the node at 

time t - 1 , i
tl  is the i-th position sampling of the node at time t , where [0, 1]i N  , 

N is the maximum number of samples in the unknown node position sampling set. 

Because t -2l$  and i
t-1l  are estimated information and have errors with the real positions 

of nodes in the first two moments, angle  , the correction angle of  , is added to the 

direction prediction model. For the convenience of the following description, the vector 

with t-2l$  as the starting point and i
t-1l  as the end point is recorded as vector a ; the 

vector with i
t-1l  as the starting point and i

tl  as the end point is recorded as vector b , 

then the angle between a  and b  cannot exceed the maximum steering angle  . 

Fig.5. Modifying motion model which can 
limit the motion direction of the node by 

setting the maximum angle α . 

Fig.6. Predicting direction based on 
motion model and filtering the invalid 

nodes. 
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Define the estimated maximum steering angle   as the sum of the actual maximum 

steering angle   and the correction angle  : 

(11) 
 

(12) 
 

(13) 
 

Among them, t-2m  and t-1m  are the number of anchor nodes in the communication 

range of unknown nodes at time t - 2  and t - 1  respectively, t-2n  and t -1n  are the 

number of two hop anchor nodes at time t - 2  and t -1  respectively, 1   and 2  
respectively represent the influence ability of one-hop anchor node number and two-hop 
anchor node number on localization error. The more the number of anchor nodes in the 

communication range of unknown nodes, the smaller the localization error of t -2l$  and 
i
t-1l , the smaller the correction angle  , otherwise  is larger; k is a constant, its 

function is to avoid zero denominator;   is a settable parameter with unit  "degree". As 
shown in Fig.6, M is the effective sampling points and N is filtered points. 

4. Simulation and analysis 

In order to effectively evaluate the performance of the improved Monte Carlo 
localization boxed algorithm (IMCB) proposed in this paper and compare its 
performance with MCL and MCB, we build a network simulation platform [9]. The 
platform uses JAVA as the development environment, and the simulation parameters are 
set as follows: 

The entire simulation area is a square area A of 500m×500m, and 320 nodes 
generated by each simulation are randomly distributed including several anchor nodes, 
and the rest are common nodes. The node moves randomly in the deployment area 
according to the improved motion model as above, and the actual maximum steering 
angle is 60  o .  

In the direction prediction, set 1 0.8  , 2 0.2  , 1k  and 120  o , that is, when 

2 1 1 2 1 2 0     t t t tm m n n , the maximum steering angle 180      o  is estimated 

because the accuracy of the reference direction is too low. The maxv  is the maximum 

moving speed of the node, which represents the maximum moving distance of the node 
in each time unit. When the motion model is adopted, the node is randomly selected 

from max(0, )v , ds  is the density of anchor nodes, which represents the average number 

of anchor nodes in the range of one hop communication. 
 

(14) 
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Where anchor_num  is the total number of anchor nodes in the deployment area, A is 

the total area of the deployment area, and r is the communication radius of the node. 

4.1. Localization error 

The localization error of the node is denoted by the distance between the estimated 
position coordinate of the node and the real position coordinate. The computing method 
is as follows: 

 
 

(15) 
 

Where i i(x ,y )   is the real coordinate of node i, i i(x', y')  is the node location coordinate 

computed by the location algorithm, num is the number of deployed common nodes, and 
r is the communication radius of the node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. Localization error over time when maxv = 0.2r， ds  1 

Fig.7 shows the curve of node localization error over time when maxv = 0.2r and 

ds = 1. The localization of nodes can be divided into initialization stage and 

stabilization stage. In the initialization stage, the localization accuracy of all three 
algorithms is very poor. With the increase of time, the localization error decreases 
rapidly, and the IMCB and MCB algorithm reach the stable stage faster than MCL, and 
the localization error of IMCB is improved obviously. In addition, after the 45-th time 
unit, the localization error shows an upward trend. Due to the accumulation of errors, 
MCL is easy to lead to the insufficient number of node positioning prediction samples, 
and the localization error continues to increase. On the contrary, due to the limitation of 
anchor box in position prediction, MCB and IMCB prevent the worse of node 
localization error. IMCB makes use of the limitation of historical anchor nodes and 
predicts the movement direction of the nodes, which further reduces the sampling range. 

num
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At the same time, RSSI weight optimization effectively distinguishes the possibility that 
the sample points are close to the real position, thus obtaining more accurate location 
accuracy than MCB. From the simulation results, the localization error of IMCB is 
11.2% lower than that of MCB. If only the value of stabilization stage is estimated, the 
localization error of IMCB is 12.41% lower than that of MCB. 

4.2. Impact of maximum rate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. Impact of maximum rate when ds  1 

The increase of maxv  will make the sampling area larger, but from another point of 

view, the rapid movement of nodes may bring more anchor node information. Fig.8 

shows the curve of node localization error with node movement rate when ds =1. The 

error value is the average error after multiple localization of the specified maxv . It can be 

seen that with the increase of maxv , the localization error decreases significantly between 

0.2r and 0.4r. After that, the localization errors of MCB and MCL have an obvious 
upward trend. Although the localization errors of the IMCB algorithm is also increase, 
the trend is obviously slow. This is because the sampling range of MCB and MCL 
position prediction will increase with the increase of maxv . But for IMCB, in addition to 

the limitation of anchor box and maxv , direction prediction is also added, which is 

independent of maxv . When maxv  increases to the extent that it is ineffective to predict 

the sampling range of the limited position, that is to say, when the square constructed 
according to maxv  completely covers the anchor box, the range limitation impact of the 

direction prediction is still effective. Therefore, with the increase of maxv , the rising 

trend of IMCB localization error is smooth, and the location accuracy is better than that 
of MCB. 
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4.3. Impact of anchor node density 

Increasing the density of anchor nodes is beneficial for reducing the localization error, 
but it will undoubtedly increase the deployment cost of the network. Fig.9 shows the 
curve of localization error changing with the density of anchor nodes when max =0.2v r . 

It can be seen from the figure that the localization error of IMCB is lower than that of 
MCB. On the one hand, the increase of the number of anchor nodes makes the weight 
optimization based on RSSI more effective. On the other hand, the increase of anchor 
nodes improves the location accuracy, and also makes the range of direction prediction 
angle smaller in the next positioning, thus reducing the range of position prediction and 
further improving the location accuracy. In addition, the constraints of historical anchor 
nodes make the location accuracy of IMCB due to MCL and MCB when the density of 
anchor nodes is low. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9. Impact of anchor node density where maxv = 0.2r 

5. Conclusion 

Location problem is one of the hotspots in wireless sensor network research. In order to 
further improve the performance of the MCL algorithm which has attracted much 
attention in the field of mobile sensor network in recent years, this paper designs a 
weighted localization algorithm named Improved Monte Carlo Localization Boxed 
(IMCB) based on the historical anchor node and RSSI ranging, which has the following 
advantages: firstly, using the historical anchor node and the historical RSSI ranging 
information to further narrow the sampling range of the unknown node, improve the 
sampling efficiency of the node position, and also to some extent alleviate the problem 
of anchor node density; Secondly, the weight optimization based on RSSI effectively 
distinguishes the weight of the sampling points, which is conducive to further reducing 
the localization error of the nodes; thirdly, the improvement of the motion model is 



An Improved MCB Localization Algorithm Based on Weighted RSSI and Motion Prediction         
793 

beneficial to the direction prediction of the nodes, reducing the sampling range of the 
position prediction, improving the localization efficiency and accuracy of the nodes. 
However, there are still many factors affecting the location algorithm, such as 
computational complexity, location time, environmental disturbance, network security, 
etc. which will affect the performance and conditions for use of the algorithm. More in-
depth research and evaluation are needed. 
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