
Computer Science and Information Systems 17(1): 29–50 https://doi.org/10.2298/CSIS181122036A 

 

Efficient Virtual Machine Placement Algorithms for 

Consolidation in Cloud Data Centers 

Loiy Alsbatin1,2, Gürcü Öz1, and Ali Hakan Ulusoy3 

1 Department of Computer Engineering, Faculty of Engineering, Eastern Mediterranean 

University, 

 Famagusta, North Cyprus via Mersin 10 Turkey, 

loiy.alsbatin@gmail.com, gurcu.oz@emu.edu.tr 
2 Department of Computer Science, Collage of Computing and Information Technology, 

Shaqra University, 

 Riyadh, Saudi Arabia 
3 Department of Information Technology, School of Computing and Technology, Eastern 

Mediterranean University, 

 Famagusta, North Cyprus via Mersin 10 Turkey, 

alihakan.ulusoy@emu.edu.tr 

Abstract. Dynamic Virtual Machine (VM) consolidation is a successful approach 

to improve the energy efficiency and the resource utilization in cloud 

environments. Consequently, optimizing the online energy-performance tradeoff 

directly influences quality of service. In this study, algorithms named as CPU 

Priority based Best-Fit Decreasing (CPBFD) and Dynamic CPU Priority based 

Best-Fit Decreasing (DCPBFD) are proposed for VM placement. A number of 

VM placement algorithms are implemented and compared with the proposed 

algorithms. The algorithms are evaluated through simulations with real-world 

workload traces and it is shown that the proposed algorithms outperform the 

known algorithms. The simulation results clearly show that CPBFD and DCPBFD 

provide the least service level agreement violations, least VM migrations, and 

efficient energy consumption. 
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1. Introduction 

Dynamic Virtual Machine (VM) consolidation effectively improves the energy 

efficiency and resource utilization in data centers. Reallocating VMs from an 

overloaded Physical Machine (PM) maximizes the utilization and energy efficiency 

with providing a high Quality of Service (QoS). The goal of consolidation of VMs 

ensures an efficient utilization that can be achieved through the use of VM migrations 

across different PMs. Power consumption of USA data centers has increased by 62.5% 

from 2005 to 2013 and expected to increase by 150% in 2020 [1]. Most of the energy 

consumption of data centers is consumed by computing resources. Accordingly, 

resource management is important to ensure that the applications efficiently utilize the 

available computing resources. Switching the idle nodes to sleep mode to eliminate the 

idle power consumption can achieve a reduction in energy consumption. 
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One efficient way to improve the utilization of cloud data center resources is the 

dynamic consolidation of VMs [2-11]. The dynamic consolidation reallocates VMs 

periodically using migration to reduce the number of active PMs required to handle 

requests. The objective of this approach is mainly to minimize energy consumption and 

maximize of QoS provided by the system. 

It is complex to solve dynamic VM consolidation problem analytically as a whole [3, 

4]. In general, the problem can be decomposed into tasks as following [8]: 

1. PM underload detection: This is the phase when a PM is considered as being 

underloaded, so all VMs running on an underloaded PM should be migrated to other 

PMs and the underloaded PM should be switched to the sleep mode (to reduce the 

number of active PMs). 

2. PM overload detection: This is the phase when a PM is considered as being 

overloaded, so some VMs running on an overloaded PM should be migrated to 

another active PM (to avoid violation QoS requirements). 

3. VM selection: This is the phase to select VMs to be migrated from the overloaded 

PM. 

4. VM placement: This is the phase to place selected VMs for migration on another 

active PM. 

In this study, we mainly focus on VM placement problem. Algorithms named as 

CPU Priority based Best-Fit Decreasing (CPBFD) and Dynamic CPU Priority based 

Best-Fit Decreasing (DCPBFD) are proposed for VM placement. We implemented a 

number of placement algorithms to compare with the proposed algorithms using real 

workload traces.  

The rest of the paper is organized as follows. The related work and the system model 

are discussed in Sections 2 and 3, respectively. The metrics used to show the 

performance of the algorithms are described in Section 4. The proposed VM placement 

algorithms are presented in Section 5. In Section 6, the experimental setup, evaluations 

and results are discussed. Finally, we conclude the results and discuss the future work in 

Section 7. 

2. Related Work 

The two main types of energy efficient resource management algorithms in the cloud 

data centers are constraint energy consumption algorithm [12, 13] and energy efficiency 

(energy consumption and Service Level Agreement (SLA) violation) algorithm [7, 8, 

14, 15]. The constraint energy consumption algorithm aims to minimize the energy 

consumption, but this type of algorithm does not consider SLA violation at all or 

focuses a little on it. Therefore, this type of algorithm does not meet the requirements of 

users. For example, two heuristic algorithms are proposed by Lee and Zomaya [12] to 

reduce the energy consumption, but the algorithms do not consider SLA violation. 

Similarly, Kang and Ranka [13] proposed an energy-saving algorithm, but it also does 

not consider SLA violation. The main goal of the energy efficiency algorithm is to 

reduce the energy consumption and SLA violation in data centers. Several VM 

placement algorithms are proposed in [7, 8, 14, 15]. These algorithms reduce SLA 

violation and save energy consumption, but SLA violation remains at a high level. In 
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our previous study [16], we proposed dynamic VM consolidation based on a PM 

overload detection algorithm and a combination of PM overload detection algorithm and 

VM quiescing to minimize number of VM migrations according to QoS requirements. 

The goal of the model is to improve utilization of resources, SLA, and energy efficiency 

in cloud data centers. However, this model does not focus on energy consumption. 

In the past few years, many approaches to the dynamic consolidation of VMs have 

been proposed [2-11]. Comparative studies of various existing consolidation of VM 

algorithms using real-world workload traces were presented. Some of VM consolidation 

algorithms based on different heuristics on the legitimate PM were analyzed in [17]. A 

scheduling algorithm to assign VMs to PMs in a data center was proposed in [18]. The 

goal was to improve energy efficiency by taking into consideration the conflicts 

between the costs of VM migration and CPU and disk utilizations. Four models named 

as the migration model, the energy model, the application model, and the target system 

model were presented to identify the conflicts. 

An adaptive threshold-based algorithm was proposed by Deng et al. in [19]. The 

overload threshold of CPU utilization and the average utilization of active PMs were 

used for PM underload detection algorithm, and minimum average utilization difference 

of the data center was used for VM placement algorithm. Several dynamic VM 

consolidation algorithms were proposed by Khoshkholghi et al. in [20] to improve the 

utilization, energy consumption and SLA violations based on the CPU, RAM and 

bandwidth. They used an iterative weighted linear regression method for PM overload 

detection and a vector magnitude squared of resources for PM underload detection. 

They also proposed SLA and power-aware VM selection algorithm and VM placement 

algorithm. PM overload and underload detection algorithms and VM placement 

algorithm based on dynamic thresholds and probable future load were proposed by 

Shaw et al. in [21]. They used simple exponential smoothing technique to predict CPU 

utilization and calculate dynamic upper and lower utilization thresholds. A VM 

consolidation algorithm with utilization prediction of multiple resource types based on 

the local history of PMs was proposed by Nguyen et al. in [22] to improve the energy 

efficiency of cloud data centers. Two adaptive energy-aware algorithms for minimizing 

SLA violation and maximizing energy efficiency in cloud data centers were proposed 

by Zhou et al. in [23]. CPU, memory resources and application types were considered 

during the deployment of VMs. 

Managing resource allocation to improve response time using control loops at the 

server and cluster levels were applied in [24]. The server migrated a VM if the server’s 

resource capacity was not enough to meet SLA of application. An adaptive heuristics 

energy-aware algorithm that used an upper threshold of CPU utilization for PM 

overload detection and dynamic VM selection algorithms was proposed in [25]. A 

greedy consolidation algorithm based on VM placement algorithm was proposed in [26] 

to improve the network usage and performance of applications in the data centers. The 

greedy consolidation algorithm reduced the number of migrations and speed up the 

placement decisions. In [27], two algorithms which could be used together for live 

migration of multiple VMs were proposed. The proposed VM migration depended on 

three factors that were the cost of migration, the expected distribution of workload and 

the state of PM after migration. The algorithms distributed the workload efficiently in 

the system. In spite of that, the research did not discuss how to meet SLA. In [3], the 

problem of dynamic VM placement was solved by a heuristic bin packing algorithm. 

However, SLA cannot be met because of unforeseeable workloads and instability. 
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A dynamic consolidation of VMs for web applications was implemented in [10]. In 

this study, the response time was used to define SLA. Weighted linear regression was 

applied to get the future workload and improve the distribution of workload. VM 

consolidation algorithms under QoS expectations were evaluated using the CloudSim 

toolkit showing high improvement of cost savings and energy efficiency using dynamic 

workload scenarios [7, 8]. They proposed maximum correlation, random selection and 

Minimum Migration Time (MMT) policies for VM selection from the overloaded PM 

and utilized interquartile range, median absolute deviation, robust local regression and 

Local Regression (LR) algorithms for PM overload detection. Simple Method (SM) was 

used to find underloaded PM which was with the least resource utilization. For VM 

placement, they proposed Power-Aware Best-Fit Decreasing (PABFD) algorithm, 

which based on sorting VMs by CPU utilization in decreasing order and placing a VM 

in PM that will have the minimum expected increasing in power consumption. The 

results showed that the combination of LR for PM overload detection and MMT for VM 

selection had better performance in the number of VM migrations, energy consumption, 

and SLA violations. 

In this research, LR method was used for PM overload detection, SM policy was 

used for PM underload detection, MMT policy was used for VM selection, and for 

comparison purposes with proposed CPBFD and DCPBFD VM placement algorithms 

we used PABFD, First-Fit Decreasing (FFD) [28-30] and Best-Fit Decreasing (BFD) 

[29, 30] algorithms which are well-known algorithms for bin-packing problem. VM 

placement algorithm based on FFD sorts VMs by CPU utilization in decreasing order 

and places a VM in the first PM that will fit it [30]. VM placement algorithm based on 

BFD sorts VMs by CPU utilization in decreasing order and places a VM in PM that will 

have the maximum CPU utilization after allocating VM [30]. 

3. System Model 

We use the system model presented in [8] to evaluate VM placement algorithms by 

using the CloudSim [31] toolkit. The system consists of X heterogeneous PMs in a 

large-scale data center. Characteristics of each PM are defined by CPU performance 

denoted by Random Access Memory (RAM), Millions Instructions Per Second (MIPS), 

and network bandwidth. The storage of servers for VM live migration is network 

attached storage. Multiple independent users request for supplying Y VMs characterized 

by requirements denoted by RAM, MIPS and network bandwidth. 

As shown in Fig. 1, the system includes global and local managers. The local 

manager on each PM monitors CPU utilization of PM using VM Monitor (VMM). 

VMM decides when and which VMs should be migrated to other PMs. The global 

manager which acts as the controller in the system collects information of the utilization 

of PMs from the local managers and decides VM placement, and VMMs migrate VMs 

and change the power mode of PMs. 
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Fig. 1. The system model [8] 

4. Metrices 

4.1. Power Model 

In the data centers, power consumption of PMs is usually defined by CPU, cooling 

systems, power supplies, memory and disk storage [32]. The power consumption of 

PMs can be defined using linear relationship of CPU utilization even if dynamic voltage 

and frequency scaling is used [7, 33, 34]. Due to the fact that the limited number of the 

frequency and voltage states of a CPU and other system components, such as network 

interfaces and memory, the voltage and frequency scaling are not used. Since analytical 

models of power consumption is a complex research problem for modern multi-core 

CPUs [8], real power consumption benchmark results provided by the SPECpower [35] 

are used. 

The work in [7, 36] shows that a PM when it is idle uses approximately 70% of its 

maximum energy consumption. As presented in [7, 36], the power consumption of PM 

can be defined as 

𝑃(𝑢)  =  0.7 ×  𝑃𝑚𝑎𝑥 +  0.3 ×  𝑃𝑚𝑎𝑥  ×  𝑢 (1) 

where 𝑃𝑚𝑎𝑥 is the maximum power of a fully utilized PM and is set to 250 W as 

presented in [33, 34]. u is CPU utilization. Since CPU utilization changes over time, it is 

presented as a function of time as u(t). As presented in [7], energy consumption can be 

obtained as 

E = ∫ 𝑃(𝑢(𝑡))𝑑𝑡
𝑡

.   (2) 

Since the energy consumption of a PM is determined by CPU utilization, we take 

CPU utilization into consideration in the proposed VM placement algorithms to reduce 

the energy consumption in the system [6]. 



34           Loiy Alsbatin et al. 

4.2. Cost of Live Migration of VMs 

Live migration of VMs transfers VMs between PMs without suspension. However, the 

large number of live VM migrations may drop the performance of applications. So, the 

number of VM migrations should be reduced. The behavior of applications causes 

performance degradation. We use cost model for VM migration presented in [6] to 

avoid performance degradation. The authors stated in [6] that CPU utilization can be 

increased by 10% for each VM migration. So, each VM migration can cause SLA 

violations. Therefore, VM migrations should be reduced, and VM with minimum 

memory should be selected. 

4.3. SLA Violation Metrics 

In cloud computing environments, it is highly important to meet QoS requirements. QoS 

is usually defined in the form of SLA that is defined through some characteristics such 

as maximum response time or minimum throughput of the system [8]. To evaluate QoS 

requirements, SLA metric is defined as a workload independent metric for any loads in 

Infrastructure as a Service (IaaS). Two metrics are used to measure SLA violations: The 

fraction of time when CPU utilization of PM has been 100%, SLA violation Time per 

Active Host/PM (SLATAH) as shown in (3); and Performance Degradation due to 

Migrations (PDM) as shown in (4) [8], 

SLATAH = ∑
𝑇𝑠𝑖

𝑇𝑎𝑖

𝑋

𝑖=1

  (3) 

PDM =
1

𝑌
∑

𝐶𝑑𝑗

𝐶𝑟𝑗

𝑌

𝑗=1

  (4) 

where X represents the number of PMs, 𝑇𝑠𝑖
 is the time when the utilization of i-th PM is 

100% which leads to an SLA violation, 𝑇𝑎𝑖
  is the time when i-th PM is active, Y 

represents the number of VMs, 𝐶𝑑𝑗
 is the estimated performance degradation caused by 

j-th VM migrations, 𝐶𝑟𝑗
 is the total CPU capacity requested by j-th VM. 𝐶𝑑𝑗

 is estimated 

to be 10% of CPU utilization in MIPS during the j-th VM migrations [8]. 

The level of SLA violations is independently characterized by both SLATAH and 

PDM metrics. So, we use a metric presented in [8] that includes performance 

degradation caused by both overloaded PM and VM migrations, denoted as SLA 

Violation (SLAV) that is calculated as 

SLAV =  SLATAH ×  PDM.   (5) 

VM consolidation objective is to reduce both energy consumption (E) and SLAV. 

ESV metric presented in [8] that equals the product of energy consumption and SLA 

violations is used as 

ESV =  E ×  SLAV. (6) 
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SLAV and energy consumption are the most important metrics that should be 

minimized to improve efficiency of resources [7, 8]. SLA violation has a negative 

relation with the energy consumption in the cloud data center [37]. Therefore, ESV is 

used for performance evaluation of all algorithms to show the trade-off between energy 

consumption and SLA violation [7, 8, 37]. 

5. VM Placement  

We propose novel VM placement algorithms based on giving priority of PM with 

highest CPU utilization between two sided limits, then giving priority to PM with CPU 

utilization outside the two-sided limits and nearest to the two-sided limits. Second 

priority is given to PMs with CPU utilization outside the two-sided limits, since 

selecting PMs with low load or high load leads to less active PMs and less energy 

consumption than waking up PMs from sleep mode. We modified well-known BFD 

algorithm [29] to be suitable for VM placement by limiting the upper CPU utilization 

threshold [38-42] and lower CPU utilization threshold and implementing the 

abovementioned priority. We denote proposed algorithm that used static upper and 

lower CPU utilization thresholds as CPBFD, and proposed algorithm that used dynamic 

upper and lower CPU utilization thresholds as DCPBFD. Not setting an upper limit for 

the CPU utilization of allocated PMs may cause frequent overloading of allocated PMs, 

which leads to performance degradation and increases the number of VM migrations. 

We propose to limit the upper threshold of CPU utilization of allocated PM to avoid 

performance degradation caused by VM migrations to PM with high load and to 

minimize the number of VM migrations. Furthermore, not setting a lower limit for CPU 

utilization of allocated PMs may cause allocating underloaded PMs, which leads to 

more active PMs and more energy consumption. We propose to limit the lower 

threshold of CPU utilization of allocated PM to improve energy consumption.  

5.1. CPBFD Algorithm 

CPU resource utilization model of PM of CPBFD algorithm is shown in Fig. 2. In 

CPBFD, all VMs are sorted in the decreasing order of their current CPU utilizations and 

allocate each VM to a PM with maximum CPU utilization less than upper CPU 

utilization threshold a and more than lower CPU utilization threshold b. If there are no 

PMs with CPU utilization between upper and lower threshold, a PM with the nearest 

CPU utilization to upper or lower thresholds will be allocated. The priority may be 

given to PM with CPU utilization nearest to upper threshold or lower threshold by 

adjusting parameter c. PM with CPU utilization that nearest to c and outside of a to b 

range will be selected. 



36           Loiy Alsbatin et al. 

 

Fig. 2. CPU utilization model of PM of CPBFD and DCPBFD algorithm 

There is no specific optimal upper CPU threshold value among the researchers [38-

42]. Selecting high upper CPU threshold may significantly drop the performance of 

VMs running on a PM, while selecting low upper CPU threshold value makes 

consolidation inefficient to reduce energy consumption. Furthermore, there is no 

specific optimal lower CPU threshold value. So, selecting the suitable value for upper 

and lower CPU threshold is important. The upper and lower threshold of CPU 

utilization modified according to parameter a and b, respectively. CPBFD VM 

placement algorithm is shown in Algorithm 1. 

Algorithm 1: CPBFD VM Placement Algorithm 

Input: pmList, vmList, a, b, c 

Output: allocatedPm 

 1;  vmList.sortDecreasingUtilization() 

 2:  for each vm in vmList do 

 3:    maxCpu = min 

 4:    minCpu = max 

 5:    allocatedPm = null 

 6:    for each pm in pmList do 

 7:      if pm is excluded pm then 

 8:        continue 

 9:      end if 

10:     if pm has enough resources for vm then 
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11:       if pm.Cpu ≠ 0 and pm is over utilized after allocation vm then 

12:     continue 

13:   end if 

14:        if pm.Cpu ≤ a and pm.Cpu ≥ b then 

15:          if pm.Cpu > maxCpu then 

16:       allocatedPm = pm  

17:            maxCpu = pm.Cpu 

18:          end if 

19:        else if Abs(pm.Cpu - c) < minCpu then 

20:     allocatedPm2 = pm  

21:          minCpu = Abs(pm.Cpu - c) 

22:        end if 

23:      end if 

24:   end for each 

25:   if allocatedPm = null then  

26:     allocatedPm = allocatedPm2 

27:   end if 

28:   if allocatedPm ≠ null then 

29:     allocation.add(vm,allocatedPm) 

30:   end if 

31: end for each 

32: return allocatedPm 

5.2. DCPBFD Algorithm 

CPU resource utilization model of PM of DCPBFD algorithm is the same as that used in 

CPBFD shown in Fig. 2. The only difference between DCPBFD and CPBFD is that 

upper and lower CPU utilization thresholds in DCPBFD are dynamic, but in CPBFD 

they are static as discussed in Section 5.1. In DCPBFD, all VMs are sorted in the 

decreasing order of their current CPU utilizations and allocate each VM to a PM with 

maximum CPU utilization less than dynamic upper CPU utilization threshold a and 

more than dynamic lower CPU utilization threshold b. If there are no PMs with CPU 

utilization between upper and lower threshold, a PM with the nearest CPU utilization to 

upper or lower thresholds will be allocated. The priority may be given to PM with CPU 

utilization nearest to upper threshold or lower threshold by adjusting parameter c. PM 

with CPU utilization that is nearest to c and outside of a to b range will be selected.  

There is no specific optimal upper and lower CPU utilization threshold values among 

the researchers. In DCPBFD, the proposed optimal value of dynamic upper and lower 

CPU utilization threshold a and b are based on fixed highest and lowest CPU utilization 

values, Median Absolute Deviation (MAD) of historical values of PM CPU utilization, 

and median of  historical values of PM CPU utilization divided by number of VMs.  

The fixed highest CPU utilization is used for upper CPU threshold as highest CPU 

threshold, and fixed lowest CPU utilization is used for lower CPU threshold as lowest 

CPU threshold. MAD is defined as the median of the absolute deviations from the 

median of historical values of PM CPU utilization. MAD gives an idea about CPU 

utilization variability, which is important to calculate suitable upper and lower CPU 

threshold. Median of historical values of PM CPU utilization divided by number of 
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VMs gives an idea about the utilization of VMs that will be allocated to PM, which is 

also important to calculate suitable upper and lower CPU thresholds. a and b are 

calculated as shown in (7) and (8), respectively. 

𝑎 = 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝐶𝑝𝑢 − 𝑠 × (𝐶𝑝𝑢𝑀𝐴𝐷 + 𝐶𝑝𝑢𝑀𝑒𝑑𝑖𝑎𝑛/𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠) (7) 

𝑏 = 𝐿𝑜𝑤𝑒𝑠𝑡𝐶𝑝𝑢 + 𝑠 × (𝐶𝑝𝑢𝑀𝐴𝐷 + 𝐶𝑝𝑢𝑀𝑒𝑑𝑖𝑎𝑛/𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠) (8) 

where s is a parameter that allows the adjustment of the dynamic upper and lower CPU 

utilization limits, the lower s, the wider two sided limits and the less the energy 

consumption, but the higher the level of SLA violations caused by the consolidation. 

DCPBFD VM placement algorithm is shown in Algorithm 2.  

Algorithm 2: DCPBFD VM Placement Algorithm 

Input: pmList, vmList, highestCpu, lowestCpu, c, s 

Output: allocatedPm 

 1: vmList.sortDecreasingUtilization() 

 2: for each vm in vmList do 

 3:   maxCpu = min 

 4:   minCpu = max 

 5:   allocatedPm = null 

 6:   for each pm in pmList do 

 7:     if pm is excluded pm then 

 8: continue 

 9:     end if 

10:    if pm has enough resources for vm then 

11:      if pm.Cpu ≠ 0 and pm is over utilized after allocation vm then 

12:     continue 

13: end if 

14:      if (pm.CPUHistory.length ≥ 12) then 

15:          a = highestCpu – s × (pm.CPUHistoryMAD + pm.CPUHistoryMedian / #ofvm) 

16:          b = lowestCpu + s × (pm.CPUHistoryMAD + pm.CPUHistoryMedian / #ofvm) 

17:      else 

18:        a = highestCpu - 0.05 

19:        b = lowestCpu + 0.05 

20:      end if       

21:      if pm.Cpu ≤ a and pm.Cpu ≥ b then 

22:        if pm.Cpu > maxCpu then 

23:     allocatedPm = pm  

24:          maxCpu = pm.Cpu 

25:        end if 

26:      else if Abs(pm.Cpu - c) < minCpu then 

27:   allocatedPm2 = pm  

28:         minCpu = Abs(pm.Cpu - c) 

29:       end if 

30:     end if 

31:   end for each 

32:   if allocatedPm = null then  

33:      allocatedPm = allocatedPm2 
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34:   end if 

35:   if allocatedPm ≠ null then 

36:     allocation.add(vm,allocatedPm) 

37:   end if 

38: end for each 

39: return allocatedPm 

 

Calculation of MAD starts when at least 12 historical values of CPU utilization of 

PM are obtained. 12 is used as a safe value to calculate MAD [8]. We suggest having 

the initial values of a and b before obtaining the first MAD value. The initial value of a 

is adjusted to (highest CPU threshold – 5%), and the initial value of b is adjusted to 

(lowest CPU threshold + 5%), which are supposed to be appropriate to avoid that a 

reaches the highest CPU threshold and b reaches the lowest CPU threshold.  

6. Performance Evaluation 

6.1. Experiment Setup 

A cloud computing user accesses infinite computing resources. Large scale and 

repeatable experiments which are necessary to analysis and compare the algorithms is 

very difficult on a real-world infrastructure [8]. We use simulations for ensuring the 

repeatability of experiments. We use the CloudSim toolkit [14, 31] as a simulation 

platform that allows the energy consumption modeling on cloud computing 

environments. 

As presented in [8], we simulate a data center containing 800 heterogeneous PMs. 

PM types are HP ProLiant ML110 Generation 4 and HP ProLiant ML110 Generation 5. 

CPU frequencies of the servers are mapped onto MIPS rating: 1,860 MIPS for each core 

of HP ProLiant ML110 G4 server, and 2,660 MIPS for each core of HP ProLiant 

ML110 G5 server. Each server is modeled to have 1 GB/s network bandwidth. VM 

characteristics correspond to Amazon EC2 instance types including Extra Large 

Instance (3.75 GB, 2,000 MIPS); High-CPU Medium Instance (0.85 GB, 2,500 MIPS); 

Micro Instance (613 MB, 500 MIPS); and Small Instance (1.7 GB, 1,000 MIPS). 

Initialization of VMs allocation is done according to the resource requirements of VM 

types. However, VM’s useless resources during the lifetime according to the workload 

create opportunities for dynamic consolidation. 

6.2. Workload Data 

To make the evaluation of simulation applicable, we use real-world workload traces 

provided as a monitoring infrastructure for PlanetLab [43], which is a part of the 

CoMon project. We use CPU utilization traces presented in [8] from more than a 

thousand VMs running on PMs located in more than 500 places around the world. 

Utilization is collected every 5 minutes. Random 10 days from the collected workload 

traces are used in the simulations. The workload characteristics for each day are 
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presented in Table 1. In the simulations, each VM is randomly assigned a workload 

trace from one of VMs from the corresponding day. VM consolidation is not limited by 

the memory bounds to avoid the constraint on the consolidation. 

Table 1. Workload data characteristics [8] 

Workload 
Number of 

VMs 

Mean of 

CPU 

utilization 

Standard deviation 

of CPU utilization 

Median of 

CPU 

utilization 

1 1052 12.31% 17.09% 6% 

2 898 11.44% 16.83% 5% 

3 1061 10.70% 15.57% 4% 

4 1516 9.26% 12.78% 5% 

5 1078 10.56% 14.14% 6% 

6 1463 12.39% 16.55% 6% 

7 1358 11.12% 15.09% 6% 

8 1233 11.56% 15.07% 6% 

9 1054 11.54% 15.15% 6% 

10 1033 10.43% 15.21% 4% 

6.3. Simulations Results 

The algorithms are evaluated using the CloudSim and the workload traces presented in 

Section 6.2. We compare proposed CPBFD algorithm to FFD, BFD and PABFD. We 

simulate all combinations of SM underload detection algorithm, LR overloading 

detection algorithm, MMT VM selection policy and four VM placement algorithms 

(FFD, BFD, PABFD and proposed CPBFD). Algorithms that are used in dynamic VM 

consolidation problem are shown in Fig. 3. 

For the proposed CPBFD algorithm, two-sided limits (a and b) of CPU utilization is 

varied from wider to narrower based as 90% to 10%, 80% to 20%, 70% to 30% and 

60% to 40%. Moreover, c parameter is varied to give more priority for low CPU 

utilization, equal priority to low or high CPU utilization, and more priority for high 

CPU utilization as 0.45, 0.50, and 0.55, respectively. According to these variations, 

combinations of a, b and c parameters are varied as (0.9, 0.1, 0.45), (0.9, 0.1, 0.5), (0.9, 

0.1, 0.55), (0.8, 0.2, 0.45), (0.8, 0.2, 0.5), (0.8, 0.2, 0.55), (0.7, 0.3, 0.45) (0.7, 0.3, 0.5), 

(0.7, 0.3, 0.55), (0.6, 0.4, 0.45) (0.6, 0.4, 0.5), and (0.6, 0.4, 0.55). The purposes of these 

variations are to get better upper and lower CPU utilization threshold and better priority 

for low or high CPU utilization for the proposed CPBFD algorithm and to use these 

better parameters in proposed DCPBFD algorithm.  
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Fig. 3. Dynamic VM consolidation problem and algorithms in cloud data centers. 

Figs. 4 to 9 show the average results with 95% confidence intervals of ESV metric, 

energy consumption, SLAV metric, number of migrations, PDM metric, and SLATAH 

metric for all algorithms combination in 10 workload cases, respectively. Results in 

Figs. 4 to 9 show that CPBFD leads to better results regarding all parameters compared 

to FFD. CPBFD leads to better of ESV metric, SLAV metric, number of migrations, 

PDM metric, and SLATAH metric compared to BFD and PABFD. Moreover, BFD 

leads to better results regarding ESV metric, SLAV metric, number of migrations, PDM 

metric compared to FFD and PABFD. On the other hand, PABFD only leads to the least 

energy consumption compared to all algorithms. Fig. 4 shows that CPBFD has better 

ESV on average approximately 61.1%, 54.2% and 17.5% than FFD, PABFD, and BFD, 

respectively. Fig. 5 shows that CPBFD has less energy consumption on average 

approximately 3.8% than FFD and more energy consumption on average approximately 

0.75%, and 3% than BFD, and PABFD, respectively. Fig. 6 shows that CPBFD has less 

SLAV on average approximately 54.2%, 56.7% and 19% than FFD, PABFD, and BFD, 

respectively. Fig. 7 shows that CPBFD has fewer number of migration on average 

approximately 22.1%, 27.4%, and 8.3% than FFD, PABFD, and BFD, respectively. Fig. 

8 shows that CPBFD has less PDM on average approximately 35.9%, 52.5% and 12.7% 

than FFD, PABFD, and BFD, respectively. Fig. 9 shows that CPBFD has less SLATAH 
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on average approximately 19.3%, 8% and 13.1% than FFD, PABFD, and BFD, 

respectively.  

CPBFD_70,30,55 has better ESV and SLAV on average approximately 7.7% and 

8.7% than CPBFD with other parameters. CPBFD_80,20,55 has better efficient energy 

consumption on average approximately 0.8% than CPBFD with other parameters. 

CPBFD with (a = 70, b = 30) of CPU has better ESV on average approximately 14.5%, 

3% and 4.3% than CPBFD with (a = 90, b = 10), CPBFD with (a = 80, b = 20), and 

CPBFD with (a = 60, b = 40), respectively. CPBFD with (a = 70, b = 30) of CPU has 

better SLAV on average approximately 15.9%, 3.9% and 3.9% than CPBFD with (a = 

90, b = 10), CPBFD with (a = 80, b = 20), and CPBFD with (a = 60, b = 40), 

respectively. CPBFD with (a = 80, b = 20) has almost the same energy consumed by 

CPBFD with (a = 90, b = 10), and better efficient energy consumption on average 

approximately 0.7%, and 1.5% than CPBFD with (a = 70, b = 30), and CPBFD with (a 

= 60, b = 40). 

CPBFD_80,20,55 has almost the same energy consumed by BFD, and more energy 

consumption on average approximately 2.3% than PABFD, but CPBFD_80,20,55 has 

better ESV and SLAV on average approximately 62.2% and 63.9% than PABFD. This 

means even if we consider that ESV metric is modified to the product of energy 

consumption powered by 20 and SLAV (modified ESV = E20 × SLAV), 

CPBFD_80,20,55 will still better than PABFD in regard of modified ESV. 

The energy consumption changes slightly compared to SLA violation. Therefore, the 

impact of SLA violation on ESV metric is greater than energy consumption. However, 

the suitable value of a, b and c should be selected to make a tradeoff between meeting 

QoS and improving energy efficiency. From the simulation results, we observe that 

CPBFD with (a = 70, b = 30) provides best ESV metric, SLA violations and number of 

migrations. In addition, CPBFD with (a = 80, b = 20) provides best efficient energy 

consumption. Moreover, CPBFD when c parameter equals 0.55 leads to a little better 

ESV metric, SLA violations and energy consumption. Furthermore, we observe that 

selecting moderate two-sided limits of CPU utilization between (a = 70, b = 30) and (a 

= 80, b = 20) for CPBFD is better than selecting too wide (a = 90, b = 10) or too narrow 

(a = 60, b = 40) sided limits of CPU utilization. 

 

 

Fig. 4. ESV metric of VM placement algorithms 

1

2

3

ES
V

 x
 0

.0
0

1

Algorithm



Efficient Virtual Machine Placement Algorithms for Consolidation in Cloud Data Centers           43 

 

Fig. 5. Energy consumption of VM placement algorithms 

 

Fig. 6. SLAV metric of VM placement algorithms 

 

Fig. 7. Number of VM migrations of VM placement algorithms 
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Fig. 8. PDM metric of VM placement algorithms 

 

Fig. 9. SLATAH metric of VM placement algorithms 

For the proposed DCPBFD algorithm, the fixed highest CPU utilization used for 

higher CPU utilization limit (a) is set to 80%, and the fixed lowest CPU utilization used 

for lower CPU utilization limit (b) is set to 20%, which are suitable moderate values 

according to the results obtained from CPBFD algorithm. s parameter of two-sided 

limits (a and b) of CPU utilization is varied as 1, 0.75, and 0.5. Moreover, c parameter is 

set to 0.55 to give more priority for high CPU utilization, which gives the best result 

according to the results obtained from CPBFD algorithm. According to these variations, 

combinations of the fixed highest CPU utilization, the fixed lowest CPU utilization, c 

and s parameters are varied as (0.8, 0.2, 0.55, 1), (0.8, 0.2, 0.55, 0.75), and (0.8, 0.2, 

0.55, 0.5). 

Figs. 10 to 15 show the average results with 95% confidence intervals of ESV metric, 

energy consumption, SLAV metric, number of migrations, PDM metric, and SLATAH 

metric for DCPBFD algorithm with  all combination of parameters, and 

CPBFD_80,20,55, CPBFD_75,25,55, and  CPBFD_70,30,55 that have the best results 

compared to CPBFD with other parameters. Results in Figs. 10 to 15 show that 

DCPBFD_80,20,55,75 leads to better results compared to DCPBFD with other 

parameters, and CPBFD_75,25,55 leads to better results compared to CPBFD with other 

parameters. Results in Figs. 10, 12, 13, 14, and 15 show that DCPBFD_80,20,55,75 

leads to better of ESV metric, SLAV metric, number of migrations, PDM metric, and 

SLATAH metric compared to DCPBFD and CPBFD with other parameters. Moreover, 

results in Fig. 11 show that CPBFD_80,20,55 provides a little better efficient energy 

consumption compared to DCPBFD and CPBFD with other parameters. We observe 
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that selecting moderate two-sided limits of CPU utilization for DCPBFD by selecting 

moderate highest CPU utilization and lowest CPU utilization and adjusting s parameter 

to moderate value is better than selecting too wide or too narrow sided limits of CPU 

utilization. 

 

Fig. 10. ESV metric of CPBFD and DCPBFD algorithms 

 

Fig. 11. Energy consumption of CPBFD and DCPBFD algorithms 
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Fig. 12. SLAV metric of CPBFD and DCPBFD algorithms 

 

Fig. 13. Number of VM migrations of CPBFD and DCPBFD algorithms 

 

Fig. 14. PDM metric of CPBFD and DCPBFD algorithms. 
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Fig. 15. SLATAH metric of CPBFD and DCPBFD algorithms. 

7. Conclusion and Future Work 

The goal of the proposed CPBFD and DCPBFD VM placement algorithms is to 

improve energy efficiency, and SLA in cloud data centers. A number of VM placement 

algorithms are implemented to compare with the proposed algorithm. We evaluate the 

algorithms through simulations with real-world workload traces. CPBFD and DCPBFD 

algorithms produce better results by avoiding VM migrations to PM with high load that 

may cause SLA violations or low load, which lead to more active PMs and more energy 

consumption. The simulation results show that CPBFD and DCPBFD with moderate 

two-sided limits of CPU utilization provide the least ESV, least SLA violations, least 

VM migrations, and efficient energy consumption. However, PABFD algorithm leads to 

a little better energy consumption than CPBFD and DCPBFD algorithms.   

As a future work, we plan to extend our research by using a software framework for 

dynamic and energy efficient consolidation of VMs applied in existing cloud 

deployments and in research on dynamic consolidation of VMs to optimize the resource 

utilization and energy efficiency. 
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