
Computer Science and Information Systems 15(2):393–419 https://doi.org/10.2298/CSIS170320007B

OLAPS: Online Load-Balancing in Range-Partitioned
Main Memory Database with Approximate Partition

Statistics

Djahida Belayadi1, Khaled-Walid Hidouci1, and Ladjel Bellatreche2

1 Laboratoire de la Communication dans les Systmes Informatiques
Ecole nationale Supérieure d’Informatique, BP 68M, 16309, Oued-Smar

Algiers, Algeria
(d belayadi,w hidouci)@esi.dz

2 LIAS/ISAE-ENSMA – Poitiers University
86960 Futuroscope, France

bellatreche@ensma.fr

Abstract. Modern database systems can achieve high throughput main-memory
query execution by being aware of the dynamics of highly parallel hardware. In such
systems, data is partitioned into smaller pieces to reach a better parallelism. Unfor-
tunately, data skew is one of the main problems faced during parallel processing
in a parallel main memory database. In some data-intensive applications, parallel
range queries over a dynamic range partitioned system are important. Continuous
insertions/deletions can lead to a very high degree of data skew and consequently a
poor performance of parallel range queries. In this paper, we propose an approach
for maintaining balanced loads over a set of nodes as in a system of communi-
cating vessels, by migrating tuples between neighboring nodes. These frequent (or
even continuous) data transfers inevitably involve dynamic changes in the partition
statistics. To avoid the performance degradation typically associated with this dy-
namism, we provide a solution based on an approximate Partition Statistics Table.
The basic idea behind this table is that both clients and nodes may have an imper-
fect knowledge about the effective load distribution. They can nevertheless locate
any data with almost the same efficiency as using exact partition statistics. Further-
more, maintaining load distribution statistics do not require exchanging additional
messages as opposed to the cost of efficient solutions from the state-of-art (which
requires at least O(logn) messages). We show through intensive experiments that
our proposal supports efficient range queries, while simultaneously guaranteeing
storage balance even in the presence of numerous concurrent insertions/deletions
generating a heavy skewed data distribution.

Keywords: Load balancing, Parallel main memory database systems (MMBD),
Range partitioning, Data skew, Range query.

1. Introduction

Memory resident database systems (MMDBS) store the data in main physical memory
and thus, provide very high-speed access. Increasing main memory capacities of up to
several Terabyte per server and highly parallel processing exploiting multi-core architec-
tures dominate today’s hardware environment and will shape database system technology

394 Djahida Belayadi et al.

in the near future. Over the past decade, prominent research systems such as H-Store [27]
and HyPer [28] reinvigorated research into main memory and multi-core data processing.
Most major database vendors now have an in-memory database solution, such as SAP
HANA [16] and Microsoft SQL Server Hekaton [14].

A frequently voiced problem in in-memory resident data processing is uneven distri-
bution of data referred to as Data Skew. This well-known phenomenon can arise from
natural data distributions and/or non-uniform insertions/deletions. It can result in some
nodes taking a lot more time to perform their tasks, thereby introducing bottlenecks in the
parallel processing, and then delaying completion of the overall tasks [48].

Several techniques were proposed to ensure efficient data partitioning across nodes
(round-robin, hash partitioning, and range partitioning, etc.). The existing experiences
show that the range partitioning is the best suitable for point and range queries in a highly
dense domains [44]. But in the same time, it is very sensitive to data skew. In the case,
where the partitioning by range creates partitions with size varying dramatically (due to
the no-uniform distribution) the load balancing methods should be considered.

Data skew can be quantified by the values of an imbalance ratio. It represents the ratio
of the loads of the largest and smallest partitions in the system. The higher ratio implies
the greater the degree of imbalance. In order to decrease the imbalance ratio values, data
may have to be moved from one node to another as the data volume grows or shrinks.
Thus, a key requirement for a load balancing algorithm is maintaining load statistics (e.g.,
partitions boundaries and loads). In recent studies, the emphasis is mainly focused on
minimizing the number of messages exchanged for maintaining the global load statistics.

Works in [18,29,11] use two universal load balancing primitives which are item ex-
change between neighbors and node migration from the most loaded area to the least
loaded one. Despite the effectiveness of these approaches, their main drawback is the high
cost of maintaining load statistics. They are based on skip graphs [2], where the partition
changes are followed by an update of the data structure requiringO(log n) messages. The
proposal of [38,37] is based on the replication. The disadvantage of this proposal is the
necessity to deal with consistency issues during the data update. Other approaches have
been proposed to minimize the effect of skew, particularly with range partitioning, such
as the virtual processors [20,38] and the histograms [31,21]. The common challenge be-
tween all of these works is how to maintain partition statistics with a low communication
cost. In our previous work [5], we popose to reduce the cost of maintaining load statis-
tics in a Scalable and Distributed Data Sructures [34] driven approach in which data is
partitioned using dynamic bounds. Our current work is an improuvement of this one.

In this paper, we present OLAPS, an On-Line balancing algorithm of skewed data
with Aproximate Partition Statistics. It is a simple but powerful strategy for maintaining
good load balancing of range partitioned In-memory resident data, despite the frequent
and skewed changes in data volume that may occur. Our solution behaves exactly like a
system of communicating vessels. Whenever a partition becomes overloaded, data trans-
fers are performed, in background, from the more loaded nodes to the least loaded ones.
As a result, the partition boundaries change. In some critical cases of very high degree of
imbalance, these data transfers between nodes, therefore, adjustments of partition bound-
aries never stop. To efficiently implement range queries, even in such critical situations,
we propose a key concept, based on the use of ”approximate partition statistics” (called
Partition Statistics Tables: PST). Consider two sets of nodes and clients. The nodes are

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 395

dedicated to the data processing and storage. The clients send mainly insert, delete and
range queries to the nodes. Each node or client has its own partition statistics table. Each
entry PST [i] in this table, is an estimate of partition boundaries and data size related
to node Ni. After a balancing operation, the participating nodes may change their own
boundaries. Those nodes do not need to inform the other ones by these changes. This
will make the partition statistics stale. As a result, clients may address a wrong node
when their PST are outdated. Nevertheless, whenever an interaction happens between
two peers (node or client), they exchange their PST in order to correct each other. So,
the more a peer is active, the more its PST converges towards the real state.

Our solution provides load balancing mechanism to handle the data skew for appli-
cations that do not require update queries. The main usages of our solution cconcern
mainly insertions, deletions and data queries. These applications are useful in several
fields, where range queries are used to extract information from a main-memory parallel
database fed by sensors or other continuous data sources. Road traffic monitoring services
are an example of such applications [52,35] as well as Big Data applications [8]. The cap-
tured information (car’s serial number, location and so on) is inserted into a database in
order to be on-line analyzed by many points and range queries. For example, a driver may
send the query ”return the speed observed by cameras that are between Exit 1 and Exit
10 (1 ≤ exit ≤ 10)”, so that he may choose the right highway to avoid congestion down
the road. A police patrolling a highway section with speed limit of 80 mph may ask the
system to ”return the list of cars running with a speed higher than 80 mph (speed > 80)”.

Our contributions are summarized in the following points:

– We propose an on-line algorithm to ensure a load balancing of range partitioned data
in a parallel main memory database.

– We provide a strategy for maintaining the global load statistics. This strategy does
not require any extra communication cost, unlike the state-of-art solutions requiring
at least O(logn) additional messages.

– We use this strategy to design an algorithm for range queries which remains efficient
even in the presence of rapid and continuous change of partition boundaries.

– We implement and test our fully decentralized algorithm under extensive experiments
over a wide set of scenarios.

The remainder of this paper is organized as follows: Section 2 presents an abstraction
of a parallel main memory database and some hypothesis. In Section 3, we detail our load
balancing approach, we show how the approximate partition statistics concept reduce the
maintenance cost of the load distribution information, and describe how the performance
of range queries can be improved. Our proposal is evaluated under extensive experiments
and different scenarios in section 4. Section 5 outlines related work, then, we conclude in
Section 6 by summarizing the most important findings and suggesting some open issues.

2. System Model

In this section, we define a simple abstraction of a main-memory parallel database and
make some considerations:

– LetN = {N1, N2, . . . , Nn} be a set of n nodes connected by a fast local area network
as in a Shared-Nothing architecture [51]. We consider a relation divided into n range

396 Djahida Belayadi et al.

partitions on the basis of a key attribute, with boundaries R0 ≤ R1 ≤ . . . ≤ Rn. The
node Ni manages a range [Ri−1,Ri[. Data is In-memory resident, it is organized row
wise. We consider that the nodes are ordered by their ranges, this ordering defines left
and right relationships between them. At this level, we ignore the scalability of the
environment, which means that there are no nodes that join or leave the cluster. How-
ever, our solution is can be easily extended to answer the scalability requirements;

– Let C = {C1, C2, . . . , Cm} be a set of m clients performing insert, delete or range
queries. Point queries can be considered as special case of range queries, where upper
and lower bounds are equal. The clients may join and leave the system at any time;

– The nodes and the clients do not necessarily have the exact information about the
data distribution across the nodes (partition statistics). Instead, they have their own
potentially imperfect view about load distribution and partition boundaries (PSTN
for nodes and PSTC for clients);

– Each nodeNj has its own partition statistics table PSTNj
. An entry PSTNj

[i] in this
table (i 6= j), is an estimate of partition boundaries and data size related to the node
Ni. The entry PSTNj

[j] contains exact informations about partition boundaries and
data size of the current node Nj . The nodes use their local partition statistics table
PSTN mainly to estimate the average loads of the whole system;

– Each client Cj has its own partition statistics table PSTCj . An entry PSTCj [i] in
this table, is an estimate of partition boundaries and data size related to the node
Ni. Clients use their partitions statistics tables PSTC to find targeted nodes during
insertion, deletion and search operations;

– Whenever the volume of stored data exceeds a locally defined threshold, the affected
node performs the load-balancing algorithm. It transfers the out-of-range data to its
neighbors (left and/or right) based on the estimated average loads;

– Whenever an interaction between a node and another node or client occurs, the PST
tables are exchanged. This makes it possible to asynchronously correct the content of
these tables by the most recent contained values concerning the partitioning statistics;

– We ignore concurrency control issues and consider only the serial schedule of inser-
tions and deletions, interleaved with the executions of the load-balancing algorithm.
An architecture of our solution is presented in Figure 1.

It should be noted that the model presented above is inspired from the Scalable and Dis-
tributed Data Structures (SDDS) [34] architecture. SDDSs are a family of data structures
designed for efficient In-memory data management. The basic data unit in SDDS may be
either a record or an object with a unique key. Those data are organized in larger structures
called buckets and usually stored in RAM. Our model and SDDS’s model are both based
on shared-nothing architecture [6,7].

3. Description of our Approach

Load balancing algorithms can be classified into two general categories [9]: (i) diffusion,
where every node balances its load concurrently with every other partner. (ii) Dimension
exchange, where every node is allowed to balance load only with one of its neighbors at
a time. Our algorithm falls into the second category.

In our solution, data is range partitioned over n nodes. Clients send insert, delete and
range queries. There is no central directory to keep the partition statistics (i.e. partition

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 397

Fig. 1. OLAPS architecture with a set of n storage nodes and m clients, connected to
each other with the Fast Local Area Network (Gigabit or InfiniBand).

boundaries and sizes). Instead, each node/client maintains a local table containing an es-
timate of the current partition statistics. This concept is similar to file images used in
Scalable Distributed Data Structures (SDDS) [34] to avoid bottlenecks and central points
of failure in a distributed environment.

The main feature of our OLAPS system is the PST . Each client or node has its
own and potentially imperfect partition statistics table. Clients use their PSTC to direct
their insert, delete and search operations to the pretended concerned nodes. The nodes
use their PSTN to estimate the balance state of the whole system and transfer the excess
of data to their neighbors to achieve load balancing. These transfers, which can occur
very frequently (or even continuously) necessarily produce dynamic changes in partition
boundaries and sizes for the related nodes. Other nodes and clients of the system do not
necessarily need to be aware of these changes. They can be accommodated with just an
approximate image of the partition statistics (through their own PST) while remaining
effective in data management and manipulation.

We summarize in Table 1 the variables frequently used in this paper for easy reference.

3.1. Partition Statistics Tables (PSTs)

Both nodes and clients store in a local table the partition statistics. These statistics in-
clude an estimate of the number of tuples on each node (PST [i].Load) and the related
partition boundaries (PST [i].Lower Bound and PST [i].Upper Bound). Another field
(PST [i].Last Update) is used to indicate the time when the entry PST [i] was last mod-
ified. Whenever a message is sent from a node Ni to a node Nj (i 6= j), the partition
statistics table PSTNi

is also included (piggybacked in the sent message), so that Nj

can compare with its own statistics (using the Last Update field) to hold the most re-
cent value for each entry in its own table (PSTNj). In this way, the most recent values,

398 Djahida Belayadi et al.

Table 1. System Variables

Variable Description
PSTNj [1, n] Partition statistics table of the node Nj .
PSTNj [i].Lower Bound The lower bound ofNi’s range (fromNj’s point of view).
PSTNj [i].Upper Bound The upper bound ofNi’s range (fromNj’s point of view).
PSTNj [i].Load The number of tuples stored in Ni (from Nj’s point of

view).
PSTNj [i].Last Update Last updating time of PSTNj .
PSTCj [1,m] The partition statistics table of a client Cj .
PSTCj [i].Lower Bound The lower bound of Ni’s range (from Cj point of view).
PSTCj [i].Upper Bound The upper bound of Ni’s range (from Cj point of view).
PSTCj [i].Last Update Last updating time of the client PST .
Av R The average loads of all the right nodes of Ni.
Av L The average loads of all the left nodes of Ni.
σi The threshold of Ni.
φ The imbalance ratio.
α The degree of tolerance.
L̄ The system average load.

regarding the boundaries of partitions and their sizes, are thus propagated in the system
asynchronously.

An active node or client in the system will tend to have accurate partitioning statistics
in its own PST , and thus makes no errors when addressing a target node. On the other
hand, an inactive node or client, during a certain period, may use an outdated PST and
thus makes some errors, that necessitate additional redirections, when addressing other
nodes. However, as the redirected messages also contain the PST tables of the targeted
nodes, the partition statistics of the faulty node or client will be very quickly improved.
Thus making successive addressing errors is very unlikely.

3.2. System Threshold

A node Ni attempts to shed its load whenever PSTNi
[i].Load is greater than a local

threshold σi. Each node has its own threshold. This value is calculated using the estimates
in PSTNi . Formally, we consider that for each node Ni:

– The threshold:
σi = L̄+ δ (1)

– The average load:

L̄ =

n∑
j=1

PSTNi [j].Load/n (2)

– The imbalance tolerance parameter:

δ = (α ∗ L̄)/100 (3)

where L̄ is the system average load. It is the ratio between the total nodes load
(
∑n

j=1 PSTNi [j].Load) and the total number of nodes n. δ is called the ’imbalance

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 399

tolerance parameter’. This allows tolerating some imbalance by a parameter α (e.g., 10%,
20% or 50% of the average load). When α is low, the load balancing algorithm will often
be invoked. When α is high, the load balancing algorithm invocations will be less frequent
and thus clients addressing errors decrease.

It should be noted here that the value of the imbalance tolerance parameter may be
fixed by the system administrator. This parameter depends on the imbalance degree that
we can tolerate. In case of very sensitive applications, where we cannot tolerate a big
difference between the largest and smallest load, this value must be zero or close to zero.
However, when we can tolerate some imbalance and we focus on reducing the cost of data
movement and the balancing algorithm invocation, the system administrator may be 50%,
70% or even a greater value. This parameter is a compromise between the imbalance of
the system on one side and the addressing errors and the cost of data movement on the
other side.

3.3. Client Operations

A client Cj uses its own PSTCj
to localize the targeted node(s) to which insert, delete

and search queries are sent. Inserting, deleting or searching for a tuple with a given key k
are performed as follows:

– The client searches for a node Ni so that the key k is between its lower bound
PSTCj

[i].Lower Bound and its upper bound PSTCj
[i].Upper Bound. Then, it

sends a message to Ni containing the new tuple to insert, delete or to search. The
local PSTCj table is also included in the same message.

– A node Ni receiving the request, checks whether the included key k fits its range, if
so, it executes the specified request (insert, delete or just point-search), updates even-
tually its partition statistics (the PSTNi

[i].Load and PSTNi
[i].Last update fields

in the case of an insert or delete request) and sends a positive acknowledge consisting
of its PSTNi

to the client.
– If k is outside the node’s range, an adjustment message including a negative acknowl-

edge and the current PSTNi
is sent to the client.

– If a client receives a positive acknowledgment from a node, it just updates its table
if it was outdated. Else, if it receives an adjustment message, it updates its table and
repeats the operation until receiving a positive acknowledgment.

Range Query Execution: Range query is a well-known database operation. It returns
all the data between two specified values (upper and lower boundary). A straight-forward
mechanism for executing sequential range queries is scanning one partition at a time and
returning results to the client during or after the scan of each partition [19]. This mecha-
nism is relatively easy to implement. However, it does not take advantage of the system
parallelism that reduces the total query execution time.

Instead, our algorithm sends parallel sub-queries to the subset of nodes supposed to
be concerned by the specified range. In case of addressing error occurring for some sub-
queries, the clientCj updates its PSTCj

and replaces the sub-queries. This method avoids
the broadcast approach which generates a significant overload on all the nodes of the
system. Note that bulk insertions and deletions are done in the same way as range queries.

400 Djahida Belayadi et al.

We define R = [a, b[as the range of the query. The flow of a range query is described
in the following points:

1. The client uses its PSTCj
to split the initial range R = [a, b[into S sub-ranges:

R1 = [a, b1[, R2 = [b1, b2[, . . . Rs = [bs−1, b[, Each sub-range will be sent to a
corresponding node N1, N2, . . . Ns.

2. Each node Ni receiving the request can behave as follows:
– If the given sub-range Rd (d ∈ [1, S]) is completely included in its range, the

node sends a positive acknowledgment, its PSTNi
, and all data in the specified

sub-range to the client.
– If the specified sub-range Rd is completely outside of the node range, the node

answers by a negative acknowledgment (no data to send to the client) and its
PSTNi .

– If only a part of the specified sub-range Rd is included in the node range, it
answers with a negative acknowledgment, its PSTNi , and data belonging to the
part of the specified sub-range included in the node range.

3. In the client side, whenever an answer with a negative acknowledgment is received,
the client PSTCj

is updated and the missing ranges are then regenerated and resub-
mitted to other targeted nodes.

Range Query Algorithm For the implementation of range query solution, a queue of
submitted sub-ranges is used. The client expects a positive acknowledgment for each sub-
range in the queue. The pseudo algorithm 1 describes the range query process in the client
side.

Algorithm 1: RANGEQUERY (a, b)
1 Create queue(Q);
2 Result = { } // empty set;
3 Split R = [a, b[into S sub-ranges according to client’s PSTCj :

R1 = [a, b1[, R2 = [b1, b2[, . . . Rs = [bs−1, b[;
4 //Each sub-range Rd (d ∈ [1, S]) constitutes a new range query (sub-query);
5 Enqueue the new sub-queries into Q;
6 while (Not Empty (Q)) do
7 Dequeue the first S sub-queries from Q;
8 Send each subquery to the appropriate node Ni (according to the client’s PSTCj);
9 for (each response r) do

10 Result:= Result ∪ {data contained in r, if any};
11 Update the current PSTCj if necessary;
12 if (r contains a negative acknowledgment) then
13 Split the interval contained in r, using the updated PSTCj ;
14 Enqueue the new generated sub-queries into Q;
15 end
16 end
17 S = The total number of sub-queries generated in the for-loop;
18 end
19 Display (Result);

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 401

For example, consider the following range query: Select all the tuples between the
keys 500 and 2900, over four processing nodes N1, N2, N3, and N4. The client Cj has
the following information about the data distribution: N1: [1, 900[, N2: [900, 2300[, N3:
[2300, 3000[, and N4: [3000, 4000]. The initial range [500, 2900] is then split into 3 sub-
ranges R1 = [500, 900[, R2 = [900, 2300[, R3 = [2300, 2900], Each sub-range is sent
to the corresponding node N1, N2, N3. However, the real view about the data distribu-
tion is: N1: [1, 900[, N2: [900, 2300[, N3: [2300, 2800[, and N4: [2800, 4000]. N1 and N2

answer the queries with a positive acknowledgment and the corresponding data set. How-
ever,N3 answers the request with a negative acknowledgment and the corresponding data
in its range ([2300, 2800[). The client, after updating its PSTCj , it sends another range
query (Select all the data between 2800 and 2900) toN4 which will answers correctly the
request.

The additional cost regarding this redirection is almost one message sent the nodeN4.
The experiments that we did show that the client may at least make one redirection to
attend the right node.

This example is illustrated in Figure 2.

Fig. 2. Range query scenario with 4 nodes

3.4. Node Operations

Nodes use their own PSTN to estimate global average load, the left average load, and the
right one. Based on these estimates, an overloaded node determines the amount of data to
be transferred to each of its neighbors (left and right). The PSTN is also used to eventu-
ally correct outdated clients and neighboring nodes. A node can receive search, insert and
delete operations from a client or data transfer operations from its two neighboring nodes.

The local PSTN is updated in the following cases:

402 Djahida Belayadi et al.

– After each insert or delete operation. In that case, the local data size and the last
updating time are adjusted accordingly. Entries which concern the other nodes are
eventually updated using the received client’s PSTC ;

– After each range query sent by clients. In that case, only the older entries in the node
table are eventually updated using the received client’s PSTC ;

– After data migration from the current node to one of its neighbors or vice versa. In
that case, local data size, boundaries and last updating time are updated accordingly.
Other table entries are also eventually updated using the received node’s PSTN .

LOADBALANCE Algorithm: As data is range partitioned over nodes, we can only move
data from one node Ni to its left and/or right neighbor. Here, a neighboring concept
refers to the node with the following range or the previous range. When a node Ni’s
load increases beyond the local threshold σi, it attempts to migrate data to its right and
left neighbors (Ni+1, Ni−1). Algorithm 2 describes the process of correcting a state of
imbalance caused by the insertion of new data sent by a client or an overloaded neighbor.
The following points describe our algorithm:

– First of all, the algorithm calculates the average load of all the right neighbors (Av R)
as well as the average load of all the left neighbors (Av L).

– The Boolean INSERT indicates whether the procedure was called after a client insert
or the current node is receiving data from an over-loaded neighbor.

– If it is a post-insertion processing, the current node sends NBR tuples to the right
neighbor. NBR value is calculated according to the expression cited in line 7 of the
algorithm. It sends also NBL tuples to the left neighbor according to the expression
cited in line 6 of the algorithm. The calculation of these two values is carried out
according to the information contained in the current node’s PSTNi .

– If it is a post-transfer processing, the current node sends all the excess data to its right
neighbor if Av R < Av L, else, the data is sent to the left neighbor.

Each node receiving data (from a client or an overloaded neighboring node), updates its
table and attempts to perform the LOADBALANCE procedure if it becomes over-loaded.
Note that the local threshold may be wrong as the node table may be outdated. Despite
this, the algorithm continues to run with this erroneous value without negatively influ-
encing the quality of global balancing. Our experiments show that the PSTN converge
gracefully towards the real state of the system and that the threshold also converges to-
wards the true value.

4. Experimental Results

In this section, we present an experimental study to show the behavior of our approach in
terms of load balancing quality and performance of data access operations (mainly range
queries).

We ran our experiments in our laboratory on up to 10 nodes and 5 clients. Processing
nodes software and clients software were executed on machines with Intel(R) Core(TM)
i7-5500U CPU@2.40GHz and 8 GiB of RAM. Both nodes and clients were connected
through a Gigabit Ethernet network. Algorithms are implemented in C language using the

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 403

Algorithm 2: LOADBALANCE (Ni)
1 if (PSTNi [i].Load > σi) then
2 Calculate Av R;
3 Calculate Av L;
4 NBR = i ∗ (L̄−Av R) ;
5 NBL = (n− 1− i) ∗ (L̄−Av L) ;
6 NBL = (PSTNi [i].Load− L̄) ∗ (NBL/(NBL +NBR));
7 NBR = (PSTNi [i].Load− L̄)−NBL;
8 if (INSERT=1) then
9 // New data insertion;

10 The total number of tuples to be migrated is NBL +NBR;
11 Send NBL tuples and N ′is table (PSTNi) to the left neighbor;
12 Send NBR tuples and N ′is table (PSTNi) to the right neighbor;
13 else
14 //Data received from the neighbors;
15 if (Av R < Av L) then
16 Send NBL +NBR tuples and N ′is table (PSTNi) to the right neighbor;
17 else
18 Send NBL +NBR tuples and N ′is table (PSTNi) to the left neighbor;
19 end
20 end
21 //Updating the node PSTNi ;
22 nb tuple = PSTNi [i].Load− (NBL +NBR);
23 Update PSTNi ’s entries about Ni+1 and Ni−1 ;
24 PSTNi [i].Load = PSTNi [i].Load− nb tuple;
25 Update PSTNi ’s boundaries;
26 Update PSTNi ’s last updating time;
27 else
28 The system is balanced;
29 end

Parallel Virtual Machine (PVM) library. The generated workload involves the following
types of clients:

1. Right Client: a client that continuously inserts blocks of data to the right area of the
system. At each block insert, tuples are generated in the assumed range of a node
randomly selected from the most right nodes.

2. Left Client: a client that continuously inserts blocks of data to the left area of the
system. At each block insert, tuples are generated in the assumed range of a node
randomly selected from the most left nodes.

3. Alternate Client: a client that behaves alternately, as a Left Client then as a Right Client,
for a given period.

4. Random Client: a client that continuously inserts blocks of randomly generated data
into randomly selected nodes.

5. Range Client: a client that performs continuously range queries. The range bound-
aries are chosen randomly.

404 Djahida Belayadi et al.

Each of these clients has its own approximated partition statistics table (PSTC). Initially
the partition boundaries are all initialized by a uniform division of the domain of values
according to the number of nodes in the system. Another parameter (”Client throughput”)
controls the rate at which the client interacts with the system.

In addition to this, there is a main program (Master Client) which allows launching
nodes and other clients (depending on the chosen scenario) and periodically collects the
performances measures such as the overall imbalance ratio, the number of message redi-
rections (addressing errors) and some useful execution traces like number of data transfers
between nodes.

Left, Right and Alternate clients are mainly used to produce skewed insertion patterns
so that partition statistics (node’s boundaries and sizes) change continuously during the
simulation progress. The speed of change depends on the ”Client throughput” values for
the clients.

To test our approach and validate it, we used a dataset of 1 million keys. The inserted
keys are integers generated in a random way by the 5 types of clients cited above.

4.1. Evaluation Measures

The most important performance factors in this context are:

1. The imbalance ratio between the largest and smallest load.
2. The addressing errors made by clients.

The first one gives an indication of the load balancing quality.

φ = maxLoad/minLoad (4)

The Master Client retrieves in regular time interval (for example every second) the largest
load (maxLoad) and the smallest load (minLoad). If the ratio of these two values is close
to 1 (meaning that the largest load is very close to the smallest one), the balancing of data
distribution is then achieved.

The second measure indicates the number of redirection messages generated to correct
out-dated clients. It is an additional cost induced by dynamic changes of the partition
boundaries. In the tests we are going to perform, we show that these two measurements (1,
2) remain very low, even in the presence of very strong dynamic changes in the partition
statistics.

Other measures are also considered to show the behavior details of our approach:

1. Data movement cost. All the load balancing algorithms need to move data from one
node to another in order to achieve storage balance;

2. The number of invocations of LOADBALANCE algorithm.

These two measures contribute in quantifying the degree of data skew generated by
our simulation tests. Indeed, we have been particularly interested in evaluating our ap-
proach in this context of a very skewed data distribution, in order to show the effective
ability of the proposed approximated partitioning scheme to support such a dynamism.

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 405

Fig. 3. Imbalance ratio with Random Clients.

4.2. Performance Tests

Imbalance Ratio: In these experiments, we consider a sequence of block insert opera-
tions generated by some concurrent clients (Left, Right, Alternate and Random clients).
We observe the evolution of the global imbalance ratio during these insertions.

In Figure 3, Random Clients insert data uniformly over the set of nodes. In this test,
there is no data skew, all nodes are uniformly addressed by the clients. We observe a very
good global imbalance ratio. This confirms that our approach can be adapted to weakly
dynamic systems.

In the next scenarios, we generate a high degree of data skew. For that, we use Left,
Right, and Alternate clients to direct most of the insertions to only some nodes.

Fig. 4. Imbalance ratio with (a) a Left Client and (b) both Right Client and Alter Client
simultaneously.

Figures 4(a) and 4(b) show the imbalance ratios (Y-axis) against the number of in-
sert operations (X-axis) during a run with a Left Client and both Right Client and Alter-

406 Djahida Belayadi et al.

nate Client simultaneously. The curves illustrate the imbalance ratios between the largest
and the smallest load during the data insert. According to the results presented in these
figures, we observe that the imbalance ratio fluctuates less and less with the amount of
data inserted. In all cases, the system maintains a balancing level controlled by the imbal-
ance tolerance parameter. As expected, the average ratio is very close to 1 in almost all
cases, except when α is very large α = 50% with a very high degree of data skew (4(a)).

It is noted that we have proposed in this work three values of the parameterα, however,
the value of the imbalance tolerance parameter still a choice of the administrator, the latter
can choose another totally different value. The choice of the α value is strongly dependent
on the type of the applications. If we have applications that tolerate disequilibrium, α can
be large, otherwise α should converge to zero to ensure optimal balancing.

Table 2. Comparison between our load balancing algorithm and two other ones

Procedure Largest load
(Tuples)

Mean load (Tu-
ples)

Ratio (Largest
Load/Mean
Load)

Query perfor-
mance

ADJUSTLOAD 1885 781 2.41 57%
GLOBALBALANCE 1090 781 1.40 28%
LOADBALANCE 812 781 1.04 -

ADJUSTLOAD 2102 1048 2.02 41%
GLOBALBALANCE 1452 1048 1.39 15%
LOADBALANCE 1244 1048 1.18 -

Simulations were run comparing performance of our LOADBALANCE algorithm and
the GLOBALBALANCE procedure of [41] and the ADJUSTLOAD procedure of [18]. The
data from Table 2 represents the comparative load balancing results of the three proce-
dures. The comparison parameter is the imbalance ratio which measured here as the ratio
between the largest load and the system average load.

The load balance ratios delivered by our LOADBALANCE procedure are very consis-
tent, while there is considerable variance in the load balance ratios from the two other
procedures. This relative stability ensures a greater reliability and predictability.

When the performance of the system is measured by query response time, it is pro-
portional to the largest node load. The worst-case relative performance of the LOADBAL-
ANCE algorithm versus the ADJUSTLOAD procedure is the ratio of the highest load bal-
ance ratios obtained for the two algorithms, or 1.0-(1.04+2.41)=0.57. One can expect to
reduce query response time up to 57% as compared to a system using the ADJUSTLOAD
and up to 28% compared to a system using the GLOBALBALANCE.

Addressing Errors: After a balancing operation, three nodes at least change their parti-
tion boundaries and partition sizes due to inter-nodes data migration. The affected nodes
have to update their tables. Clients having outdated tables can thus address wrong nodes
that have changed their partition boundaries. We measure the total number of times the
clients send their requests to the wrong nodes and hence made addressing errors, dur-

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 407

ing the simulation tests. Recall that when a client addresses a wrong node, it receives an
adjustment message and thus sends a new query to another node.

Fig. 5. Client addressing errors with a (a) Right Client and a (b) Left Client. The curves
are obtained with the three values of α.

Fig. 6. Client addressing errors with a (a) Alternate Client, (b) both Left Client and Alter-
nate Client. The curves are obtained with the three values of α.

In Figure 5 and 6, we show the total amount of addressing errors made by the clients
during the previews experiments. The results depicted in figures 5(a) and 5(b) correspond
to the case of high degree of data skew. Insertions are all sent to only one area, using
left or right client. The results obtained in the case of a moderate degree of data skew
(a mixture of alternating and skewed insertions) are presented in Figure 6(b). For a low
degree of data skew (alternating insertions between left and right areas) the measures are
drawn in Figure 6(a).

408 Djahida Belayadi et al.

In all cases and as expected, the maximum addressing error values are obtained with
small imbalance tolerance parameter (α = 10%), whereas, the minimum values were ob-
tained with high imbalance tolerance parameter (α = 50%). For instance, inserting 50
000 blocks of data using a parameter α = 10%, generates around 150 redirections in the
case of high degree of data skew. It generates around 100 redirections in the case of mod-
erate degree of data skew and only 50 redirections with a low degree of data skew. Thus
the probabilities for a client to make an addressing error (and thus generate a redirection
message) are respectively 0.003, 0.002 and 0.001 (according to the data skew degree).

According to the shape of the different curves, we also notice that addressing errors
become less and less frequent over time. This is explained by the fact that the partition
statistics tables (PST) tend to converge towards the real view of the partition statistics.

Addressing Errors of Range Query The next experiments are conducted to show the
very low impact of our LOADBALANCE algorithm (mainly the dynamic changes in the
partitioning statistics) on the performance of the range queries sent by the clients. We did
not measure the queries response time because it is highly dependent on the material used
while, we mainly focus on the data balancing quality.

In these experiments, we generate random range queries sent by a Range Client at
regular period. In parallel, a Left Client or Right Client insert blocks of data continu-
ously generating thus a high degree of data skew and a rapid change in the partition
statistics inside the nodes. We have therefore measured the addressing errors made by the
Range Client. The client PSTC , even if it is outdated at the beginning, it is quickly up-
dated. When the nodes are very active, their tables remain of very good quality, so, they
quickly correct the clients who contact them. The strong activity of the nodes is related
to the fact that we generate high imbalance situations by inserting data in a non-uniform
way. In that case, to maintain balancing, the nodes have to be very active. As a result,
their tables converge rapidly towards the real view. It is, therefore, a strong point of our
method that ultimately guarantees a few addressing errors in case of range queries (at
most 2 errors) whatever the situation:

– In case of high dynamic system (presence of a moderate or large degree of data skew),
the nodes will be very active and therefore they will quickly adjust the clients partition
statistics.

– In a stable system (no or low data skew), the boundaries practically do not change, so
the clients partition statistics tables remain accurate

Figures 7(a) and 7(b) plot the number of addressing errors generated during a run of
random range queries. In Figure 7(a), a Left Client is sending 105 data packets to the left
side of the cluster in order to cause a high degree of skew. In Figure 7(b), a Right Client is
instead used. During both situations, a Range Client is sending its random range queries.
The plots present the addressing errors made by this last client. Recall that for range
queries, addressing errors are the number of additional rounds needed to send back the
additional parallel sub-queries related to the missing ranges.

4.3. Behavior Details of LOADBALANCE Algorithm

In this section, we study the data movement cost incurred by the LOADBALANCE algo-
rithm. In the experiments presented in the tables 3, 4, 5, we start from a balanced state of

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 409

Fig. 7. Addressing errors made by a Range Client with (a) Left Client and (b)
Right Client.

the system where all the loads are close to each other. We then run a single operation of
inserting a data packet (containing a block of tuples to be inserted) and observe the behav-
ior of our system (i.e., number of tuples migrated between the nodes and the number of
invocations of LOADBALANCE algorithm). The tables are obtained from three different
values of the imbalance tolerance parameter, α = 10%, α = 20% and α = 50% of the av-
erage load. We note that the number of migrated tuples with α = 10% is relatively small
compared to the other costs. However, when α is greater, the amount of data migrated is
greater because the number of LOADBALANCE invocations is smaller.

Table 3. The effect of inserting a data packet into one node during a balanced state (α =
10%).

Data size 67 499 125 194 131 993
Packet size 6 800 6 800 13 200
Tuples migrated 25 651 10 693 42 855
Algorithm invocations 8 3 7
Packet size/ data size 0.10 0.05 0.10
Tuples migrated/(data size + Packet
size)

0.35 0.08 0.30

The aim behind these experiments is to evaluate the system reactivity (how do the
system react against an insert operation which destabilizes the current balanced state).
So, this involves measuring the number of tuples migrated as well as the number of algo-
rithm invocations. What should be noted in these tables is that the number of algorithm

410 Djahida Belayadi et al.

Table 4. The effect of inserting a data packet into one node during a balanced state (α =
20%).

Data size 87 497 147 590 161 243
Packet size 6 800 6 800 40 500
Tuples migrated 25 085 9 736 132 040
Algorithm invocations 6 2 7
Packet size/ data size 0.08 0.05 0.25
Tuples migrated/(data size + packet
size)

0.27 0.06 0.65

Table 5. The effect of inserting a data packet into one node during a balanced state (α =
50%).

Data size 99 897 10 6697 119 895
Packet size 6 800 13 200 30 000
Tuples migrated 5 471 38 910 94 897
Algorithm invocations 1 4 6
Packet size/data size 0.07 0.12 0.25
Tuples migrated/(data size + packet
size)

0.05 0.32 0.63

invocations gives us an estimation of the number of messages exchanged between nodes
due to a single insert operation. The number of messages is the number of algorithm
invocations plus 1. This measure indicates how many nodes have been affected by the
insertion of a data packet in the starting node. For example, in the first column of the table
3, we have:

– Data size: 67 499, the total number of tuples before the insert query;
– Packet size: 6 800, the number of tuples that will be inserted;
– Tuples migrated: 2 565 tuples migrated after the insert query;
– Invocations: 8 is the number of LOADBALANCE invocations, thus, 9 messages are

required for the transfer between nodes;
– Packet size/data size: 0.1, the ratio between the packet size and the data size before

insertion;
– Tuple migrated / (data size + packet size): 0.35, The ratio between the amount of data

migrated and the new data size.

A first analysis shows that the number of data transferred depends strongly on the size
of the inserted packet and on the total number of data already present before insertion. In
this case, for the same value of α, there is a correlation between the ratio of the packet
size to the data size and the ratio of the number of tuples migrated to the sum of data size
and the packet size.

In the above experiments, we measure the number of invocations of LOADBALANCE
algorithm. We create four imbalance situations: 1) a strong imbalance on the right side of
the cluster, where the right half of the set of nodes is much more loaded than the left one.
2) A strong imbalance on the left side. 3) An alternate send of the requests, sometimes the
right half sometimes the left half of the cluster. 4) A combination of two clients, one that
inserts just in the left half of the cluster and another that inserts alternately.

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 411

Fig. 8. LOADBALANCE Algorithm invocations during a run with (a) a Right Client and
(b) both Alternate Client and Left Client. The number of invocations of the LOADBAL-
ANCE algorithm decreases as α increases.

Figures 8(a) and 8(b) show the number of invocations of our algorithm for different
degrees of α. A Right Client (figure 8(a)) and both Alternate Client and Left Client (fig-
ure 8(b)) were sending 105 insert queries. We observe that the number of invocations of
the LOADBALANCE algorithm decreases as α increases.

4.4. Discussion and Comparison with Existing Approaches

Our results presented above validate the analysis of the previous sections. They show that
our load balancing method is very efficient and that no cost is needed for maintaining load
statistics. If the system requires randomly chosen partition boundaries as in P2P network
(e.g., [46,43]), efficient load balancing technique needsO(logn) messages, where n is the
number of nodes. Methods that use skip graphs like [18,29,11] need to have global load
statistics to address the problem of data skew. Skip graphs are circular linked lists, where
each node maintains roughly O(log n) skip pointers, to enable the list traversal. Skip
pointers are randomized and routing between any two nodes requires O(log n) messages.

The team Ganesan et al. [18] propose a balancing mechanism that guarantees a good
imbalance ratio (bounded by 4.24). The researchers, in this work, use two universal load
balancing primitives which are neighbor item exchange and node reorder. Each node has
to periodically update a central directory with its current load. When its load crosses a
local threshold, it contacts the directory to locate the next least loaded node and performs
load exchange with it. The major drawback is that their algorithm requires global knowl-
edge of the maximum and minimum load. Since there is no central site in the P2P net-
works, Ganesan et al.’s proposal works on two skip graphs. Each node maintainsO(logn)
skip pointers allowing it to have a fast traversal of the list. Partition changes are followed
by an update of the data structure which requires O(log n) messages. However, in our
proposal, maintaining global load statistics does not need exchanging any messages.

Our contribution is based on the partition statistics tables (PST), where each peer has
imperfect load statistics. Maintaining the PST does not require any message exchange

412 Djahida Belayadi et al.

between the nodes, this table is updated during the load balancing phase, it will be trans-
mitted with the data packets sent to the neighbors.

In figures 9(a) and 9(b), we evaluate our OLAPS approach in a similar environment
as in [18]. We generate 256 virtual machines where clients insert a set of 106 tuples. After
achieving a balancing state, the ratios are around 1. However, in Ganesan’s work, despite
the imbalance ratio is bounded by 4.24, it is a little bigger than 3 in the steady phase.

Fig. 9. Imbalance ratio with (a) Left Client and (b) both Right Client and Alternate Client.

In Table 6, we compare our work with three other works. The comparison is based
on several criteria which are mainly: perfect partition statistics, addressing errors, cost of
maintaining load information and load balancing strategy (NIE: Neighbor Item Exchange
or NM: Node Migration). Our algorithm uses imperfect partition statistics which consists
of the partition statistics table. However, all the other works depend on a real view about
the system state. To get the right system state, the cost is O(logn) messages in the studied
works. However, there is no need to exchange messages between peers to get the load
statistics in our solution. When a client or a node needs information about the state of
the system, it can easily find it in its local table, peers do not have to get this information
from a central server or from neighbors. Indeed, there is need to exchange any messages.
Having an imperfect view about the data distribution may lead the clients to address the
wrong node. Adjustment messages help the clients to update their tables and locate the
desired node. The problem of addressing errors does not exist in the three-prior works, be-
cause either the clients send their requests to a central site or they use a data structure like
skip graph to get access with O(logn) messages. The last comparison criterion is the load
balancing strategy, our strategy consists of item migration between nodes, however, the
other solution combines between this strategy and node migration from the most loaded
area to the least loaded one.

5. Related Work

Research on parallel queries such us range queries [45,33,53], join queries [12,15,22],
parallel sorting [3,3] . . . etc, has long been a crucial problem. Reducing the data skew

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 413

Table 6. Comparison between our approach and three previous works

Works OLAPS Ganesan et
al.[18]

Chawachat et
al.[11]

Konstantinou
et al.[29]

Perfect partition statis-
tics

No Yes Yes Yes

Addressing errors Yes No No No
Cost of maintaining
load statistics

No cost O(log n) O(log n) O(log n)

Load balancing strategy NIE NIE and NM NIE and NM NIE and NM

effect is an interesting challange in these systems. There have been many studies of load
balancing for range-partitioned data. These studies have focused first on load balancing
algorithms and how to migrate data in an efficient way. Thereafter, the focus has shifted
to the solutions that reduce the cost of maintaining data distribution information. The
problem of data skew has been addressed in two main ranges of research:

Peer-to-Peer Systems: in P2P networks, A number of recent load balancing ap-
proaches have been proposed [17,1,11,50,37,36]. Structured P2P networks [30] are an
efficient tool for storage and location of data since there is no central server which could
become a bottleneck. Many researches have been proposed on search methods in Struc-
tured P2P networks, Readers looking for more information are referred to the survey on
searching in P2P networks by [42]. The basic load balancing approach in structured P2P
networks or distributed hash tables (DHTs) [54] is consistent hashing [17]. Unfortunately,
consistent hashing approach destroys data order by randomizing placement of data items
which is not applicable to some applications. For example, to support range searching in a
database application, the items need to be in a specific order. SkipNet [23] and skip graph
[2] are data structures for range searching that are not based on DHTs. Both of them are
adapted from Skip Lists [39]. The computational cost of object search in a skip graph and
SkipNet networks is O(log n), where n is the number of nodes in the network. Many other
data structures answer range queries and ensure a good load balancing in their experi-
ments, e.g., Mercury [10], Baton [25], Chordal graphs [26]. However, Mercury requires
extra communication cost to estimate the density of the nodes on the identifier ring. Ba-
ton is based on a binary balanced tree structure. It guarantees that exact queries and range
queries can be answered in O(logn) steps and also that update operations have a cost of
O(logn). Chordal graph is based on hierarchical neighborhood search to provide incom-
ing nodes an overview of the network topology. Both Baton and Chordal graph have a
cost of O(logn) for searching and routing. However, our method requires a very low cost
for maintaining load statistics to answer range queries and ensure data load balancing.

In [49], authors propose a new structured P2P network named the Well-Distribution
Algorithm for an Overlay Network (Waon). Each node modifies its location on Waon’s
identifier ring dynamically to achieve uniform distribution of objects. It can also support
range queries for searching objects. However, Dynamic load balancing mechanism of
Waon is not efficient because each node uses only partial knowledge of the network. In
addition, the number of communication messages necessary for maintaining the network
and searching objects is O(log n), where n denotes the number of nodes. In [50]’s work,
an efficient dynamic load balancing scheme for Waon is proposed. Each node collects

414 Djahida Belayadi et al.

load values from other nodes in order to obtain entire network information. The main
drawbacks of this work are the calculation time and communication data required for this
process (O(logn)).

The work in [29] evaluates the performance in terms of bandwidth cost and con-
vergence speed of balancing range query capable data structures using successive item
exchanges and node migrations. This approach maintains load information using a skip
graph. To perform node migration from the most loaded area to the least loaded one, the
overloaded node locates the least loaded node by sending probing messages to its O(log
n) neighbors. The main drawback of this work is the costly maintenance of the node mi-
grations and the big number of exchanging messages to locate the overloaded node.

Another way to address the problem of data skew is the replication of some data.
However, replication needs to change the underlying routing protocol to handle multiple
replica locations during item search and insertions. The work in [37] proposes a load bal-
ancing technique with overlapping regions between nodes. Participant nodes share some
regions with their neighbors which allow them to reshape their loads capacity function
locally. The approach uses the kernel density estimation in deriving the optimal overlap
ranges. The main drawback of this technique and that of [38] which uses also the data
replication is the necessity to deal with consistency issues during object updates.

The use of a virtual server scheme [20] for structured P2P networks has been pro-
posed as a dynamic load balancing technique. In a network based on such a technique,
the overloaded node transfers virtual servers to another physical node for load balancing.
[24] work is based on the virtual server’s technique, where each participating peer is based
on a partial knowledge of the system state to estimate the probability distributions of the
capacities of peers and the loads of virtual servers. The principal drawbacks of these tech-
niques are the cost of transferring virtual servers between physical nodes and the extra
communication required by the virtual servers for dynamic load balancing.

Parallel/Distributed databases: a load balance operation in a parallel database is
performed as a transaction. Its consequences do not affect other concurrent transactions
until all tuples are moved, partition boundaries are updated, and the transaction is com-
mitted. Read requests for tuples that are being moved to another node are serviced from
existing versions residing at the old node. Write requests for tuples that are being moved
either abort, wait, or are forwarded to the new location. The work in [41] proposes a
multi-reorder operation that finds a sequence of multiple adjacent nodes that have a small
average load of any such sequence. This technique uses partition statistics which include
an estimate of the number of tuples stored on each node for every relation in the database.
Based on this information the system skew is calculated. The problem that could be noted
is the cost of maintaining partition statistics.

Work in [13] presents an approach to dealing with skew in parallel joins in database
systems. The basic idea is that each processor is allocated a subrange of the join attribute
value. The values that delineate the boundaries of these ranges need not be equally spaced
in the join attribute domain; this allows the values to be chosen so as to equalize the
number of tuples mapped to each subrange. The proposed work is interesting, many re-
cent works are based on this work. Combining this work with our concept (approximate
partition statistics tables) could significantly improve the cost of maintaining partitioning
information in the processing of parallel joins.

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 415

SAP HANA is an emergent in-memory, column-oriented, relational database manage-
ment system. Like any other MMDBS, this system suffers from unbalanced data distri-
bution on main memory. The work in [32] proposes that each HANA server returns the
query results to the client with its memory and CPU resources consumption status. The
client when detecting that the targeted node does not have enough memory resource, it
tries to send the current query to other nodes.

Balancing a large and dynamic evolution of data distribution has always been an area
of interest of many researchers. Load balancing in Cassandra [40] is executed during node
additions, the load balancing algorithm transfers half the data from the most loaded node
to the new node. The load balancing can also be performed manually with a script ex-
ecuted by the user. This operation unfortunately does not minimize the amount of data
transferred between the nodes and does not guarantee the data balancing. Voldemort [47]
manages load balancing with the same way3, its main disadvantages are the centralized
execution generally triggered by the user. It uses a static number of partitions and dis-
tributes them uniformly on the nodes. Riak4 uses the notion of vnodes, inspired by the
virtual nodes of Chord [46]. It assigns them to the physical nodes in multiple ways.
Load balancing is performed only when adding or deleting nodes. MongoDB [4] uses
its cluster-balancing module, its balancing strategies is a little bit similar to ours. The
balancing module migrates data between different nodes when the ratio of the number of
tuples from the largest fragment to the smallest reaches a certain threshold. However, this
operation lacks flexibility outside the threshold parameter.

Discussion: the above state-of-art presents the most important existing approaches
dealing with the problem of data skew in a range-partitioned data system. These ap-
proaches are targeted towards peer-to-peer systems and parallel databases. The conclu-
sion we could make is that the cost of maintaining load statistics is at least O(logn). Our
solution considers main memory databases and provides load balancing mechanism to
handle the data skew for applications with dominant append operations and range queries.
Also, these applications do not require update queries, but mainly insert, delete and search
queries like in data warehouses. We provide a strategy for maintaining the global load
statistics without any extra communication cost, unlike the state-of-art solutions that re-
quire at least O(logn) additional messages.

6. Conclusion

In this paper, we presentedOLAPS, an on-line-load balancing algorithm for skewed data
in a parallel In-memory database. By the solution we propose, we were targeting appli-
cations that require mainly insert, delete and range queries. When the range queries are
operating on a range partitioned system suffering from a very high degree of imbalance,
the challenge is to efficiently ensure a best performance. In order to reduce the cost of
maintaining load statistics as low as possible, we propose to use an approximate partition
statistics table PST . Both clients and nodes have an imperfect view about the load distri-
bution across nodes. Based on this table, a node performs a load balancing whenever its
data size passes a local threshold. It changes its range and transfers the out-of-range data
to its neighbors. The transfer process continues until the nodes satisfy the threshold. The

3 https://github.com/voldemort/voldemort/wiki
4 http://riak.basho.com/

416 Djahida Belayadi et al.

experiments that we set in our laboratory, show that our solution guarantees an imbalance
ratio close to 1, which means that the storage balance is achieved successfully. They show
also that the access costs of the read-only clients remain very low, despite the high degree
of data skew generated in these experiments. In particular, we have obtained a quasi-null
degradation of parallel range query costs over a very dynamic range partitioned database
where boundaries continuously change (for load balancing purposes).

While the present solution describes an approach for eliminating data skew, one could
apply the same techniques to minimize execution skew. Furthermore, we also plan to
address the issue of handling data skew in parallel join algorithms using thePST concept.
Our load-balancing algorithm is a standard mechanism, we believe that it can be adapted
to several other environments such as Cloud Computing environments as well as peer-to-
peer networks and other systems.

References

1. Antoine, M., Pellegrino, L., Huet, F., Baude, F.: A generic API for load balancing in structured
P2P systems. In: 26th IEEE International Symposium on Computer Architecture and High
Performance Computing Workshop, SBAC-PAD Workshop 2014, Paris, France, October 22-
24, 2014. pp. 138–143 (2014)

2. Aspnes, J., Shah, G.: Skip graphs. In: Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA. pp. 384–393
(2003)

3. Axtmann, M., Sanders, P.: Robust massively parallel sorting. In: Proceedings of the Ninteenth
Workshop on Algorithm Engineering and Experiments, ALENEX 2017, Barcelona, Spain, Ho-
tel Porta Fira, January 17-18, 2017. pp. 83–97 (2017)

4. Banker, K.: MongoDB in action. Manning Publications Co. (2011)
5. Belayadi, D., Hidouci, W.: Dynamic range partitioning with asynchronous data balancing. In:

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud and Big Data Computing, In-
ternet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
Toulouse, France, July 18-21, 2016. pp. 1214–1220 (2016)

6. Bellatreche, L., Benkrid, S., Ghazal, A., Crolotte, A., Cuzzocrea, A.: Verification of partitioning
and allocation techniques on teradata DBMS. In: 11th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP). pp. 158–169 (2011)

7. Bellatreche, L., Davis, T., Djahida, B.: Parallel and distributed data warehouses. In: Liu, L.,
Özsu, M.T. (eds.) Encyclopedia of Database Systems. Springer New York (2018)

8. Bellatreche, L., Mohania, M.K.: Big data analytics and knowledge discovery. Concurrency and
Computation: Practice and Experience 28(15), 3945–3947 (2016)

9. Berenbrink, P., Friedetzky, T., Hu, Z.: A new analytical method for parallel, diffusion-type load
balancing. J. Parallel Distrib. Comput. 69(1), 54–61 (2009)

10. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range
queries. In: Proceedings of the ACM SIGCOMM 2004 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, August 30 - September 3,
2004, Portland, Oregon, USA. pp. 353–366 (2004)

11. Chawachat, J., Fakcharoenphol, J.: A simpler load-balancing algorithm for range-partitioned
data in peer-to-peer systems. Networks 66(3), 235–249 (2015)

12. Coman, A., Sander, J., Nascimento, M.A.: Adaptive processing of historical spatial range
queries in peer-to-peer sensor networks. Distributed and Parallel Databases (2007)

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 417

13. DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.: Practical skew handling in parallel
joins. In: 18th International Conference on Very Large Data Bases, August 23-27, 1992, Van-
couver, Canada, Proceedings. pp. 27–40 (1992), http://www.vldb.org/conf/1992/
P027.PDF

14. Diaconu, C., Freedman, C., Ismert, E., Larson, P., Mittal, P., Stonecipher, R., Verma, N., Zwill-
ing, M.: Hekaton: SQL server’s memory-optimized OLTP engine. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013. pp. 1243–1254 (2013)

15. Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Efficient range query processing in
metric spaces over highly distributed data. Distributed and Parallel Databases (2009)

16. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA database:
data management for modern business applications. SIGMOD Record 40(4), 45–51 (2011)

17. Felber, P., Kropf, P., Schiller, E., Serbu, S.: Survey on load balancing in peer-to-peer distributed
hash tables. IEEE Communications Surveys and Tutorials 16(1), 473–492 (2014)

18. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with
applications to peer-to-peer systems. In: Proceedings of the Thirtieth International Conference
on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004. pp. 444–455
(2004)

19. Gao, J., Steenkiste, P.: An adaptive protocol for efficient support of range queries in dht-based
systems. In: 12th IEEE International Conference on Network Protocols (ICNP 2004), 5-8 Oc-
tober 2004, Berlin, Germany. pp. 239–250 (2004)

20. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R.M., Stoica, I.: Load balancing in dy-
namic structured P2P systems. In: Proceedings IEEE INFOCOM 2004, The 23rd Annual Joint
Conference of the IEEE Computer and Communications Societies, Hong Kong, China, March
7-11, 2004. pp. 2253–2262 (2004)

21. Gupta, A.W.: Efficient query processing using histograms in a columnar database (Jan 25
2018), uS Patent App. 15/706,511

22. Gupta, H., Chawda, B., Negi, S., Faruquie, T.A., Subramaniam, L.V., Mohania, M.K.: Process-
ing multi-way spatial joins on map-reduce. In: Joint 2013 EDBT/ICDT Conferences, EDBT
’13 Proceedings, Genoa, Italy, March 18-22, 2013. pp. 113–124 (2013)

23. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable overlay
network with practical locality properties. In: 4th USENIX Symposium on Internet Technolo-
gies and Systems, USITS’03, Seattle, Washington, USA, March 26-28, 2003 (2003)

24. Hsiao, H., Liao, H., Chen, S., Huang, K.: Load balance with imperfect information in structured
peer-to-peer systems. IEEE Trans. Parallel Distrib. Syst. 22(4), 634–649 (2011)

25. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: A balanced tree structure for peer-to-peer net-
works. In: Proceedings of the 31st International Conference on Very Large Data Bases, Trond-
heim, Norway, August 30 - September 2, 2005. pp. 661–672 (2005)

26. Joung, Y.: Approaching neighbor proximity and load balance for range query in P2P networks.
Computer Networks 52(7), 1451–1472 (2008)

27. Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S.B., Jones, E.P.C., Madden,
S., Stonebraker, M., Zhang, Y., Hugg, J., Abadi, D.J.: H-store: a high-performance, distributed
main memory transaction processing system. PVLDB 1(2), 1496–1499 (2008)

28. Kemper, A., Neumann, T.: Hyper: A hybrid oltp&olap main memory database system based
on virtual memory snapshots. In: Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany. pp. 195–206 (2011)

29. Konstantinou, I., Tsoumakos, D., Koziris, N.: Fast and cost-effective online load-balancing
in distributed range-queriable systems. IEEE Trans. Parallel Distrib. Syst. 22(8), 1350–1364
(2011)

30. Korzun, D., Gurtov, A.: Structured peer-to-peer systems: fundamentals of hierarchical organi-
zation, routing, scaling, and security. Springer Science & Business Media (2012)

http://www.vldb.org/conf/1992/P027.PDF
http://www.vldb.org/conf/1992/P027.PDF

418 Djahida Belayadi et al.

31. Koudas, N., Muthukrishnan, S., Srivastava, D.: Optimal histograms for hierarchical range
queries. In: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, May 15-17, 2000, Dallas, Texas, USA. pp. 196–204 (2000)

32. Lee, J., Kwon, Y.S., Färber, F., Muehle, M., Lee, C., Bensberg, C., Lee, J., Lee, A.H., Lehner,
W.: SAP HANA distributed in-memory database system: Transaction, session, and metadata
management. In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Bris-
bane, Australia, April 8-12, 2013. pp. 1165–1173 (2013)

33. Lim, J., Bok, K., Yoo, J.: An efficient continuous range query processing scheme in mobile p2p
networks. The Journal of Supercomputing pp. 1–15 (2017)

34. Litwin, W., Neimat, M., Schneider, D.A.: Rp*: A family of order preserving scalable distributed
data structures. In: VLDB’94, Proceedings of 20th International Conference on Very Large
Data Bases, September 12-15, 1994, Santiago de Chile, Chile. pp. 342–353 (1994)

35. Luo, J., Pan, Q., He, Z.: VANET middleware for service sharing based on OSGI. Comput. Sci.
Inf. Syst. 12(2), 729–742 (2015)

36. Mirrezaei, S.I., Shahparian, J.: Data load balancing in heterogeneous dynamic networks. CoRR
abs/1602.04536 (2016)

37. Mizutani, K., Inoue, T., Mano, T., Akashi, O., Matsuura, S., Fujikawa, K.: Stable load balancing
with overlapping id-space management in range-based structured overlay networks. Informa-
tion and Media Technologies 11, 1–10 (2016)

38. Pitoura, T., Ntarmos, N., Triantafillou, P.: Saturn: Range queries, load balancing and fault tol-
erance in DHT data systems. IEEE Trans. Knowl. Data Eng. 24(7), 1313–1327 (2012)

39. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33(6), 668–
676 (1990)

40. Redmond, E., Wilson, J.R.: Seven databases in seven weeks: a guide to modern databases and
the NoSQL movement. Pragmatic Bookshelf (2012)

41. Rishel, W.S., Rishel, R.B., Taylor, D.A.: Load balancing in parallel database systems using
multi-reordering (Sep 30 2014), uS Patent 8,849,749

42. Risson, J., Moors, T.: Survey of research towards robust peer-to-peer networks: Search meth-
ods. Computer Networks 50(17), 3485–3521 (2006)

43. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Middleware 2001, IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, Germany, November 12-16, 2001, Proceedings. pp.
329–350 (2001)

44. Silberschatz, A., Korth, H.F., Sudarshan, S.: DatabaseSystem Concepts (2010)
45. Sioutas, S., Triantafillou, P., Papaloukopoulos, G., Sakkopoulos, E., Tsichlas, K., Manolopou-

los, Y.: ART: sub-logarithmic decentralized range query processing with probabilistic guaran-
tees. Distributed and Parallel Databases (2013)

46. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: SIGCOMM. pp. 149–160 (2001)

47. Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., Soman, C., Shah, S.: Serving large-scale batch
computed data with project voldemort. In: Proceedings of the 10th USENIX conference on
File and Storage Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012. p. 18
(2012)

48. Sun, J., Afnan, O., Lin, Y.: Data skew finding and analysis (Jun 30 2016), uS Patent App.
15/199,507

49. Takeda, A., Oide, T., Takahashi, A.: Simple dynamic load balancing mechanism for structured
P2P network and its evaluation. IJGUC 3(2/3), 126–135 (2012)

50. Takeda, A., Oide, T., Takahashi, A., Suganuma, T.: Efficient dynamic load balancing for struc-
tured P2P network. In: 18th International Conference on Network-Based Information Systems,
NBis 2015, Taipei, Taiwan, September 2-4, 2015. pp. 432–437 (2015)

51. Valduriez, P.: Shared-nothing architecture. In: Encyclopedia of Database Systems, pp. 2638–
2639 (2009)

OLAPS: Online Load-Balancing in Range-Partitioned Main Memory Database 419

52. Wang, F.: Parallel control and management for intelligent transportation systems: Concepts,
architectures, and applications. IEEE Trans. Intelligent Transportation Systems 11(3), 630–638
(2010)

53. Zeng, X., Hu, M., Yu, N., Jia, X.: An efficient and secure range query scheme for encrypted
data in smart grid. In: International Conference on Mobile Ad-Hoc and Sensor Networks. pp.
1–18. Springer (2017)

54. Zhang, H., Wen, Y., Xie, H., Yu, N.: Distributed Hash Table - Theory, Platforms and Applica-
tions. Springer Briefs in Computer Science, Springer (2013)

Djahida Belayadi received her bachelor’s degree from Ecole Nationale Supérieure
d’Informatique, Algiers, Algeria, in 2013. She is currently working toward the PhD degree
in the same school. Her current research interest includes parallel databases and various
distributed systems issues.

Khaled-Walid Hidouci is currently an Associate Professor at Ecole Nationale Supérieure
d’Informatique (ESI) since 1993. His areas of interest mainly concern programming, dis-
tributed computing and database systems. Since 2010, he has been leading the ’Advanced
Databases’ (BDA) team at the Laboratory of Communication in Computer Systems.

Ladjel Bellatreche is a Professor at National Engineering School for Mechanics and
Aerotechnics (ENSMA), Poitiers, where he joined as a faculty member since Sept 2010.
He leads the Data and Model Engineering Team of Laboratory of Computer Science and
Automatic Control for Systems (LIAS).

Received: Mart 20, 2018; Accepted: April 25, 2018.

	Introduction
	System Model
	Description of our Approach
	Partition Statistics Tables (PSTs)
	System Threshold
	Client Operations
	Range Query Execution:
	Range Query Algorithm

	Node Operations
	LoadBalance Algorithm:

	Experimental Results
	Evaluation Measures
	Performance Tests
	Imbalance Ratio:
	Addressing Errors:
	Addressing Errors of Range Query

	Behavior Details of LoadBalance Algorithm
	Discussion and Comparison with Existing Approaches

	Related Work
	Conclusion

