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Abstract. In this paper, the stock index time series forecasting using optimal 
neural networks with optimal architecture avoiding overfitting is studied. The 
problem of neural network architecture selection is a central problem in the 
application of neural network computation. After analyzing the reasons for 
overfitting and instability of neural networks, in order to find the optimal NNs 
(neural networks) architecture, we consider minimizing three objective indexes: 
training and testing root mean square error (RMSE) and testing error variance 
(TEV). Then we built a multi-objective optimization model, then converted it to 
single objective optimization model and proved the existence and uniqueness 
theorem of optimal solution. After determining the searching interval, a Multi-
objective Optimization Algorithm for Optimized Neural Network Architecture 
Avoiding Overfitting (ONNAAO) is constructed to solve above model and 
forecast the time series. Some experiments with several different datasets are 
taken for training and forecasting. And some performance such as training time, 
testing RMSE and neurons, has been compared with the traditional algorithm 
(AR, ARMA, ordinary BP, SVM) through many numerical experiments, which 
fully verified the superiority, correctness and validity of the theory. 

Keywords: neural network architecture, RMSE, TEV, multi-objective optimized 
model, overfitting, instability. 

1. Introduction 

Since the emergence of stocks, stock index prediction has been widely concerned and 
actively studied. Many scholars have put forward a number of different prediction 
methods, which can be divided into two groups. One group includes the traditional 
statistical methods such as AR [1], ARMA [2], GARCH [3] etc., and the other one 
relies on artificial intelligence methods such as NNs, SVM [4], ELM [5] etc.. The 
traditional stock prediction method is based on the linear model, but there is a nonlinear 
relationship among stock price, the political, economic and social influence of various 
factors on the stock indexes. As traditional methods [6-8] cannot fully consider these 
factors, to remedy this defect, in recent years, many scholars use artificial intelligence 
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method such as neural network on the stock price time series prediction, which have 
achieved a large number of successful application, such as price prediction [9], power 
load forecasting [10], water resources variables forecasting [11], chaotic time series 
forecasting [12], financial and economic forecasting [13] and sunspot series forecasting 
[14]. Neural networks can overcome the shortcomings of traditional forecasting 
methods, and they do not need to establish a complex nonlinear mathematical model 
and mapping [15]. So the stock market is more suitable for the prediction using neural 
networks compared with the other classic methods [16, 17]. 

Neural network models have been successfully applied in a variety of applications 
such as data prediction, image processing and pattern recognition, data mining, expert 
system, economic analysis etc. The widespread popularity of neural networks in so 
many fields is mainly due to their ability to approximate complex multivariate nonlinear 
functions directly from the input samples. Neural networks can provide models for a 
large class of natural and artificial phenomena that are difficult to handle using classical 
parametric techniques. 

However, NNs (neural networks) have actually many drawbacks, such as the 
tendency to overfitting [18-21], instability [22] and the difficulties to determine the 
optimized network structure [23-25]. The overfitting problem is a critical issue that 
usually leads to poor generalization [26-28]. It is empirically known that the overfitting 
problem is particularly serious when the number of the neurons in hidden layer is too 
large [29]. But the process of selecting adequate neural network architecture for a given 
problem is still a controversial issue. 

So the selection of an optimized model size which maximizes generalization is an 
important topic. There are several theories for determining the optimized network size, 
such as NIC (Network Information Criterion) [30], which is a generalization of the AIC 
(Akaike Information Criterion) [31-32], and the VC dimension (Vapnik 1995) [33] – 
which is a measure of the expressive power of a network. NIC relies on a single well-
defined minimum to the fitting function and can be unreliable when there are several 
local minima [34]. Their evaluation is prohibitively expensive for large networks. VC 
bounds are likely to be too conservative because they provide generalization guarantees 
simultaneously for any probability distribution and any training algorithm. The 
computation of VC bounds for practical networks is difficult. Baum and colleagues [35] 
have obtained some bounds on the number of neurons in an architecture related to the 
number of training examples. An important contribution about the approximation 
capabilities of feed-forward networks was made by Barron [36], who computed an 
estimation of the number of hidden nodes necessary to optimize the approximation 
error. Yuan HC [37] proposed a method for estimating the number of hidden neurons in 
feed-forward neural networks based on information entropy. And signal-to-noise-ratio 
[38] have been also used to analyze the issue about the optimized number of neurons in 
a neural architecture. The previously mentioned theoretical results have helped much to 
understand certain issues regarding the properties of feed-forward neural networks. But 
unfortunately, at the time of practical implementations the bounds are loose or difficult 
to compute or determine. 

Instability is another fatal drawback of NNs: training using the same dataset and the 
same algorithm may produce very different models [39-40]. Although some 
constructive approaches [41-44] can solve the instability problem, they cannot 
guarantee good generalization. 
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In this paper, we will analyze the characteristics of NNs with optimized network 
architecture or hidden neuron number. Firstly, we have to solve the problem that the 
optimized NN must have enough hidden neurons. Secondly, it should have minimal 
training error and test error, i.e. good generalization. Finally, NN must be stable, that is, 
for the same sample data set, using the same algorithm multiple tests, the variance of the 
test error must be minimal. Comprehensively considering of the above factors, a multi-
objective optimization model can be constructed to determine the optimized neural 
architecture for good generalization and avoiding overfitting. And an algorithm for 
Optimized Neural Network Architecture Avoiding Overfitting (ONNAAO) is 
constructed for training and forecasting the stock indexes. 

This paper is organized as follows: the second section describes the work related to  
time series forecasting, Section 3 investigates the phenomena of neural network 
overfitting, bad generalization and high variance caused by noisy data, overfull hidden 
neurons through some experiments. In Section 4, a multi-objective optimization model 
and the correlative algorithm (ONNAAO) will be constructed to determine the 
optimized neural architecture for good generalization and avoiding overfitting. And the 
theorem of the existence and uniqueness of optimized solution is proved. Section 5 will 
describes experiments on practical problems related to stock market. In Section 6, a 
comprehensive comparison of performance with some traditional algorithms is 
presented. Section 7 provides some conclusions. 

2. The Work Related to Time Series Forecasting 

For investors, the changes of stock index and stock price are very important information 
and the forecasting of time series in stock market has long been attracting the eternal 
interest of countless scientists and researchers for many years [9,17,45-47]. 
Unfortunately, stock indices and prices are essentially dynamic, nonlinear, 
nonparametric and chaotic in nature. This means that investors and researchers must 
have to face highly nonlinear and noisy time series data, which have frequent structural 
breaks [47]. In fact, the changes of stock index and stock price are affected by many 
macro-economic factors such as company’s policies, political events, movement of 
other stock market, commodity prices index, bank rate, investors’ expectations, general 
economic conditions, institutional investors’ choices and psychological factors of 
investors. Thus prediction of stock index and price accurately is not only the most 
extremely challenging applications of time series prediction but also of great interest to 
investors. 

Time series modeling and prediction have important applications in many fields of 
science and engineering. Conventionally time series forecasting (TSF) has been 
performed predominantly using statistical-based methods such as the moving average 
(MA), the autoregressive (AR), the autoregressive integrated moving average (ARIMA) 
and the autoregressive moving average (ARMA) [48]. However, in recent decades, the 
excellent performance of neural networks in the prediction and classification of time 
series has attracted the attention and interest of many scientists in machine learning 
domain [10, 15, 16, 48-50]. Compared to statistical-based forecasting techniques, NNs 
have several unique characteristics, including: 1) having no requirement for an explicit 
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underlying model (nonparametric); 2) being both nonlinear and data driven; 3) being 
more flexible and universal, thus applicable to more complicated models [51]. 

Time series forecasting (TSF) takes an existing series of data 
2 1, , ,t p t tX X X  

 and 

forecasts the future values of 1, ,t tX X  . The goal is to observe or model the existing 

data series to enable future unknown data values to be forecasted accurately. In the 
literature [52, 53], many methods have been used to perform time series forecasting.  
Examples of linear model include Autoregressive (AR): 

1 1 2 2t t t p t p tX X X X u          (1) 

Moving Average (MA): 

1 1 2 2t t t t q t qX u u u u          (2) 

and Autoregressive Moving Average (ARMA) [54, 55]:   

1 1 2 2 1 1 2 2t t t p t p t t t q t qX X X X u u u u                    (3) 

where 1 2 1 2, , , , , ,p q       are the parameters of the model, , 1,2, ,iu i t  is white 

noise. 
However, due to the complexity and non-linearity of the time-series data, the above-

mentioned linear models often have a poor prediction performance for the stock time 
series in practical applications. And NNs are advanced model and tool capable of 
extracting complex, nonlinear relationships among variables [48, 56, 57]. A three-layer 
feed forward NNs model is usually used to process the time series data. 

The neural network forecaster can be described as follows: 

1 2( , , )t t t t pX NN X X X    (4) 

The corresponding structure is 1p q  , where p is the number of inputs, q is the number 

of neurons in the hidden layer, and one output unit. So the output of the NNs is given by 

0 1

( )
q p

t j ij t i j
j i

X c w X 
 

      (5) 

where ijw is the weight that connects the node i in the input layer neurons to the node j 

in the hidden layer; jc is the weight that connects the node j in the hidden layer neurons 

to the node in the output layer neurons; j is the threshold of neuron; and   is the 

activation function. However, new problems have arisen, which are described in next 
section.  

3. The Phenomena of Neural Networks Over-fitting, Poor 
Generalization and High Variance 

The problem of neural network architecture selection is a central problem in the 
application of neural network computation. A network that is too small, either in 
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number of neurons or number of hidden layers, will tend to learn the grossest behavior 
of the training data and ignore subtleties. However, a network that is too large will tend 
to over-specialize and learn the training data too well, resulting in overfitting and high 
variance. We will describe these phenomena through some simple experiments. 

Example [58]: the following sample dataset A comes from the sine function which 
contained 60 points as shown in Fig. 1. 

 

Fig. 1.  Sample dataset A generated by the sine function  

In the following experiments, we will approximate the dataset using traditional single 
hidden layer feed-forward neural networks with different number of hidden neurons 
trained by BP (Back Propagation) algorithm. Although there are many variants of BP 
algorithm, a faster BP algorithm called Levenberg-Marquardt is used in our experiments 
due to its faster convergence rate. All the experiments are carried out in MATLAB 7.10 
(R2010a) environment running on an Intel(R) Core(TM) i3-2120 3.30GHz CPU. We 
will use 54 points of the dataset to train the neural networks and the other 6 points to 
test the un-optimized and the optimized networks. 

In Fig. 2, the neural network only needs 4 hidden neurons, based on the experience, 
to fit the function very well with 0.39 CPU training time (second), training RMSE and 
0.0013825 testing RMSE. 

But if we increase the number of hidden neurons to 7, training the NNs with the same 
training dataset and testing dataset twice, we got different results in Fig.3 and Fig.4, in 
which the testing RMSE are rising to 0.050339 and 0.031242, which are 36.41 and 22.6 
times of that in Fig. 3.  
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Fig. 2.  Results of training and testing with 4 hidden neurons using dataset A  

 
Fig. 3.  Results of first training and testing with 7 hidden neurons using dataset A  
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Fig. 4.  Results of second training and testing with 7 hidden neurons using dataset A  

 
In the following experiments, on the same dataset A, for every number of neurons 

between 1 and 10 , we will train 20 NNs and compute the following index: training and 
testing root mean square error (RMSE) 
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where ijy is the output of jx in the i-th training  NNs. 

The results are exhibited in Fig.5. in which we can find the optimized NNs 
architecture for the dataset A is 4 hidden neurons. 
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Fig. 5.  The statistics performance of 20 NNs for each number of hidden neurons using dataset  A  

If we add a noise to the dataset A, we can get sample dataset B  which comes from 
function 

1

s in
2( )

2
2
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y f x

x








  
 


  

(8) 

 
and also contains 60 points as shown in Fig.6. 

 
Fig. 6.  Sample dataset B generated by the function 1( )y f x    

On the sample dataset B, for every number of neurons between 1 and 10, we will also 
train 20 NNs and compute the following index: training and testing root mean square 
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error (RMSE). The results are exhibited in Fig. 7 in which we can find the optimized 
NNs architecture for the dataset A is 6 hidden neurons because of the noise. Then we 
use the optimized NNs architecture with 6 hidden neurons to train a NNs which can fit 
the dataset B very well and have good generalization in Fig. 8. 

 

Fig. 7.   The statistics performance of 20 NNs for each number of hidden neurons using dataset B   

 

Fig. 8.   Results of first training and testing with 6 hidden neurons using dataset B    
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4. Multi-objective Optimization Model for NNs Architecture 

There are many good theoretical results [36, 59-61] on the number of neurons in an 
optimized NNs architecture related to the function complexity under the sample 
datasets, which have helped much to understand certain issues regarding the properties 
of feed-forward neural networks but unfortunately at the time of practical 
implementations the bounds are loose or difficult to compute. Based on the above 
analysis, comprehensively considering of the above factors, in this paper, a multi-
objective optimization model was built to find the optimized NNs architecture as 
follows: 
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 (9) 

where ijy  is the output of jx  in the i-th training NNs, k is the number of hidden neurons. 

In this model, we will find an optimized NNs which hold three objective, minimal 
training RMSE, testing RMSE and TEV, which has the best generalization and stability. 
The searching interval [ , ]a b  can be determined by the following analysis: Some have a 

theoretical formulation behind, but others are just justified based on experience. The 
following notation is used: N is the input dimension of the data, Nh represents the 
number of hidden neurons in the single hidden layer used in the neural architectures and 
M is used for the output dimension (taken as 1 for all the problems considered). T is 
used to indicate the number of available training vectors. The following approaches 
described below correspond to two widely used software frameworks Weka [62] and 
Neuralware [63]. 

Weka is a popular collection of machine learning algorithms for solving real-world 
data mining problems. Weka permits to compare the predictive accuracy of different 
learning algorithms. In the implementation of neural network architectures, Weka 
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estimates by default the architecture size as ( ) / 2hN N M  . It is not clear the 

justification for the introduction of this rule that has been also suggested in other works 
[64]. Based on experimental results, it seems that Weka suggests it based on its 
simplicity and on previous experience. Neuralware is another well-known commercial 
implementation of artificial neural networks. They suggest architecture with 

/ (5 * ( ))hN T N M   neurons. Because T is commonly very large, we have: 

/ (5* ( )) ( ) / 2T N M N M    (10) 

 

So we take ( ) / 4a N M     and 2 / (5* ( ))b T N M    , that means the optimized 

number of hidden neurons can be found in [ , ]a b . 

There are many approaches to solve the multi-objective optimization  problems [65] 
such as weighted sum approaches [66], lexicography approaches [67] and Pareto 
approaches [68] etc.  

In this paper, weighted sum approach was used to convert multi-objective 
optimization to single objective optimization, and we simply selected the weight

1 / 3 1,2,3iw i  . Then we get the single objective optimization model as follows: 
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 (11) 

In order to prove the existence of the optimized solution for this model, we first 
introduce some previous works on approximation of functions by NNs, and then we will 
prove the theorem of the existence and uniqueness of optimized solution.  

There are many good results on approximation to continuous functions and dataset 
by neural networks using traditional algorithm such as BP, ELM, SVM and some 
constructive approaches. 
Let : . R R  Define 
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 ( ) (w.x ) : , w,x ,
d dspan b b     R R

 
(12) 

Then ( )dN   if and only if 

0

(x) ( x )
n

j j j
j

NN c w b

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(13) 

where , 0, ,jc j n  are real numbers and n  is a positive integer. 

We say that   is a sigmoid function, if it verifies lim ( ) 0
t

t


  and lim ( ) 1
t

t


 , then 

(12) is called single-layer feed-forward neural network. If 0(x) ( x-x )   dxR , we 

call (x)  RBF (Radical Basis Function) function, then (12) is called RBF (Radical Basis 
Function) neural networks. 

In the case of continuous functions we have the following density results 

Theorem 1 ([69) Let ( )C  R . Then ( )
d
  is dense in ( )dC R  in the topology of 

uniform convergence on compact if and only if   is not a polynomial. 

Corollary 1 ([70]) (x) ( )dy f C  R  can be approximated by a simplest neural networks 

(such as with Minimum number of hidden neurons). 
In the case of not necessarily continuous functions we also have some density results. 

Theorem 2 ([71]) Let   be bounded, measurable and sigmoidal. Then ( )
d
  is dense 

in 1([0,1] )dL . 

The following theorem is a generalization of the above results. 

Theorem 3 ([72]) Let   be a Lebesgue measurable function, not a.e. equal to a 

polynomial, satisfying ( )
pb

a
x dx    for all ,a bR . Let K be a compact set in dR . 

Then for any function ( ) ( 1)pf L K p  and every 0  , there is a network ( )
d

N   

such that 

,K p
N f    (14) 

where 
1

,
( ( ) )

p
p

K p K
g g x dx  . 

For RBF neural networks we have the following results. 

Theorem 4 ([73]) Let   be a RBF function, then for any function ( ) ( 1)pf L p R and 

every 0  , there is a network ( )
d

N   such that 

p
N f  

 
(15) 

where 
1

( ( ) )
p

p

p
g g x dx  . 

There are some constructive approaches for function approximation. 

Theorem 5 ([41]) 1. Let x [ , ]k ka b  R , and (x)f  be a multivariate continuous 

function ,  x [ , ]k
i a b  0,1, ,i n  be an uniform grid partition to [ , ]ka b , where 
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[ , ]a b  is divided  to s equal partition, and arrange by breadth-first such that  

0 1x ,x , , xn  ( kn s ). Then 

1 1 1

2 2

x xi i
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(16) 

2.  A depends on n， that is ( )A A n . 

3. The real numbers if  are the images of xi  under a multivariate continuous 

function (x)f , that is (x ),i if f  0,1, 2, ,i n  . 

For each 0  , we can construct a decay RBF neural network (x, ( ))aW A n , and there 

exists a function ( )A n  and a natural number N  such that , when n N , we have 

(x) (x, , ( ))af W n A n  
 (17) 

for all x [ , ]ka b .  

Based on above theorems, we can prove the following theorem about the existence 
and uniqueness of optimized solution. 
Theorem 6 For a given dataset, there exists only one optimized solution for the multi-
objective optimization model (11). 
Proof, we will first prove that the feasible region D is not empty. 

We assume the sample dataset S is came from a certain continuous function ( )y f x , 

for each hidden neurons [ , ]p a b , from the density theorem1-4, we can find a NNs with 

p hidden neurons using various traditional algorithm such BP, ELM, SVM and some 

constructive approaches: 

1

(x) (w .x )
p

k k k
k

NN c b


   (18) 

which has the minimal distance  

,K p
RMSE N f    (19) 

So the feasible region D of multi-objective optimization model (1) is not empty. 
Then, as the number of hidden neurons [ , ]p a b  is an integer, the searching interval 

is finite, which makes the multi-objective optimization model (11) have only one 

optimized solution for the certain sample dataset S .□ 
Based on theorem 6 we can get the following algorithm to solve the above multi-

objective optimization model: 

Algorithm 4.1: Multi-objective Optimization Algorithm for 
Optimized Neural Network Architecture Avoiding 
Overfitting (ONNAAO)  
  Input: the training and testing dataset.  
  Output: the optimized neural network architecture or      
          number of hidden neurons of NNs.  
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Step 1: based on the input data, compute the searching 
interval [a, b], � = ⌈(� +�)/4⌉, � = ⌈2�/(5 ∗ (� +�))⌉. N is the 
input dimension of the data, and M is the output 
dimension 
Step 2:  
   for i = a to i = b 
      for j = 1 to j = m,  
         train a neural network with i hidden neurons  
         using Levenberg-Marquardt algorithm for the  
         training dataset.  
Step 3:  
   for each trained neural network,  
      compute training RMSE, testing RMSE and TEV, then 
      z = 1/3(training RMSE + testing RMSE + TEV) 
Step 4: determine the optimized neural network 
architecture or number of hidden neurons of NNs based on 
the minimal z. 
Step 5: construct an optimized NNs with minimal z to 
training and forecasting the stock indexes.  
 
Although there are many algorithms to train the NNs, in this paper, we use 

Levenberg-Marquardt BP algorithm for the all experiments, due to its faster 
convergence rate. 

For above datasets A and B , using the algorithm 4.1 we can get the results of Fig.9 
and Fig. 10. In Fig. 9, we can see that the optimized value is 4 hidden neurons for the 
dataset A, and in Fig. 9, we can see that the optimized value is 6 hidden neurons for the 
dataset B.  

 
 

Fig. 9.  The results for dataset A, optimized value is 4 
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Fig. 10.  The results for dataset B, optimized value is 6 

5. Experiments on Stock Data 

All stock market trends are fast changing. They are affected by not only the individual 
investors and many institutional investors, but also impacted by domestic political, 
economic situations and many other factors. Therefore, it is very difficult to build a 
classical parameter model to predict the market movement [46]. But it is easy to build a 
NNs model to fit the stock dataset, and the choice of optimized neural network 
architecture is still a problem that has not been solved yet. In this section, we will use 
above multi-objective optimization algorithm to build an optimized neural network 
architecture model to predict Chinese Shanghai Composite Index. 

We first collected the sample data of Chinese Shanghai Composite closing Index 
from internet stock database. The collection period is from November 25, 2015 to 
January 16, 2017 and the number of data totaled 280 (Fig. 11). 

We will use 275 points of the dataset to train the neural networks and the other 5 
points to test the old and the optimized networks. 

Then we use the above multi-objective optimization algorithm to find the optimized 
neural networks architecture or the optimized number of the hidden neurons. The 
searching interval [ , ]a b  is [1, 60] . Fig. 12 shows the three objective values in the 

searching process, Fig 13 depicts the result for the stock dataset, optimized value is 57. 
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Fig. 11.  Chinese Shanghai Composite closing Index in 280 days  

 
 

Fig. 12.  The three objective value in the searching process  
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Fig. 13.  The result for the stock dataset, optimized value is 57  

In the end, we built a neural network with 57 hidden neurons, and trained it with 275 
Chinese Shanghai Composite closing Index using Levenberg-Marquardt BP algorithm, 
and predicted the last 5 as it is shown in Fig. 14. Fig.15 is the enlarged part of the 
predicted values. 

 

 
 
Fig. 14.  The application of the optimized NNs for prediction   



228           Zhou Tao et al. 

 

Fig. 15.  The enlarged part of the predicted values    

The results of these experiments are presented in table 1. 
We collected another dataset: Jinlong Automobile (600686) from April 19, 2016 to 

June 13, 2017, a total of 280 days closing price as shown in Figure 16. 

 

Fig. 16. A total of 280 days closing price of Jinlong Automobile (600686) from April 19, 2016 to 
June 13, 2017, in 280 days    

We also use 275 points of the dataset to train the neural networks and the other 5 
points to test the optimized networks. And we also use the proposed multi-objective 
optimization algorithm to find the optimized neural networks architecture or the 
optimized number of the hidden neurons. The searching interval [ , ]a b  is [1, 70] .  Fig. 17 

shows the three objective values in the searching process, Fig 18 depicts the result for 
the stock dataset, optimized value is 62. 
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 Fig. 17.  The three objective value in the searching process 

 

Fig. 18.  The result for the stock dataset J, optimized value is 62 
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In the end, we built a neural network with 62 hidden neurons, and trained it with 275 
closing price of Jinlong Automobile (600686) from April 19, 2016 to June 13, 2017, in 
280 days, using Levenberg-Marquardt BP algorithm, and predicted the last 5 as it is 
shown in Fig.19. Fig.20 is the enlarged part of the predicted values. 

The experimental results are summarized in Table 1. 
 

 

Fig. 19. The application of the optimized NNs for prediction 

 

 

Fig 20. The enlarged part of the predicted values 
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Table 1. Results above experiments  

 
Dataset 
(number) 

 
Come from 

Searching 
interval 

Number of 
experiments 
for each NNs 

Optimal 
value of 
hidden 
neurons 

A(60) 
 

siny x  [1,10] 20 4 

B(60) 
 1( )y f x  [1,10] 20 6 

S(280) Chinese  Shanghai 
Composite closing Index 

 

[1,60] 20 57 

J(280) closing price of Jinlong 
Automobile (600686) 

[1,70] 20 62 

6. Performance Comprehensive Comparison with Traditional 
Algorithms 

In this section, in order to illustrate the originality, novelty and superiority of the 
presented algorithm (ONNAAO), we will make many numerical experiments for the 
problem of stock indexes prediction with the above datasets, some performance of the 
presented algorithm, such as training time, training RMSE, testing RMSE and neurons, 
will be compared with the traditional algorithms such as AR, ARMA, ordinary BP, 
SVM.  

In the following experiments, a faster BP algorithm called Levenberg-Marquardt 
algorithm is used, although there are many variants of BP algorithms. The SVM 
algorithm source codes are downloaded from LIBSVM3.21 [74].  

To compare the performance of the algorithms mentioned above, in each experiment 
30 trials have been carried out for each algorithm and the average training time, the ratio 
of the average training time with ONNAAO average training time (RATT): 

 

average training time of the traditional algorithms
RATT

average training ti ONm of Oe NAA
  

 
the average testing, the average testing RMSE, the testing standard deviations (Dev), 
and the ratio of the average testing RMSE with ONNAAO average testing RMSE 
(RATR): 
 

average testing time of the traditional algorithms
RATR

average trsting RMSE ti ONm of Oe NAA
  

 
which are showed in the table 2. 
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Table 2. Performance comparison for ONNAAO  

Algorithms Training 
performance 

Testing  performance Parameters 

Time RATT Average 
RMSE 

Dev RATR 

ONNAO 1.78975 1 96.9096 73.6057 1 Nodes=57 
Ordinary BP 1.88548 1.0535 117.1466 106.9294 1.2088 Nodes=100 
AR(p) 1.3634 0.7617 145.3068 20.12 1.4994 P=20 
ARMA(p,q) 1.4735 0.8232 208.9682 78.9804 2.1563 P=20, q=15 
SVM 2.5364 1.4171 765.3969 101.334 7.898 SVs=56 

 
From the performance comparison in table 2, we can see that the proposed 

ONNAAO algorithm has the best average testing RMSE, although the running time of 
ONNAAO is not the shortest, which fully shows that the ONNAAO algorithm has 
better prediction accuracy in performance compared with traditional prediction 
algorithms. Although in the forecasting problem there are also some approaches [4, 
42,48] with the hybrid algorithms such as neural networks combined with some other 
techniques, wavelets for example, but the ONNAAO algorithm is relatively simple and 
intuitive. 

Remark 1. The training and testing time of ONNAAO are the time of training and 
testing after determining the number of hidden neurons for optimized neural network 
architecture. 

7. Conclusions  

In this paper, our goal is to find the optimized neural networks architecture and reduce 
the over-fitting phenomenon. Firstly, we analyzed the reasons for over-fitting and 
instability of NNs. Then we consider minimizing three objective indexes: training and 
testing root mean square error (RMSE) and testing error variance (TEV). Lastly we built 
a multi-objective optimization model, then convert to single objective optimization 
model to find the optimized NNs architecture. At the same time, the existence and 
uniqueness theorem 6 of optimized solution is proved. And an algorithm for Optimized 
Neural Network Architecture Avoiding Overfitting (ONNAAO) is constructed to 
training and forecasting two stock closing price datasets. Lastly, some performance such 
as training time, testing RMSE and neurons, has been compared with the traditional 
algorithm (AR, ARMA, ordinary BP, SVM) through many numerical experiments, 
which fully verified the better prediction accuracy, correctness and validity of the 
theory. 
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