
Computer Science and Information Systems 14(2):517–536 DOI: 10.2298/CSIS160930015W

Visual Requirements Modeling
for Cross-Device Systems

Dennis Wolters1, Christian Gerth2, and Gregor Engels1

1 Department of Computer Science,
Paderborn University, Paderborn, Germany
{dennis.wolters, engels}@uni-paderborn.de

2 Faculty of Business Management and Social Sciences,
Osnabrück University of Applied Sciences, Osnabrück, Germany

c.gerth@hs-osnabrueck.de

Abstract. Modern information systems have to support a variety of dif-
ferent device types like desktop computers, smartphones, or tablets. Fur-
thermore, it is important to enable users to use device types that fit their
needs or are suited for the tasks at hand, e.g., allowing them to use mul-
tiple devices in parallel or sequentially by switching from one device to
another. Such cross-device interactions must be taken into account already
during requirements analysis to ensure that they are properly addressed
in later phases of development. Unfortunately, current requirements mod-
eling techniques do not provide adequate techniques to model cross-device
systems. In this paper, we present an extended form of use case diagrams
able to model such systems. Using our approach it is possible to specify
which device types can be used when performing a certain use case and
what kinds of cross-device interactions are supported. Based on this, we
show how this information can be refined by integrating extended use case
diagrams with our existing approach to model cross-device interactions in
process diagrams. Thereby, we explain how requirements can be modeled
visually in a model-based development process for cross-device systems.

1. Introduction

Over the last few years, the number of available computing devices as well as their
diversity increased rapidly. In addition to computers3, people often own smart-
phones and tablets as well. With new device types like smart TVs, smart watches,
or other wearables, the variety of devices will increase even more. To enable users to
use multiple devices and to allow them to choose devices according to their needs,
information systems are often no longer developed for a single device type like
computers, instead they target multiple device types. Due to the different prop-
erties of those device types, the functionality offered on the different device types
can differ. For instance, travel routes can be planned on desktop computers and
smartphones, but navigation on a specific route is only possible on smartphones,
because they are location-aware mobile devices.

3 We use the term computer as a synonym for desktop computers and laptops.

518 Dennis Wolters, Christian Gerth, and Gregor Engels

Due to the availability of multiple devices, users start using information sys-
tems in a cross-device manner [3,20], i.e., by performing tasks on different devices,
use them in parallel or switch from one device to another. If a software system
does not support such cross-device interactions, users have to coordinate these
interactions themselves, which is usually a cumbersome task because application
states have to be recreated or synchronized somehow [3], e.g., by manually copy-
ing data or using a synchronization tool. For seamless interactions as described by
Satyanarayanan [21], cross-device interactions must be considered at design time
in such a way that the realized system coordinates the interaction and the user has
little to none coordination overhead. Hence, cross-device usage of a system needs
to be considered in early phases of development, e.g., in the requirements analysis.

During requirements analysis, it is typical to use UML use case diagrams [16] to
depict use cases of the system to be built. Use case diagrams visualize the relation
between use cases, actors, and other systems. This is sufficient to visualize the
requirements of systems that allow just a single device type to access the system or
if the device usage information is being neglected. Yet, in the scope of cross-device
systems, where multiple different types of devices shall be used to interact with a
system, the information about supported device types and interactions spanning
across multiple devices has to be taken into account as well. However, use case
diagrams only allow to model device usage and cross-device interactions in a very
limited fashion and only by using workarounds such as mixing this information with
other aspects of the modeled system, e.g., replicate a use case for every device type
on which it is provided. These workarounds lead to redundancies, do not allow a
proper separation of concerns, and are not expressive enough to clearly specify
cross-device systems. In this paper, we present extended use case diagrams which
allow modeling such systems. Our extension allows refining associations between
actors and use cases so that it is specifiable which device types can be used and
what kinds of cross-device interactions are supported.

In addition to use case diagrams, process diagrams are used during require-
ments analysis to show an integrated view of execution scenarios defined for each
use case, e.g., what tasks have to be done to reach the goal of a use case. Popular
process modeling languages like the Business Process Model and Notation (BPMN)
allow specifying who executes a task by using pools and lanes. This can be used
to represent device usage up to a certain extent, but it is not expressive enough to
fully specify cross-device interactions and has various drawbacks like redundancies
and unnecessary complex control flows. As a consequence, we proposed an exten-
sion of BPMN in [2]. In this paper, we show how to use our BPMN extension to
refine the definitions made with extended use case diagrams. In combination these
two approaches allow the visual modeling of requirements for cross-device systems.

This paper is an extended version of [28]. In addition to the parts presented in
the original version, this paper includes a comprehensive overview of the terminol-
ogy used in the area of cross-device systems. Based on this, we provide more elabo-
rate explanations on extended use case diagrams and extend the approach itself to
better distinguish between different forms of cross-device interactions. Addition-
ally, we describe an iterative process to externalize the information about relevant
device types in terms of an ontology, which is more expressive than taxonomy-

Visual Requirements Modeling for Cross-Device Systems 519

based externalization presented in [28]. Furthermore, we show how extended use
case diagrams can be refined by using our extended process diagrams, which we
introduced in [2].

The remainder of this paper is structured as follows: Section 2 describes the
terminology we use in this paper. Section 3 discusses related work. Section 4 in-
troduces the running example, shows limitations of standard UML use case dia-
grams, and derives requirements towards an extension, which enables the modeling
of cross-device systems with use case diagrams. Section 5 presents our extension
of use case diagrams. Section 6 explains how to externalize the information about
device types into an ontology. Section 7 shows how extended use case diagrams can
be refined by using our extended process diagrams. Finally, Section 8 concludes
the paper and gives an outlook on future work.

2. Terminology

As of today, there is no common understanding of the terms device and cross-
device interaction. In this section, we explain how we interpret these and related
terms for this paper.

The term device is very generic and several definitions exist. For instance, the
architecture modeling language ArchiMate [26] describes a device as a “physical IT
resource upon which system software and artifacts may be stored or deployed for
execution”. Unfortunately, ArchiMate’s definition does not take the user or inter-
action with the device into account, which is important for our approach, since we
are concerned with systems allowing interactions across multiple devices. There-
fore, we use the definition from the Model-based User Interface Glossary [1], which
defines a device as “an apparatus [...] which appears to a user as a functional unit
through which to perform an interaction process. A device can include computa-
tional abilities, act as a stand-alone interactive system, or be part of a network.”
Since we focus on software engineering, we require the computational abilities.
Thus, when we speak of a device in this paper, we actually mean computing de-
vice. Based on this definition, a concrete smartphone like a Samsung Galaxy S7
would be a device while a server in a rack would not be considered as a device,
since it does not support user interactions. Furthermore, the functional unit aspect
is important. If a printer provides services on its own, e.g., it supports printing
from a USB drive, it is seen as a device. Otherwise, the printer is not a functional
unit, just periphery [1] of another device like a computer.

The term device type is used to describe devices that have common properties,
e.g., input capabilities, mobility, or peripherals. This closely relates to the definition
of the term platform in [1]. However, we choose to distinguish between the device
type as a concept to interact with the system, and a platform as a concept to
realize the system. Thus, for the term platform, we adopt the definition of [15]
which describes it as a set of resources for implementing or supporting a software
system, e.g., web technologies, operating systems, or other technologies like .NET
or Java. This distinction is important for our approach as we consider device types
before we decide which concrete platforms shall be used.

520 Dennis Wolters, Christian Gerth, and Gregor Engels

The term cross-device interaction is often used, but a precise definition is miss-
ing. Scharf et al. try to provide a definition in [22], but it does not include the
possibility to migrate a running application to another device, which is often part
of cross-device applications [14,18]. Therefore, we define cross-device interaction
as the interaction of at least one human with more than one device in the scope of
the same task or goal. This interaction can be in parallel or sequentially. A goal
is achieved by performing at least one task and where a task is defined according
to [1] as an activity to achieve a goal. This definition is broader than the one
provided in [22], but it leaves room for various forms of cross-device interactions,
including switching from one device to another while keeping the current state.

migrate

Migration Sequential Distribution

Sync

T1

T2

T

T

T

T1

T2

Interaction T Allocated Task

Parallel DistributionCollaboration

P
ar

al
le

l
Se

q
u

en
ti

a
l

Same Task Different Tasks

Ti
m

e
t

Ti
m

e
t+

1

Fig. 1. Visualization of cross-device interactions

Figure 1 classifies different types of cross-device interactions: Collaboration de-
scribes the case where multiple devices work on the same task, e.g., editing a
document on multiple devices at once. In contrast, if different tasks related to the
same goal are assigned to multiple devices, we speak of distribution. In a parallel
distribution, multiple devices are used simultaneously, e.g., when reviewing a pa-
per, one device might permanently show the references, another one might be used
to read the paper, while a third device is used to write the review. If different tasks
related to the same goal are performed at different points in time, it is a sequential
distribution, e.g., defining a travel route upfront on a desktop computer, while later

Visual Requirements Modeling for Cross-Device Systems 521

on doing the actual navigation on a smartphone. If a user switches from one device
to another, but stays in the context of the same task, we speak of migration, e.g., a
user starts writing an e-mail on his desktop computer and continues writing when
switching to his smartphone. These four types of cross-device interactions can be
refined, e.g, Santosa and Wigdor [20] describe different patterns of distribution
like producer-consumer or performer-informer. If a systems supports cross-device
interactions, we call it a cross-device system. Such systems can consist of one or
more applications being deployed on multiple devices.

3. Related Work

The development of cross-device systems is supported on various levels: On the
implementation level, approaches like Panelrama [30] for web applications or Con-
ductor [8] for Android applications can be used to realize applications supporting
cross-device interactions. In [13], test and debug tools for cross-device systems
are provided. Instead of considering cross-device interactions at design time, ap-
proaches like [5] and [9] allow using existing web applications in a cross-device
manner. However, these approaches do not work for every web application and
they are limited to certain technologies. All of these approaches consider cross-
device usage at later stages of development, some even after implementation, and
they focus on concrete platforms, mostly web technologies. The design decisions
leading to the usage of one of these approaches are based on the requirements
which a cross-device system must address. Consequently, cross-device aspects of a
system need to be documented during requirements analysis.

As we show in the upcoming Section 4, standard UML use case diagrams are
not suited to model cross-device systems. However, several extensions of use case
diagrams have been proposed: Koch et al. add stereotypes to capture concerns spe-
cific to web applications [10]. Sindre et al. introduce misuse case diagrams allowing
to model safety [24] and security aspects [25]. Von der Maßen and Lichter [12] fo-
cus on modeling variability between use cases by defining alternatives for including
other use cases or by specifying that the inclusion of another use case is optional.
The most relevant approach for modeling cross-device systems is presented by
Gopalakrishnan et al. [6]. They explore different techniques to model device usage
in use case diagrams, e.g., using notes or different colors/shapes. Unfortunately, all
of their proposed techniques have only very limited support to express cross-device
interactions. For instance, it is possible to specify relevant device types for a use
case, but not by which actor a certain device type is used or if these device types
can be used simultaneously or only mutual exclusive. In [7], Gopalakrishnan et al.
extend their approach to also cover the environment in which the system is used.
However, they employ the same techniques for modeling the environment and the
usable devices, which hinders an easy differentiation of these two aspects.

The Systems Modeling Process (SYSMOD) [27] adds the notion of a user sys-
tem to use case diagrams, which enables the definition of device types used by
actors to interact with a system. The relation between a human actor and a user
system is modeled with information flows. This, however, does not enable the spec-
ification of different alternatives with respect to the used user system. The PLUSS

522 Dennis Wolters, Christian Gerth, and Gregor Engels

approach [4] enables modeling variability in textual use case descriptions instead of
diagrams and this could be used to link use cases to certain device types. However,
the relation between devices and human actors cannot be expressed; neither can
cross-device interactions be specified.

Prehofer et al. [19] extend the task model language ConcurTaskTrees [17] so
that it allows capturing aspects of cross-device systems. Task models, however, are
not a substitute for use case diagrams. Instead, they can be used to refine single
use cases with respect to interaction with end users.

UML deployment diagrams [16] allow specifying the deployment of system com-
ponents and outlining communication paths between them. This can also include
communication with human actors. While this allows to model device usage up to
a certain extent, we cannot use this to define cross-device interactions, e.g., there
is no possibility to define migration. Furthermore, deployment diagrams require
that the different system components are already known, which is usually not the
case during requirements analysis.

Adapt Cases [11] is an approach based on use case diagrams, which enables
the specification of adaptive systems. Migrating from one device to another or
distributing parts of a system can be described as an adaption of the deployment.
Even though Adapt Cases can be used to express this, the description of the
adaption logic is on a lower level of abstraction and not suited for the initial
requirements analysis of cross-device systems. Nevertheless, Adapt Cases can be
used as a refinement of the approach, which we present in Section 5, e.g., to describe
automated migration or distribution rules.

4. Running Example and Requirements

In this section, we explain our running example for this paper. We use this example
to explain the drawbacks of standard UML use case diagrams with regard to
modeling device usage and specifying the support for cross-device interactions.
Based on these drawbacks, we define requirements towards an approach, which
enables the modeling of cross-device systems with use case diagrams.

In our running example, a railway company wants to provide a ticket system,
which enables users to buy tickets at Ticket Vending Machines (TVMs), on com-
puters, and with smartphones. Due to a mobile first strategy, everything that can
be done with a computer shall be doable with a smartphone, too. Thus, a smart-
phone is seen as a special kind of computer, but in addition, smartphones are
mobile devices that shall provide location-specific services, e.g., like providing live
trip information when traveling by train. Consequently, in this scenario, there are
use cases that are supported on smartphones but not on computers.

Since standard UML use case diagrams do not allow modeling the device types
being used to perform a use case, we need to use workarounds to model this
scenario, such as using concepts intended for specifying other information. For
instance, by representing each device type as a separate system like in Figure 2.a.
Alternatively, if we want to express that it is a coherent ticket system, we can model
it like in Figure 2.b by stating in each use case on which device type it is performed.
However, both approaches require multiple use cases to describe that a user shall be

Visual Requirements Modeling for Cross-Device Systems 523

Ticket Vending
Machine

Book a Ticket

Computer

Book a Ticket

Smartphone

Book a Ticket

Customer

at a TVM with a
Computer

with a
Smartphone

Ticket System

Book a Ticket
Ticket System

Book a Ticket
at a TVM

Customer

Book a Ticket
with a Computer

Book a Ticket
with a

Smartphone

Show Trip
Information

Show Trip
Information on

Smartphone

Show Trip
Information

a) c)b)

Customer

Fig. 2. Different workarounds to partially model the running example with stan-
dard UML use case diagrams: a) Depict every device type as a separate system,
b) encode device type information within use cases, c) combine device type infor-
mation with actor roles.

able to buy a ticket on different devices. In Figure 2.c, we define different customers:
one at a TVM, one with a computer, and one with a smartphone. Thereby, we have
no redundancies in the use case definitions. Furthermore, by defining a customer
with a smartphone as a subtype of a customer with a computer, we express that
everything that can be done with a computer can be done with a smartphone
as well. Even though the last variant seems promising, once we actually want
to differentiate between different kinds of customers based on other criteria than
device types, we again have redundancies, but this time in the actor definitions.

Please note, for the use case diagrams depicted in this paper, we assume a
default multiplicity of 1 on the actor’s end of an association and 0..1 on the use
case’s end. Hence, by default, an actor does not have to perform the use case but
if a use case is performed, the associated actors are required.

All variants depicted in Figure 2 have the same problem, they mix information
about which device type is being used with other concepts: systems, use cases, or
actors. Consequently, we have redundancies and no proper separation of concerns.
Hence, specifying which device type a user uses to interact with a system cannot
be properly modeled with standard use case diagrams.

In addition to providing the possibility to buy tickets with different devices,
the railway company wants to allow the following scenario: A customer starts the
booking process on his computer at home by selecting a train connection and
choosing the desired ticket options. While on his way to the train station, the
customer pays the ticket with his smartphone. When arriving at the train station,
the customer switches to a TVM to print the ticket. This kind of cross-device
interaction cannot be modeled with any of the three variants displayed in Figure 2,
since there is no possibility to express that the customer is able to migrate from
one device to another. In (a) and (b), migration possibilities could be specified

524 Dennis Wolters, Christian Gerth, and Gregor Engels

using «extend» associations between the use cases. However, modeling transitions
between different devices with «extend» associations is not intuitive because the
use cases are not extended, just the device type is changed.

Summarizing, we derive the following requirements for an approach to specify
cross-device interactions in extended use case diagrams:

R1 Explicit device type modeling: Device types being relevant for the
system must be modeled explicitly so that it is clear which device types are in the
scope of the system.

R2 Definition of device usage: A use case might involve multiple human
actors which use certain devices to interact with the system. It must be specifiable
which device types have to be used and by whom. This information shall be treated
separately and not be mixed with other concerns.

R3 Variability in the device usage: Human actors may have the choice
between different device types to perform a use case. Such variability in the device
usage must be expressible.

R4 Specification of cross-device interactions: Cross-device interactions
must be specifiable, e.g., distributing a use case across different devices, the ability
for devices to collaborate on the same task, or allowing migration from one device
to another.

5. Modeling Cross-Device Systems with Extended Use
Case Diagrams

In this section, we present extended use case diagrams which allow modeling cross-
device systems. Throughout this section, we mainly focus on our running example
to explain the different concepts of our approach, but we introduce further exam-
ples when necessary. The following four subsections address the Requirements R1
to R4, whereas the last subsection summarizes our approach.

5.1. Representing Device Types in Use Case Diagrams

As we discuss in Section 4, it has various drawbacks when device types are mixed
with other concerns of use case diagrams, e.g., actor, use case, or system definitions.
As a response to these drawbacks, we formulated Requirement R1, which states
the need for the explicit modeling of device types. To address this requirement, we
extend use case diagrams by adding a new model element to specify device types.
In our extension, a device type is represented by a UML class named after the
respective device type and tagged with the stereotype «device type». For instance,
the extended use case diagram depicted in Figure 5 contains three device type
classes: TVM, Computer, and Smartphone.

The next subsection explains how this new model element can be used to define
the device types relevant for a certain use case. Furthermore, we allow to define
inheritance relations between device types, which is explained in Subsection 5.3.
In addition to the representation of device types within use case diagrams, we
propose a separate model in Section 6 to externalize and refine information about
the relevant device types.

Visual Requirements Modeling for Cross-Device Systems 525

5.2. Refining the Association Between Actors and Use Cases

In the following, we use our new model element, the device type class, to introduce
device usage as a separate concern in extended use case diagrams. Thereby, we
address Requirement R2 which expresses the need to model the device usage.

Within extended use case diagrams, we refine associations between actors and
use cases to express which device types actors can use to perform certain use cases.
Such a refinement is shown in Figure 3 where a device type class is modeled as an
intermediate entity between an actor and a use case. An association between an
actor and a device type specifies that the actor interacts with a device of the cor-
responding type, while an association between a device type and a use case defines
which device type is needed to perform a use case. To get from direct associations
between actors and use cases to refined associations describing the device usage,
we start by using a generic device type called “Device” as an intermediate entity.
This can be refined later on by using more specialized device types.

Actor

Use Case
«device type»

Device

Devices
per actor

Devices per use
case instance

Use case instances
per device

Actors per
device

m..n m..n m..nm..n

Actor uses
device

Device is involved
in use case

Fig. 3. Refining the association between actors and use cases to model device usage

Using multiplicities, we are able to define the relation between actors and device
types as well as between device types and use cases more precisely. For instance,
in Figure 4.a, we model that multiple users work on a single smartboard to edit
a document. While in Figure 4.b, we specify that multiple tablets can be used
but only one user is expected to work on a single tablet. We explain in next
subsection how both variants can be combined to express that the users can do
both, collaborate on a smartboard or contribute using their own tablet.

For standard UML use case diagrams, we define in Section 4 that the default
multiplicity is 1 on the actor’s end and 0..1 on the use case’s end. For a refined
association, we define it in a similar manner: The default multiplicity on an asso-
ciation between a human actor and a device type is 1 on the human actor’s end
and 0..1 on the other end. Thus, not every human actor has to use all devices of
all types but when a device of a certain type is used, the associated actors need to
be present. Similarly, the default multiplicity on associations between a use case
and a device type is 1 on the device type’s end and 0..1 on the end of the use
case. Thereby, the default multiplicities define that not every device of a certain
type necessarily has to perform all use cases to which the device type is connected
but if a use case is performed, the devices of the respective types are required. In
Figure 4, the default multiplicities are colored grey.

526 Dennis Wolters, Christian Gerth, and Gregor Engels

User

Edit Document
«device type»
Smartboard0..1 1 0..11..*

User

Edit Document
«device type»

Tablet0..1 1..* 0..11

b)

a)

Fig. 4. Example for editing a document with multiple users: (a) All users collabo-
rate on a smartboard and there is only one smartboard per use case instance, (b)
multiple tablets are used to collaborate and there is only a single user per tablet.

5.3. Modeling Device Variability

Requirement R3 states the need to express that a variety of different device types
can be used to perform a use case. To specify this variability, we offer two pos-
sibilities: (i) Either use inheritance relations to define a common ancestor of the
device types that shall support a use case, or (ii) by explicitly listing all device
types, which support a use case. In Figure 5, both options are used. Since the
device type Smartphone is defined as a subtype of Computer (see ¶), it inherits
all supported use cases, e.g., in this case booking a ticket. This, however, does not
imply that inherited use cases are done in exactly the same manner. For instance,
a computer shall enable a user to book a ticket, and therefore, a smartphone shall
do the same, but the way how this goal is reached can vary based on the different
device properties, e.g., a smartphone might allow to payment by carrier, which is
not offered on computers. In contrast to the device type Smartphone, the device
type TVM is explicitly associated with the ticket booking use case since it is not
defined as a special type of Computer (see ·).

Ticket System

«migratable»

Book a Ticket

Show Trip
Information

Customer

«device type»

TVM

«device type»

Computer

«device type»

Smartphone

2

1

3

4

Fig. 5. Running example modeled using extended use case diagrams

Visual Requirements Modeling for Cross-Device Systems 527

To refine the variability in the device usage, we enrich the concrete syntax
of UML use case diagrams with OR and XOR operators known from feature dia-
grams [23]. These operators are a new concrete syntax for certain UML constraints
(cf. with XOR in [16]). We find it very helpful to use this syntax since it is widely
known, especially when it comes to the topic of variability, and in contrast to UML
constraints like XOR, the feature diagram operators imply a reading direction for
the constraint. An example for an exclusive choice operator is shown in Figure 5
(see ¸). It describes that the booking of a ticket can either be done on a device of
type Computer or TVM but not on both.

By listing multiple device types, we are also able to integrate the diagrams
shown in Figure 4. This integrated version is depicted in Figure 6. There, an
inclusive choice operator is used (see À) to define that a smartboard, or tablets,
or both can be used to edit a document.

«collaborative»

Edit Document

User

«device type»

Smartboard

«device type»

Tablet

1..*

0..*
2

1
3

Fig. 6. Integrated version of the diagrams depicted in Figure 4

When an OR or XOR operator is used the lower bound of all multiplicities
on the opposite end must be 0. Otherwise, the multiplicities contradict the oper-
ator. To avoid this in our document editing example, the multiplicity 1..∗ used in
Figure 4.b changes to 0..∗ in the integrated version (see Á), because of the usage
of the OR operator (see À). If no explicit multiplicities on the opposite ends are
defined, a default multiplicity of 0..1 is implied. For instance, if we would not im-
ply a lower bound of 0 on the opposite side of the XOR operator in Figure 5, the
multiplicities would specify that both a computer and a TVM are required, which
contradicts the XOR operator (see ¸) that specifies that only one of these device
types shall be used.

5.4. Expressing Cross-Device Interactions

Requirement R4 demands that cross-device interactions like migration, distribu-
tion, and collaboration (see Figure 1) must be specifiable. For specifying migration,
we introduce the stereotype «migratable», which can be applied on use cases to
define that the device being used can be substituted at runtime by another device
while keeping the current state. This stereotype is applied on the use case “Book a
Ticket” (see ¹) to describe that we can switch between computers, smartphones,
and TVMs while booking a ticket. Similarly, to define collaboration, the stereotype
«collaborative» can be applied to use cases. An example for this can be seen in
Figure 6 (see Â). There, we define multiple devices that can be used collaboratively
while editing a document.

528 Dennis Wolters, Christian Gerth, and Gregor Engels

The possibility to distribute a use case on multiple devices is indicated by
listing multiple device types for a use case or using multiplicities with an upper
bound greater than 1. In Figure 4, multiple tablets can be involved in the use case
“Edit Document” as indicated by the multiplicity 0..∗ (see Á). Moreover, the OR
operator (see À) allows that both device types associated with the use case can
be used at the same time. Hence, a smartboard can be used in addition or as an
alternative to multiple tablets.

5.5. Summary

In summary, our extended use case diagrams include a new model element for
representing device types. This is used to refine associations between use cases and
actors. Variability in the device usage, e.g., possibilities to use multiple devices
in parallel, are specified by defining inheritance relations between device types
and by associating actors and use cases with multiple device types. To constrain
variability, we add the OR and XOR operator known from feature diagrams to
the UML. Additionally, we use stereotypes to mark use cases that can be done
collaboratively or allow the migration to other devices.

The stereotypes introduced by our approach and the additions to the concrete
syntax of the UML are summarized in Figure 7. The UML metamodel already
allows to associate actors and use cases with classes (in our case representing device
types). Hence, aside from our stereotypes (see Figure 7.a), which are defined as
a UML profile, no additional changes to the UML metamodel are necessary. The
usage of OR/XOR operators is optional, since they could be defined, in a less
readable form, using UML constraints (see Figure 7.b). Please note that the OR
constraint is not officially defined in the UML specification [16], but, except for a
small example, there is no proper definition of the XOR constraint either.

Our approach provides a clear separation of concerns by modeling device us-
age as an additional dimension in extended use case diagrams. Thereby, we avoid
mixing it with other concerns like in Figure 2, and allow changing the level of ab-
straction or the viewpoint whenever needed in the respective project. For instance,
cross-device interactions may not be of interest in any case or for all stakeholders.
In such cases, we can automatically abstract from device usage by replacing an
association from an actor to a device type and from a device type to a use case
with a direct association between the actor and the use case. Similarly, it is also
possible to change the viewpoint by focusing on use cases offered by certain device
types, or alternatively, by focusing on the device usage of certain use cases.

 {XOR}

 {OR}

a) b)«meta class»
Class

«stereotype»
Migratable

«stereotype»
Collaborative

«meta class»
Use Case

«stereotype»
Device Type

Fig. 7. a) Stereotypes added by our approach; b) Additions to the concrete syntax

Visual Requirements Modeling for Cross-Device Systems 529

6. Externalize the Device Type Information

In our extended use case diagrams, we can model relevant device types by using
our new model element, the device type class (see previous section). To reuse
the information about relevant device types in multiple diagrams, we propose the
externalization of this information in form of a device type ontology. This ontology
explicitly models interrelations and properties of device types relevant for the
system under development. Thereby, we allow to increase the level of detail of
these device type descriptions, enable reuse in other diagrams, and support the
identification of device types based on their properties. In the following, we first
describe the process of creating a device type ontology. Then we detail the different
steps of this process, and finally, we explain how the ontology can be formalized
using the Web Ontology Language (OWL).

6.1. Creating a Device Type Ontology

To create a device type ontology, we propose four steps (see Figure 8): In Step 1, we
identify an initial set of device types. Subsequently, in Step 2, inheritance relations
between these device types are specified. Both of these steps can be done within
extended use case diagrams (see Section 5) and can be externalized afterwards.
In Step 3, we define specify relevant device properties, and in Step 4, we assign
them to the device types. This process is iterative to allow constant refinement
and addition of new device types and properties.

1. Identify
Device Types

2. Specify
Inheritance
Relations

 3. Define
Device

Properties

4. Assign
Properties to
Device Types

Fig. 8. Steps towards defining a device type ontology

The following subsection focuses on externalizing the information previously
contained in extended use case diagrams, Subsection 6.3 explains Steps 3 and 4 in
detail, and Subsection 6.4 discusses the formalization of the created ontology.

6.2. Specifying a Device Type Hierarchy

In Section 5, we explain how device types can be modeled within extended use
case diagrams. Aside from introducing a new model element for device types, we
also show how inheritance relations can be defined between device types. In this
section, we externalize the specified device types and their inheritance relations
into a device type ontology. This is particularly useful for cross-device systems
supporting many different device types and when this device type information is
needed beyond extended use case diagrams, i.e., the device usage information can
be refined by using other diagrams as shown in Section 7.

530 Dennis Wolters, Christian Gerth, and Gregor Engels

Device

Smartphone

TVMComputer

Fig. 9. Externalization of the de-
vice types specified for the running
example

The device types specified within ex-
tended use case diagrams are externalized to
the ontology by specifying them as a subtype
of a generic device type called Device, ei-
ther directly or indirectly by inheriting from
another device type. The latter allows the
preservation of inheritance relations used in
extended use case diagrams. The benefit of
having a generic root device type is that it
can be used if any device type is applicable,
e.g., like when starting to refine the associ-
ation between an actor and a use case (see
Subsection 5.2). Figure 9 shows the external-
ized device type hierarchy of our running ex-
ample. While Computer and TVM are directly
defined as subtypes of the generic device type
Device, we preserve the inheritance relation
defined in Figure 5 by specifying Smartphone

as a subtype of Computer.
In each iteration, we can refine this hierarchy, e.g., by adding a new intermediate

device type to highlight common aspects of existing device types. For instance,
instead of directly listing Smartphone as a subtype of Computer, we could define
an intermediate device type Mobile Computer. This can be very handy if we plan
to support further mobile devices, like tablets, at a later point.

6.3. Modeling Device Properties

Once we have defined an initial set of device types, we start to identify relevant
properties of these device types (Step 3 of Figure 8). These properties help to
distinguish different device types and can be used to identify device types based
on their properties, which is very helpful if only a certain device property is required
instead of a concrete device type. Examples for this can be found in Section 7.

We use feature diagrams [23] to specify relevant device properties. A feature
diagram is a tree structure where every node is a feature and the children of a node
represent a refinement of their parent. By using operators like AND, OR, XOR,
MANDATORY, or OPTIONAL it can be specified which features are mandatory,
optional, or exclude each other. In our case, every feature represents a device
property, e.g., owner of the device or supported payment methods. By using feature
diagrams, we are able to demand certain properties for each device type or define
them as mutual exclusive.

Relevant device properties can be derived by inspecting use cases defined for
the system to be developed. For instance, the upper half of Figure 10 shows a
feature diagram describing the relevant device properties for our running example.
The top of such a feature diagram is labeled “Device” as it describes all possible
configurations of device properties. Our example contains two optional properties,
one for declaring whether the device is mobile or not, and another to indicate
printing support. The former is important for showing live trip information, while

Visual Requirements Modeling for Cross-Device Systems 531

Device

Mobile Payment Method Ownership

CashBy Carrier Online PublicPrivateDevice Types

Computer

Smartphone

 

 = has this property  = does not have this property

OPTIONAL

XOR

AND

OR

Ticket Vending
Machine   

 





MANDATORY

Printer

   




* *


*

* = property inherited

Fig. 10. Specification of device properties in terms of a feature diagrams (upper
part) and assigning device properties to device types (lower part)

the latter is needed to print a ticket. Further, there is a mandatory device prop-
erty “Payment method”, which every device type needs to have, since all device
types shall enable the purchase of a ticket. It is refined to three concrete payment
methods. The OR operator specifies that each device must at least support one
of these payment methods. The third property specifies whether a device is either
owned by a single person or is publicly available. The mutual exclusion of these
properties is defined by the XOR operator. Which device properties are modeled
depends on the concrete project and on the level of detail. In our running example,
the mobility and the owner of a device can influence which type of train ticket is
issued, i.e., a digital ticket is not useful on public non-mobile devices, instead those
devices should provide a printed ticket.

After defining device properties, we specify for each device type mentioned in
the ontology if it has a property or not (Step 4 of Figure 8). Thus, every device
type represents a valid configuration of our feature diagram. The lower half of
Figure 10 shows the assignment of properties to the device types of our running
example. We specify for the type Computer that it has printing support, is not
mobile, only supports online payment, and that it is a private device. The type
Smartphone is defined as a private, mobile device, supporting online payment and
payment by carrier. Since it is defined as a subtype of Computer, it must have
the same properties, but it can have properties which a Computer does not have
like being mobile or supporting payment by carrier. The type TVM is specified as a
public device only supporting cash payment.

6.4. Formalizing the Ontology

To leverage from the device type ontology, a proper formalization is needed. This
enables the automated processing of the ontology, e.g., to query the ontology for
device types having certain properties. In the following, we explain the formaliza-
tion of a device type ontology using the Web Ontology Language (OWL).

532 Dennis Wolters, Christian Gerth, and Gregor Engels

Listing 1 shows the OWL specification of the device type ontology depicted
by Figures 9 and 10. The basis for formalizing a device type ontology with OWL
is given by predefined classes4 for device types and device properties (see Lines 2
and 3), as well as an OWL object property allowing the assignment of device prop-
erties to device types (see Lines 4-6). To formalize device properties, inner nodes of
the feature diagram are specified as subclasses of the class dto:DeviceProperty

(see Lines 9 and 10), whereas the leafs are defined as instances of this class or the
respective subclass (see Lines 12 to 18). Each device type of the ontology is explic-
itly defined as an instance of dto:DeviceType (see Lines 20 and 24) or implicitly
by defining it as a subclass of another device type (see Line 28). Additionally, we
define which device properties a device type has (see Lines 21-23, 25-27, and 29-30).
Due to the subclass relation, we only need to define the device properties the type
Smartphone has in addition to type Computer.

Listing 1. Device type ontology for the running example

1 #Prede f ined part o f the onto logy
2 dto : DeviceType a owl : Class .
3 dto : DeviceProperty a owl : Class .
4 dto : hasProperty a owl : ObjectProperty ;
5 r d f s : domain dto : DeviceType ;
6 r d f s : range dto : DeviceProperty .
7
8 #D e f i n i t i o n s f o r the Ticket System Example
9 ex : PaymentMethod r d f s : subClassOf dto : DeviceProperty .

10 ex : Ownership r d f s : subClassOf dto : DeviceProperty .
11
12 ex : Pr in t e r a dto : DeviceProperty .
13 ex : Mobile a dto : DeviceProperty .
14 ex : CarrierPayment a ex : PaymentMethod .
15 ex : OnlinePayment a ex : PaymentMethod .
16 ex : CashPayment a ex : PaymentMethod .
17 ex : Pr ivate a ex : Ownership .
18 ex : Publ ic a ex : Ownership .
19
20 ex :TVM a dto : DeviceType ;
21 dto : hasProperty ex : Pr inter ,
22 ex : CashPayment ,
23 ex : Publ ic .
24 ex : Computer a dto : DeviceType ;
25 dto : hasProperty ex : Pr inter ,
26 ex : OnlinePayment ,
27 ex : Pr ivate .
28 ex : Smartphone r d f s : subClassOf ex : Computer ;
29 dto : hasProperty ex : Mobile ,
30 ex : CarrierPayment .

4 Predefined parts have the prefix dto

Visual Requirements Modeling for Cross-Device Systems 533

7. Using Process Diagrams to Refine Use Cases

In addition to use case diagrams, there usually exist further specifications for each
use case, i.e., a textual description summarizing important information about a use
case. This includes a description of different scenarios that describe the execution
of a use case. These scenarios can be depicted as an integrated process diagram,
which visualizes what has to be done to reach the use case’s goal. In [2], we have
presented an extension for the Business Process Model and Notation (BPMN)
that allows specifying device usage and cross-device interactions within process
diagrams. Thereby, we cannot only refine use cases by defining the tasks that have
to be done but also which device types are required to perform these tasks and
where cross-device interactions are possible. In the following, we use our running
example to exemplify this refinement.

Figure 11 shows the extended process diagram for the use case “Book a Ticket”
from our running example using extended process diagrams. The process describes
that we first have to select a train connection and choose the ticket options. Sub-
sequently, we can pay the ticket using either cash, carrier, or online payment.
Finally, we receive either a mobile or a printed ticket. Our extension of process
diagrams allows to define the device requirements for the tasks of a process. These
requirements describe the type or properties a device needs to have to execute the
respective task. For instance, the task “Pay Cash” requires a device of type TVM, or
to receive a printed ticket, we need a device having printing support. In addition,
we can specify that certain tasks allow to be migrated to another device, either by
transferring the current state or by restarting the respective task.

Pay Online

Device Requirements

Select Connection
and Ticket Options

Receive Printed
Ticket

Pay Cash

Receive Mobile
Ticket

Payment
Method?

Ticket
Form?

Type: Smartphone

Type: TVM
Pay by Carrier

 = Migratable through restarting= Migratable by state transferal

Property: Printer

Property:
Online Payment

Supported by any
device type

Fig. 11. Extended process diagram for the use case ”Book a Ticket”

The device requirements of a task can be specified informally through textual
descriptions or formally by using the device type ontology. For instance, the first
two requirements in Figure 11 map to types defined in the ontology (see Lines 30
and 33 in Listing 1). Alternatively, we can specify that a device shall have certain
properties, e.g., support for printing or online payment. To define device require-
ments formally, we specify them as SPARQL queries [29] on the device ontology.
The query to retrieve all device types supporting online payment is shown in List-
ing 2. By executing this query on the example ontology, we get the types Computer
and Smartphone as a result.

534 Dennis Wolters, Christian Gerth, and Gregor Engels

Listing 2. SPARQL query identifying device types having printing support

1 SELECT ? deviceType
2 WHERE {
3 ? deviceType a dto : DeviceType .
4 ? deviceType dto : hasProperty ex : OnlinePayment .
5 }

The extended use case diagram in Figure 5 only describes that computers,
smartphones, and TVMs can be used to book a ticket. By defining an extended
process diagram for this use case, we have refined how the ticket can be booked
using the different device types. Devices of all types have in common that they
allow selecting train connections and ticket options. However, cash payment shall
only be possible on TVMs, online payment is limited to computers and smart-
phones, whereas payment by carrier is exclusive to smartphones. Tickets can be
printed on any device having printing support, and in addition, smartphones sup-
port receiving mobile tickets. Furthermore, we defined where the device type can
or needs to be changed, e.g., when selecting cash payment on a smartphone, we
need to migrate to a TVM. In [2], we also introduce device change definitions that
can be used to constrain possible device changes, i.e., to specify that it shall not
be allowed to migrate from one TVM to another.

8. Conclusion and Future Work

In this paper, we present an extension to use case diagrams enabling the specifica-
tion of device usage and cross-device interactions. For this purpose, we introduce a
new model element to specify device types within use case diagrams. This is used
to refine associations between actors and use cases. Thereby, we specify for use
cases which device types are required and by whom they are used. In addition, we
enable the definition of cross-device interactions by using multiplicities and special
stereotypes or by associating actors and use cases with multiple device types. The
benefits of our approach are illustrated by using various examples. Moreover, we
explain how the information about relevant device types can be externalized into
a separate device type ontology. This ontology can be refined independently and
serve as basis to reuse the device type information in other models as well. As
an example for this, we show how the device usage can be refined for individual
use cases by using our extended notation of process diagrams. In combination,
our extensions to use case and process diagrams enable the visual modeling of
cross-device systems during requirement analysis.

We are working on supporting further steps of a model-based development
process for cross-device systems, i.e., modeling the architecture of cross-device
systems using component models. Simultaneously, we are developing techniques
to integrate services of existing applications into cross-device systems to avoid
development from scratch.

Visual Requirements Modeling for Cross-Device Systems 535

References

1. MBUI - Glossary, http://www.w3.org/TR/mbui-glossary/

2. Bokermann, D., Gerth, C., Engels, G.: Use Your Best Device! Enabling Device
Changes at Runtime. In: BPM 2014, LNCS, vol. 8659, pp. 357–365. Springer (2014)

3. Dearman, D., Pierce, J.S.: ”It’s on my other computer!”: Computing with Multiple
Devices. In: CHI 2008. pp. 767–776. ACM (2008)

4. Eriksson, M., Börstler, J., Borg, K.: The PLUSS Approach – Domain Modeling with
Features, Use Cases and Use Case Realizations. In: Software Product Lines 2005,
LNCS, vol. 3714, pp. 33–44. Springer (2005)

5. Ghiani, G., Paternò, F., Santoro, C.: Push and Pull of Web User Interfaces in Multi-
device Environments. In: AVI 2012. pp. 10–17. ACM (2012)

6. Gopalakrishnan, S., Krogstie, J., Sindre, G.: Extending Use and Misuse Case Dia-
grams to Capture Multi-channel Information Systems. In: ICIEIS 2011, CCIS, vol.
251, pp. 355–369. Springer (2011)

7. Gopalakrishnan, S., Sindre, G.: Use Case Diagrams for Mobile and Multi-channel
Information Systems: Experimental Comparison of Colour and Icon Annotations. In:
Enterprise, Business-Process and Information Systems Modeling, LNBIP, vol. 248,
pp. 479–493. Springer (2016)

8. Hamilton, P., Wigdor, D.: Conductor: Enabling and Understanding Cross-device In-
teraction. In: CHI 2014. pp. 2773–2782. ACM (2014)

9. Husmann, M., Nebeling, M., Pongelli, S., Norrie, M.C.: MultiMasher: Providing Ar-
chitectural Support and Visual Tools for Multi-device Mashups. In: WISE 2014,
LNCS, vol. 8787, pp. 199–214. Springer (2014)

10. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering.
In: Web Engineering: Modelling and Implementing Web Applications, pp. 157–191.
Human-Computer Interaction Series, Springer (2008)

11. Luckey, M., Nagel, B., Gerth, C., Engels, G.: Adapt Cases: Extending Use Cases for
Adaptive Systems. In: SEAMS 2011. pp. 30–39. ACM (2011)

12. von der Maßen, T., Lichter, H.: Modeling Variability by UML Use Case Diagrams.
In: REPL@RE 2002. pp. 19–25 (2002)

13. Nebeling, M., Husmann, M., Zimmerli, C., Valente, G., Norrie, M.C.: XDSession:
Integrated Development and Testing of Cross-device Applications. In: EICS 2015.
pp. 22–27. ACM (2015)

14. Nebeling, M., Zimmerli, C., Husmann, M., Simmen, D.E., Norrie, M.C.: Information
Concepts for Cross-device Applications. In: DUI@EICS 2013. pp. 14–17 (2013)

15. Object Management Group: MDA Guide Revision 2.0 (2014), http://www.omg.org/
cgi-bin/doc?ormsc/14-06-01

16. Object Management Group: Unified Modeling Language (2015), http://www.omg.
org/spec/UML/2.5/

17. Paternò, F.: ConcurTaskTrees: An Engineered Approach to Model-based Design of
Interactive Systems, pp. 483–501. Lawrence Erlbaum Associates (2002)

18. Paternò, F., Santoro, C.: A Logical Framework for Multi-device User Interfaces. In:
EICS 2012. pp. 45–50. ACM (2012)

19. Prehofer, C., Wagner, A., Jin, Y.: A Model-based Approach for Multi-Device User
Interactions. In: MODELS 2016. pp. 13–23 (2016)

20. Santosa, S., Wigdor, D.: A Field Study of Multi-device Workflows in Distributed
Workspaces. In: UbiComp 2013. pp. 63–72. ACM (2013)

21. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

http://www.w3.org/TR/mbui-glossary/
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/

536 Dennis Wolters, Christian Gerth, and Gregor Engels

22. Scharf, F., Wolters, C., Cassens, J., Herczeg, M.: Cross-Device Interaction: Definition,
Taxonomy and Applications. In: AMBIENT 2013. pp. 35–41 (2013)

23. Schobbens, P., Heymans, P., Trigaux, J.C.: Feature Diagrams: A Survey and a Formal
Semantics. In: RE 2006. pp. 139–148 (2006)

24. Sindre, G.: A Look at Misuse Cases for Safety Concerns. In: Situational Method
Engineering: Fundamentals and Experiences, IFIP, vol. 244, pp. 252–266. Springer
(2007)

25. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases. Re-
quirements Engineering 10(1), 34–44 (2004)

26. The Open Group: ArchiMateR© 3.0 Specification (2016), http://pubs.opengroup.
org/architecture/archimate3-doc/

27. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design.
Morgan Kaufmann (2011)

28. Wolters, D., Gerth, C., Engels, G.: Modeling Cross-Device Systems with Use Case
Diagrams. In: CAiSE’16 Forum. CEUR Workshop Proceedings, vol. 1612, pp. 89–96.
CEUR-WS.org (2016)

29. World Wide Web Consortium (W3C): SPARQL Query Language for RDF (2008),
http://www.w3.org/TR/rdf-sparql-query/

30. Yang, J., Wigdor, D.: Panelrama: Enabling Easy Specification of Cross-device Web
Applications. In: CHI 2014. pp. 2783–2792. ACM (2014)

Dennis Wolters received his B.Sc. degree in Computer Science in 2010 and
his M.Sc. degree in 2012 from Paderborn University, Germany. He is currently
a Ph.D. candidate and teaching assistant at the Chair of Database and Informa-
tion Systems at the same university. His research interest include mobile solutions,
service-oriented computing, and model-driven software development with a focus
on engineering cross-device systems.

Christian Gerth received his Ph.D. in Computer Science, with a dissertation
on business process model change management from the Paderborn University
in 2012. From 2007 till 2010, he worked as a research assistant in the Business
Integration Technologies group at IBM Research - Zurich, Switzerland. From 2011
till 2014, he contributed his respective knowledge to various industrial software
engineering projects of the s-lab-Software Quality Lab in Paderborn, Germany.
Since 2014, he is Professor of Information Systems and Software Engineering at
Osnabrück University of Applied Sciences. His research interests include model-
driven software development with a focus on mobile apps and web applications,
business process management, and requirements engineering.

Gregor Engels received his Ph.D. in Computer Science in 1986 from the Univer-
sity of Osnabrück, Germany. Between 1991 and 1997 he held the position of Chair
of Software Engineering and Information Systems at the University of Leiden, The
Netherlands. Since 1997, he is Professor of Informatics at the Paderborn Univer-
sity, Germany. He is chairperson ofthe Software Innovation Lab, the university
part of the technology transfer institute Software Innovation Campus Paderborn
(SICP). His research interests are in the area of model-driven software develop-
ment, software architecture, and software quality assurance.

Received: September 30, 2016; Accepted: April 18, 2017.

http://pubs.opengroup.org/architecture/archimate3-doc/
http://pubs.opengroup.org/architecture/archimate3-doc/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Terminology
	Related Work
	Running Example and Requirements
	Modeling Cross-Device Systems with Extended Use Case Diagrams
	Representing Device Types in Use Case Diagrams
	Refining the Association Between Actors and Use Cases
	Modeling Device Variability
	Expressing Cross-Device Interactions
	Summary

	Externalize the Device Type Information
	Creating a Device Type Ontology
	Specifying a Device Type Hierarchy
	Modeling Device Properties
	Formalizing the Ontology

	Using Process Diagrams to Refine Use Cases
	Conclusion and Future Work

