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Abstract. In this paper, a special recurrent neural network (RNN), i.e., the Zhang

neural network (ZNN), is presented and investigated for online time-varying non-

linear optimization (OTVNO). Compared with the research work done previously

by others, this paper analyzes continuous-time and discrete-time ZNN models the-

oretically via rigorous proof. Theoretical results show that the residual errors of

the continuous-time ZNN model possesses a global exponential convergence prop-

erty and that the maximal steady-state residual errors of any method designed in-

trinsically for solving the static optimization problem and employed for the online

solution of OTVNO is O(τ ), where τ denotes the sampling gap. In the presence

of noises, the residual errors of the continuous-time ZNN model can be arbitrarily

small for constant noises and random noises. Moreover, an optimal sampling gap

formula is proposed for discrete-time ZNN model in the noisy environments. Fi-

nally, computer-simulation results further substantiate the performance analyses of

ZNN models exploited for online time-varying nonlinear optimization.

Keywords: performance analysis, Zhang neural network (ZNN), online time-varying

nonlinear optimization (OTVNO), Newton conjugate gradient model.

1. Introduction

Viewed as an essential step of many solutions, the online optimization often arises in

mathematics and control theory, and finds its applications in numerical analysis [1], traf-

fic control [2] machine learning [3], robotics [4–6] and animal migration analysis[7]. Be-

cause of its fundamental roles, much effort has been devoted to the fast and high accuracy

solution of nonlinear optimization problem, and subsequently a great deal of models have

been proposed and investigated for solving it [8]. Recursive (or iterative) methods and

direct methods are two main techniques for nonlinear optimization, of which the latter

ones are prohibitively expensive (or even impossible) for the problem with a large num-

ber of variables [9]. Thus, in modern scientific and engineering applications, the solving

of nonlinear optimization problem often has no choice but to seek the recursive methods

due to the limitation of direct methods [9].
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The recurrent neural network (RNN) has received considerable investigation in many

scientific and engineering fields, which has several potential advantages in real-time ap-

plications (e.g., parallel processing, distributed storage, self adaptation) [4, 10–17]. There-

fore, the RNN is generally taken into account as one of the powerful parallel-computational

schemes for online solution of various challenging problems [13, 15, 17]. As a novel type

of RNN specifically designed for solving time-varying problems, Zhang neural network

(ZNN) is able to perfectly track time-varying solution by exploiting the time derivative of

time-varying parameters [4, 11, 17–19]. Different ZNN models have been proposed in [4]

for solving online time-varying nonlinear optimization (OTVNO) problem in the presence

of zero noise.

In implementations of an RNN model, we usually assume that it is free of all kinds of

noises or external errors [9]. However, there always exist some realization errors in hard-

ware implementations or disturbances in applications of RNN, which can be deemed as

constant noises. Moreover, the environmental interference as well as other external errors

can be viewed as the random noises. Sometimes these noises have significant impacts on

the accuracy of the RNN for solving time-varying problems, and in some cases, they may

cause failure of the solving task. Therefore, it is worth investigating the performance of

ZNN models from the control perspective for solving time-varying nonlinear optimization

problem with rigorous proof.

The rest of this paper is organized as follows. Section 2 introduces the problem for-

mulation and presents the ZNN models for online solution of time-varying optimization

problem. In addition, Section 3 provides the related work done by others and the cor-

responding analysis. The convergence and robustness analyses of the ZNN models are

presented in Section 4. In Section 5, illustrative simulative results are shown to verify the

convergence and robustness of the ZNN model for solving time-varying nonlinear opti-

mization problem, which further substantiate the theoretical analysis. Finally, conclusions

are drawn in Section 6. Before ending this introductory section, the main contributions of

the paper are pointed out below.

– The online time-varying nonlinear optimization problem is investigated. Its solution is

obtained using the continuous-time and discrete-time ZNN models with satisfactory

performance.

– Theoretical analyses and results for continuous-time ZNN model are presented, which

guarantee that its residual error possesses a global exponential convergence property.

Moreover, in the presence of noises, its residual error can be arbitrarily small for

constant noises and random noises.

– Theoretical analyses and results also show that the maximal steady-state residual er-

rors of any method designed intrinsically for solving the static optimization problem

and employed for the online solution of OTVNO is O(τ). In addition, the optimal

sampling gap formula for discrete-time ZNN model in noisy environments is pro-

posed.

– Computer simulation and numerical experiment results are illustrated, which fur-

ther substantiate the performance analyses of continuous-time and discrete-time ZNN

models exploited for online time-varying nonlinear optimization.
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2. Problem formulation and ZNN solution

As a basis for further discussion, the problem formulation for online time-varying opti-

mization and continuous-time and discrete-time ZNN models are presented in this section.

2.1. Problem formulation

Let us consider the following time-varying optimization problem in a continuous form,

which is the same task problem presented in [4]:

min
x(t)∈Rn

f
(

x(t), t
)

∈ R, t ∈ [0,+∞), (1)

where the second-order differentiable f(·, ·) : R
n × [0,+∞) → R denotes a nonlin-

ear mapping function. In addition, the gradient of (1) can be formulated as g(x(t), t) =
∂f(x(t), t)/∂x(t).

2.2. ZNN Solution

Defining the error function e(t) = g(x(t), t), we show how to design the corresponding

continuous-time ZNN model via the ZNN design formula. Let us define the following

evolution for e(t):
ė(t) = −γe(t), (2)

where γ > 0 is a scaling factor. ZNN design formula (2) indicates that ė(t) is evaluated

as the negative direction of e(t) such that e(t) converges to zero, which means that x(t)
converges to the zero point x∗(t) of e(t). By expanding the ZNN design formula, the

following differential equation of a ZNN model is obtained:

H(x(t), t)ẋ(t) = −γg(x(t), t)− g′t(x(t), t), (3)

where Hessian matrix H(x(t), t) and time-derivative vector g′t(x(t), t) are defined re-

spectively as [4]:

H(x(t), t) =
∂g(x(t), t)

∂xT(t)
=

∂2f(x(t), t)

∂x(t)∂xT(t)
∈ R

n×n,

g′t(x(t), t) =
∂g(x(t), t)

∂t
=

∂2f(x(t), t)

∂x(t)∂t
∈ R

n,

with superscript T denoting the transpose of a vector or matrix argument. For the inter-

esting nonsingular situation of H(x(t), t) that we consider in this paper, (3) is rewritten

as

ẋ(t) = −H−1(x(t), t)

(

γg(x(t), t) +
∂g(x(t), t)

∂t

)

(4)

where x(t), starting from a randomly-generated initial condition x(0) ∈ R
n, denotes

the neural state corresponding to the zero point x∗(t) ∈ R
n of OTVNO (1). If Hessian

matrix H(x(t), t) is positive definite [4], then x(t) is the solution of OTVNO (1). Note
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Fig. 1. Realization of continuous-time ZNN model (4) for solving OTVNO problem (1) represented

as a feedback control system.

that, to focus on the performance analyses of ZNN models, we consider the situation that

H(x(t), t) is positive definite in this paper.

In terms of OTVNO problem (1), continuous-time ZNN model (4) is an equivalent

expansion of ZNN design formula (2). For a better understanding of ZNN design formula

(2) as well as continuous-time ZNN model (4), the role of each term in ZNN design for-

mula (2) can be interpreted from the viewpoint of control with its realization represented

as a control system shown in Fig. 1. From the figure, we can find that continuous-time

ZNN model (4) can be deemed as a generalized proportional-derivative controller with

the control input for the derivative part being ẋ(t) and that for the proportional part being

e(t). For such a control system, it will be proven in the ensuing Theorem 2 that e(t) glob-

ally and exponentially converges to zero, which means that the presented continuous-time

ZNN model (4) possesses the property of globally exponential stability.

The corresponding discrete-time ZNN model [4] based on Euler forward difference

formula can be directly given as

xk+1 = xk −H−1(xk, tk) (hg(xk, tk) + τg′t(xk, tk)) , (5)

where step-size h = τγ > 0, with τ denoting the sampling gap.

3. Related work

Newton iteration and its various modified models [1] are the classical computational

method for solving nonlinear optimization problems. Among them, Newton conjugate

gradient (Newton-CG) method is a variant of Newton method and frequently used in

scientific and engineering areas, of which the pseudocode is shown in Table 1. Newton-

CG method is well suited for high dimensional problems, but it has a weakness. That is,

when Hessian matrix is nearly singular, the Newton-CG direction can be long and of poor

quality, requiring many function evaluations in the line search and giving only a small re-

duction in the function. In addition, we have the following theorem to guarantee that the
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Table 1. Pseudocode of Newton-CG method

Given initial point x0;

for k = 0, 1, 2, · · ·
Define tolerance

ǫk = min
(

0.5,
√

||(∂f/∂x)k||
)

||(∂f/∂x)k||;

Set z0 = 0, r0 = (∂f/∂x)k,

d0 = −r0 = −(∂f/∂x)k;

for j = 0, 1, 2, · · ·
if dT

jHkdj ≤ 0
if j = 0

Return pk = −(∂f/∂x)k;

else

Return pk = zj ;

Set aj = rT
j rj/d

T
jHkdj ;

Set zj+1 = zj + ajdj ;

Set rj+1 = rj + ajHkdj ;

If ||rj+1|| < ǫk
return pk = zj+1;

Set βj+1 = rT
j+1rj+1/r

T
j rj ;

Set dj+1 = −rj+1 + βj+1dj ;

end (for)

Set xk+1 = xk + akpk, where ak satisfies the Wolfe, Goldstein, or Armijo

backtracking conditions [1] (using ak = 1 if possible);

end

maximal steady-state residual error of Newton-CG method for solving OTVNO problem

(1) is O(τ).
THEOREM 1. Suppose that the Newton-CG method converges to the optimal solution

to a static optimization problem within computational time τ . If the Newton-CG method is

employed for OTVNO (1), then the maximal steady-state residual error ‖g(xk+1, tk+1)‖2
of Newton-CG method is O(τ).

Proof. As assumed, the time derivative of xi(t) exists, i.e., dxi(tk)/dt = pi at time

instant tk with pi being a constant. It can be readily derived that limτ→0 ∆xi(tk)/τ =
dxi(tk)/dt = pi and∆xi(tk) ≈ piτ . Therefore,∆xi(tk) changes in an O(τ) pattern, i.e.,

∆xi(tk) = O(τ). Note that, at computational time interval [kτ, (k + 1)τ), the Newton-

CG method converges to the optimal solution x∗
i (tk) to the time-varying optimization

problem at time instant tk and x∗
i (tk+1) = x∗

i (tk) + ∆xi(tk). Thus, at time instant

tk+1, the difference between the solution generated by the Newton-CG method and the

optimal solution is ∆x(tk), i.e., x∗(tk+1) = x∗(tk) +O(τ) = x(tk+1) +O(τ), where

O(τ) denotes a vector with each element being O(τ). Then, adopting Taylor expansion
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theorem, we obtain

g(xk+1, tk+1) = g
(

x∗
k+1 +O(τ), tk+1

)

= g(x∗
k+1, tk+1) +H(x∗

k+1, tk+1)O(τ) +O(τ2)

= H(x∗
k+1, tk+1)O(τ) +O(τ2)

= H(x∗
k+1, tk+1)O(τ).

Consequently, we further have

‖g(xk+1, tk+1)‖2 = ‖H(x∗
k+1, tk+1)O(τ)‖2 = O(τ).

The proof is thus completed.

As proven in [4], the maximal steady-state residual error of discrete-time ZNN model

(5) possesses an O(τ2) pattern. Actually, it can be generalized from Theorem 1 that the

maximal steady-state residual errors of any method designed intrinsically for solving the

static optimization problem and employed for the online solution of OTVNO is O(τ).
The above analysis further demonstrates the superiority of discrete-time ZNN model (5)

for OTVNO solving (compared with the conventional methods).

4. Theoretical analyses

In this section, we prove that e(t) of continuous-time ZNN model (4) globally and expo-

nentially converges to zero. In addition, in the presence of noises, continuous-time ZNN

model (4) is proven to have a satisfactory robust performance. Moreover, an optimal sam-

pling gap formula is proposed for discrete-time ZNN model in the noisy environments.

THEOREM 2. Continuous-time ZNN model (4), starting with randomly generated ini-

tial state x(0) ∈ R
n, globally and exponentially converges to the theoretical solution to

OTVNO (1).

Proof. ZNN design formula (2) is a compact vector-form equations with its ith element

being ėi(t) = −γei(t). By defining the Lyapunov function candidate vi(t) = e2i (t) with

v̇i(t) = −2γe2i (t), it can be readily generalized that continuous-time ZNN model (4)

globally converges to theoretical solution x∗(t) to OTVNO (1).

In addition, from ZNN design formula (2), one can readily conclude that e(t) =
e(0) exp(−γt) with e(0) denoting the initial error of continuous-time ZNN model (4).

Therefore, it can be readily generalized that continuous-time ZNN model (4) exponen-

tially converges to theoretical solution x∗(t) to OTVNO (1).

The proof is thus completed.

In the online solving process of OTVNO (1), noises are the external errors and unde-

sired disturbances, which may misdirect the computational model to evolve along a wrong

direction. For any noise, it may be decomposed into the following two parts: the constant

part and the rest. Note that ZNN design formula (2) is a linear system, which satisfies the

principle of superposition. Therefore, for a non-zero mean random noise, an aggressive

output error bound can be obtained by separately considering the constant part and the

rest.
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To investigate the performance of continuous-time ZNN model (4) in the presence of

noises, two theorems on the constant noise and the random noise are presented as follows.

THEOREM 3. Consider that continuous-time ZNN model (4) is polluted with con-

stant noise η(t) = η̄ ∈ R
n. Continuous-time ZNN model (4) converges towards the-

oretical solution x∗(t) to OTVNO (1) with the upper bound of the steady-state resid-

ual error limt→∞ ‖e(t)‖2 being ‖η̄‖2/γ. Furthermore, the steady-state residual error

limt→∞ ‖e(t)‖2 decreases to zero as γ tends to positive infinity.

Proof. Using Laplace transform to the ith subsystem of the noise-polluted continuous-

time ZNN model (4) leads to

sei(s)− ei(0) = −γei(s) + ηi(s), (6)

i.e.,

ei(s) =
ei(0) + ηi(s)

s+ γ
, (7)

with the transfer function being 1/(s + γ), where the pole is s = −γ. For γ > 0, it

can be readily concluded that this pole locates on the left half-plane, which implies that

this system is stable and that the final value theorem applies. Notice that ηi(s) = η̄i/s as

ηi(t) = η̄i amounts to a step signal for constant vector η̄. Using the final value theorem

to (7), we have

lim
t→∞

ei(t) = lim
s→0

sei(s) = lim
s→0

s(ei(0) + η̄i/s)

s+ γ
=

η̄i
γ
.

Therefore, it can be concluded that limt→∞ ‖e(t)‖2 = ‖η̄‖2/γ. Furthermore, the steady-

state residual error limt→∞ ‖e(t)‖2 decreases to zero as γ tends to positive infinity. The

proof is thus completed.

Note that the nonlinear time-varying noise can be deemed as a random noise in the

time-varying nonlinear optimization problem solving process, and we have the follow-

ing theorem for the performance of continuous-time ZNN model (4) in the presence of

unknown random noise.

THEOREM 4. Consider that continuous-time ZNN model (4) is polluted with bounded

random noise η(t) = σ(t) ∈ R
n. Continuous-time ZNN model (4) converges towards the-

oretical solution x∗(t) to OTVNO (1) with the upper bound of the steady-state residual

error limt→∞ ‖e(t)‖2 being (ξ
√
n)/γ with ξ = max1≤i≤n{max0≤τ≤t |σi(τ)|}. Fur-

thermore, the steady-state residual error limt→∞ ‖e(t)‖2 decreases to zero as γ tends to

positive infinity.

Proof. Rewrite random-noise-polluted continuous-time ZNN model (4) as

ė(t) = −γe(t) + σ(t),

of which the ith (∀i ∈ 1, 2, · · · , n) subsystem can be written as

ėi(t) = −γei(t) + σi(t). (8)

The solution to subsystem (8) can be obtained as
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ei(t) = ei(0) exp(−γt) +

∫ t

0

exp(−γ(t− τ))σi(τ)dτ.

From the triangle inequality, we have

|ei(t)| ≤ |ei(0) exp(−γt)|+
∫ t

0

| exp(−γ(t− τ))||σi(τ)|dτ.

We further have

|ei(t)| ≤ |ei(0) exp(−γt)|+ 1

γ
max
0≤τ≤t

|σi(τ)|

Finally, we have

lim
t→∞

sup ‖e(t)‖2 ≤ ξ
√
n

γ
,

with ξ = max1≤i≤n{max0≤τ≤t |σi(τ)|}. The proof is thus completed.

It is worth noting that, for discrete-time ZNN model (5), the sampling gap τ , the noise

corruption, the round-off errors as well as the truncation errors have influences on the

total error, and thus a smaller sampling gap τ does not necessarily generate a smaller total

error. Therefore, it is worth investigating the performance of discrete-time ZNN model

(5) in the presence of noise and finding the optimal sampling gap.

THEOREM 5. The optimal sampling gap of discrete-time ZNN model (5) is τoptimal =
2((ε+ σ)/M)1/2, where ε denotes the maximum absolute value of round-off errors of xk

and xk+1 in the numerical computations, σ denotes the upper bound of the noise, and M
denotes the maximum absolute value of ẍk+c with c lying between 0 and 1.

Proof. Based on the Taylor expansion, we have the following rule:

xk+1 = x(kτ + τ) = xk + τ ẋk − τ2

2!
ẍk+c, (9)

where c lies between 0 and 1. Then, with M denoting the maximum absolute value of

ẍk+c, we have the following Euler forward difference formula with truncation error:

ẋk =
xk+1 − xk

τ
+

τ

2
M, (10)

The round-off errors and the noises in the numerical computations can be simplified as

following equations:

xk+1 = yk+1 + εk+1 + ξk+1,

xk = yk + εk + ξk,

where xk+1 and x0 are approximated by numerical values yk+1 and yk, respectively. In

addition, εk+1 and εk are the corresponding round-off errors. Besides, ξk+1 and ξ0 are

the corresponding noises with the upper bound being σ.

According to (10), we can obtain

ẋk =
yk+1 − yk

τ
+ E(x, τ),
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Fig. 2. Residual errors of continuous-time ZNN model (4) for solving OTVNO (13) with initial state

x(0) = [0, 4,−8,−6]T.

in which

E(x, τ) =
εk+1 + ξk+1 − εk − ξk

τ
+

τM

2
.

Evidently, the total error term E(x, τ) contains two parts, i.e., a part due to round-off

errors as well as the noise corruption, and a part due to truncation errors.

Considering that ε denotes the maximum absolute value of round-off errors of xk and

xk+1 and that the upper bound value of ξk and ξk+1 is σ, we have

|E(x, τ)| ≤ 2(ε+ σ)

τ
+

τM

2
. (11)

Thus, the value of τ that minimizes the right-hand side of formula (11) is

τoptimal = 2

(

ε+ σ

M

)1/2

. (12)

The proof is thus completed.

5. Illustrative examples

The previous sections have presented the performance analyses of continuous-time ZNN

model (4) and discrete-time ZNN model (5) for online solution of OTVNO problem (1).
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Fig. 3. Residual errors of continuous-time ZNN model (4) for solving OTVNO (13) with initial state

x(0) = [0, 4,−8,−6]T and constant noise [1, 1, 1, 1]T.

In this section, computer-simulation results and observations are provided to verify the

characteristics of these models.

5.1. Continuous-time ZNN model

Example 1. For illustration and comparison, let us consider the following time-varying

nonlinear optimization problem, which is the same problem as in [4]:

min
x(t)∈R4

f(x(t), t) = (x1(t) + t)2 + (x2(t) + t)2 + (x3(t)− exp(−t))2

+ 0.1(t− 1)x3(t)x4(t)− (x1(t) + ln(0.1t+ 1))(x2(t) + sin(t))

+ (x1(t) + sin(t))x3(t) + (x4(t) + exp(−t))2. (13)

Fig. 2 illustrates the residual errors of continuous-time ZNN model (4). As shown in

the figure, the residual errors of continuous-time ZNN model (4) with different γ converge

rapidly to zero. Particulary, the residual error with γ = 1 converges to zero within around

2 s and that with γ = 10 converges to zero within around 0.2 s, which verifies the expo-

nential convergence property proven in Theorem 2. In the implementation of RNN, the

corresponding model-implementation error is hard to avoid and can be viewed as the con-

stant bias noise added to the RNN model. It is worth noting that, the constant bias noise

degrades the performance of some models and sometimes they fail to solve the problem
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Fig. 4. Residual errors of continuous-time ZNN model (4) for solving OTVNO (13) with initial state

x(0) = [0, 4,−8,−6]T and constant noise σ(t) ∈ [−0.5, 0.5]4×1.

for a large constant bias noise. Therefore, it is worth investigating the performance of

continuous-time ZNN model (4) in the presence of constant noise.

As visualized in Fig. 3(a), the residual error of continuous-time ZNN model (4) with

γ = 1 rapidly converges towards zero and remains stable around 1.7. In addition, the

residual error of continuous-time ZNN model (4) with γ = 10 also rapidly converges

towards zero and remains stable at the order of 10−1. In summary, these results verify

Theorem 3.

In the solving process of OTVNO problem (1), noise is an external error or undesired

disturbance, which misdirects the conventional model to evolve along a wrong direction.

Numerous methods have been presented and investigated for denoising, such as Wiener

filtering and Kalman filtering as well as their extensions. However, by considering the

facts that many types of noises may not satisfy the requirements of the denoising method,

and that any preprocessing for noise reduction may consume extra time, possibly vio-

lating the requirement of real-time computation, conventional denoising methods may

be not available for OTVNO problem (1). In addition, the nonlinear time-varying noises

can be deemed as random noises. Therefore, it is worth investigating the performance of

continuous-time ZNN model (4) in the presence of random noises. The corresponding

simulation results are illustrated in Fig. 4.

It can be seen from Fig. 4(a) that the residual error of continuous-time ZNN model

(4) with γ = 1 converges to near zero in around 6 s and remains at an order of 10−1. In
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Fig. 5. Means of residual errors of discrete-time ZNN model (5) with h = 1 in noisy environments

for 10 trials.

addition, the residual error of continuous-time ZNN model (4) with γ = 10 also rapidly

converges towards zero and remains stable at the order of 10−2.

In summary, the above simulation results, i.e., Figs. 2 through 4, have verified the

correctness of the presented Theorem 2 through Theorem 4.

5.2. Discrete-time ZNN model

It is worth investigating the performance of discrete-time ZNN model (5) in noisy envi-

ronments.

Example 2. Consider the following time-varying nonlinear optimization problem:

min
x(t)∈R2

f(x(t), t) =x3
1(t)− sin(t)x2

1(t) + sin2(t)x1(t) + x3
2(t)

− cos(t)x2
2(t) + cos2(t)x2(t). (14)

From the optimal sampling-gap rule τoptimal = 2((ε+σ)/M)1/2, the zero-mean noises

can be counted as having no significant impact on the residual error of discrete-time ZNN

model (5) for the upper bound σ < (τ2M − 4ε)/4. For OTVNO problem (14), the maxi-

mum absolute value of the 3th time-derivative of the element is 1 (e.g., for sin(t), its 3th

time-derivative | − cos(t)| ≤ 1). In addition, floating-point numbers have limited preci-

sion in computer, e.g., the minimum precision of floating-point number eps in MATLAB



Performance Analyses of RNN Models Exploited for OTVNO 703

environment is of order 10−16 (i.e., 2−52). Thus, we have M = 1 and ε = 2.2× 10−16.

The values of σ that do not influence the performance of discrete-time ZNN model (5) are

2.5×10−3 and 2.5×10−5 corresponding to using sampling gap τ = 0.1 and 0.01, respec-

tively. Means of residual errors of discrete-time ZNN model (5) with zero-mean noises

for 10 trials are shown in Fig. 5. As seen from the figure, starting with the randomly-

generated initial state, the performance of discrete-time ZNN model (5) does not reduce

for σ < 10−3 with τ = 0.1, and for σ < 10−5 with τ = 0.01. In addition, for the up-

per bound σ > (τ2M − 4ε)/4, it can be observed from the figure that the noises have

remarkable impacts on the performance of discrete-time ZNN model (5), which means

that some noise reduction technologies can be considered for better performance. For ex-

ample, as often done in real-world implementation of the proportional-integral-derivative

controller, it is preferable to pass the signals through the low-pass filter before they go to

discrete-time ZNN model (5) to reduce the sensitivity of discrete-time ZNN model (5) to

noise.

6. Conclusions

In this paper, the Zhang neural network (ZNN) has been presented and investigated for

online time-varying nonlinear optimization (OTVNO). Compared with the research work

done previously by others, this paper has analyzed continuous-time and discrete-time

ZNN models theoretically via rigorous proof. Theoretical results have shown that the

maximal steady-state residual errors of the continuous-time ZNN model possesses a global

exponential convergence property and that the maximal steady-state residual errors of any

method designed intrinsically for solving the static optimization problem and employed

for the online solution of OTVNO is O(τ). Moreover, in the presence of noises, the resid-

ual errors of the continuous-time ZNN model can be arbitrarily small for constant noises

and random noises. Finally, computer-simulation results have further substantiated the

performance analyses of ZNN models exploited for online time-varying nonlinear opti-

mization.
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