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Abstract. In privacy preserving data publishing, to reduce the correlation loss
between sensitive attribute (SA) and non-sensitive attributes(NSAs) caused by
anonymization methods (such as generalization, anatomy, slicing and randomiza-
tion, etc.), the records with same NSAs values should be divided into same blocks
to meet the anonymizing demands of ℓ-diversity. However, there are often many
blocks (of the initial partition), in which there are more than ℓ records with dif-
ferent SA values, and the frequencies of different SA values are uneven. Therefore,
anonymization on the initial partition causes more correlation loss. To reduce the
correlation loss as far as possible, in this paper, an optimizing model is first pro-
posed. Then according to the optimizing model, the refining partition of the ini-
tial partition is generated, and anonymization is applied on the refining partition.
Although anonymization on refining partition can be used on top of any existing
partitioning method to reduce the correlation loss, we demonstrate that a new parti-
tioning method tailored for refining partition could further improve data utility. An
experimental evaluation shows that our approach could efficiently reduce correla-
tion loss.
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1. Introduction

In this information age, it is easy for many organizations and agencies to collect digital
data (containing unaggregated information about individuals), and knowledge extracted
by data mining techniques represents a key asset driving innovation, policy-making ac-
tivities. Driven by the regulations that require certain data to be published, or by mutual
benefits, there is a demand for the publication of data among various parties [1] [14] [15].
However, detailed person-specific information often contains sensitive values about indi-
viduals (such as salary, credit, etc.), and publishing such data would lead to the disclosure
of the sensitive values of individuals [1] [14] [15]. Thus, it is important to transform data
table into anonymized data table so that the sensitive values of individuals could not be
inferred with high certainty, and the statistical information for large number of individu-
als, such as the correlations between sensitive attribute (SA) and non-sensitive attributes
(NSAs), should be preserved as much as possible.
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The anonymization methods, such as generalization [14] [15] [3] [7] [11] [19]
anatomy (also called bucketization) [20] [16] [5] slicing [13] [17] and randomization [12]
[18] [2], are usually used for privacy preserving data publishing (PPDP). To reduce the
correlation loss caused by anonymizing, the records with the same NSAs values should
first be divided into blocks to meet the anonymizing demands of ℓ-diversity [1] [14] [15]
(i.e., for each block B there are at least ℓ records with different SA values and at most
⌊|B|/ℓ⌋ records with the same SA value, otherwise the actual SA values of some individ-
uals may be disclosed with a certainty higher than 1/ℓ). Then, the records of each block
in the partition are anonymized, so that the SA values appeared in the anonymized block
all may be the actual SA values of the individuals whose records are in the block.

1.1. Motivation

The optimal partitioning, which puts the records with same NSAs values into the same
blocks to meet the anonymizing demands of ℓ-diversity, is NP-hard [7] [11]. So in the
(initial) partition there are usually many blocks having more than ℓ different SA values
and uneven frequencies of SA values (i.e., there are more than ℓ records with different SA
values and the numbers of the records with different SA values are unequal). Therefore,
the average probabilities, which individuals are assigned to their actual SA values in the
anonymized blocks of these blocks, are smaller. The smaller values mean that there are
more correlation loss (less utility), as stated in Section III. If we refine the initial partition,
such that the average probabilities of the anonymized blocks of refining partition are max-
imized (which are certainly higher than that of the initial partition), then the anonymized
data of the refining partition would preserve more utility than that of the initial partition.
So a problem arises: anonymizing a dataset such that the SA values of individuals should
not be inferred with a certainty higher than 1/ℓ while the correlation loss is as less as
possible. We believe this is an issue need be addressed.

1.2. Contributions

In this paper, we systematically study anonymization on the refining partition of initial
partition in privacy preserving data publishing. Our contributions include the following.

First, we propose an optimizing model for anonymizing a dataset so that the ℓ-
diversity is preserved while the correlation loss is as less as possible. According to the
model, we propose the approach of anonymizing on the refining partition of initial parti-
tion, so that the anonymized data of the refining partition preserves more utility than that
of the initial partition.

The second, although the refining partition can be used on top of any existing par-
titioning approach, to further reduce the correlation loss, we present a partitioning ap-
proach based on the lexicographic and NSAs sorting by correlation (between SA and each
of NSAs). This approach increases the utility of published data, as it preferentially ensures
that a part of the NSAs (more interrelated with SA) values of the records of blocks are the
same, while the records of blocks are anonymized, the correlations are retained.

The third, we show the validity of our approach from several aspects. We conduct
extensive workload experiments with real data set. The results confirm that our approach
greatly improves the utility of anonymized data.
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The rest of the paper is organized as follows. Section II briefly reviews related work.
Section III presents our problem definition, optimizing model and our purposes. In section
IV, we provide our anonymization on refining partition. Section V experimentally eval-
uates the effectiveness of our methodology. Section VI gives conclusions and directions
for future work.

2. Related Work

In anonymized data publishing, to prevent the actual sensitive values of individuals
from being revealed with high certainty, generalization [14] [15] [3] [7] [11] (and non-
homogeneous generalization [19]) transforms the NSAs values of the records of each
block into ”less specific” values. Therefore, the information loss caused by generaliza-
tion or non-homogeneous generalization includes the loss of the NSAs values of records,
the correlation loss between SA and NSAs, and the correlation loss among NSAs [13].
Anatomy separates SA from NSAs by randomly permuting the SA values of records in
each block [20] [16] [5]. Randomization [12] [18] [2] replaces the SA value of each
record in each block with a retention probability p by a value randomly selected from
the value-set consisted of the SA values of the records within the same block. Thus, there
is only correlation loss between SA and NSAs caused by anatomy [20][16][5] or random-
ization [12] [18], [2], since these methods publish the NSAs values of records in their
original forms, there is not the loss of the NSAs values of records and the correlation loss
among NSAs. After the records have been partitioned to blocks, slicing [13] and disasso-
ciation [17] divide the attributes into columns. Disassociation partitions the attributes into
columns based on the items of the values of the attributes. Therefore, the disassociation
causes more correlation loss among the attributes of different columns. Slicing partitions
the attributes based on the correlation among the attributes, the intersections between the
columns and the blocks are buckets, and the tuples in each bucket are randomly permuted.
In the buckets with SA, the NSAs values of the tuples are generalized. Thus, the informa-
tion loss caused by slicing includes the correlation loss between NSAs and SA, the loss of a
part of NSAs values of records, the correlation loss among these NSAs, and the correlation
loss between these NSAs and the other NSAs, as the NSAs values are generalized.

In general, in the records blocks with the anonymizing demand of ℓ-diversity, the
approach of generalization uniformly anonymizes the NSAs values of records. Yet, the
method of non-homogeneous generalization first arranges the records of the blocks in a
cycle, in which the adjacent ℓ records have mutual different SA values. Then, the NSAs of
each adjacent ℓ records respectively are anonymized to an anonymized record (the method
is called ring handling). Thus, comparing with the approach of generalization, in the same
partition, to generate an anonymized record, the less records are processed in the method
of non-generalizaiton. The less records are processed, the NSAs of the anonymized records
may be more specific, and the information loss may be less. Therefore, the NSAs values
of records of non-homogeneous generalization may be more specific than that of gener-
alization, non-homogeneous generalization may reduce the information loss caused by
the generalization of NSAs values of records. Yet, the method (ring handling) of non-
homogeneous generalization could not be used for other anonymization techniques (such
as anatomy, slicing and randomization, etc), i.e., the method of ring handling could not be
used to reduce the information loss caused by other anonymization techniques. However,
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our method can be used to reduce the information loss caused by all the above anonymiza-
tion techniques, since our refining partition is the local optimal partition of initial partition,
and anonymization on the refining partition only cause less information loss.

In anonymized data publishing, to reduce the information loss, the records with the
same NSAs values should first be divided into blocks with the anonymizing demands of ℓ-
diversity. Then, the records of each block in the partition are anonymized. There are many
partition methods [19] [20] [5] [6] [22] [21], but none of them meets the demands of the
optimizing model, since the partition methods in [19] [5] [6] [22] [21] could not ensure
that in each block of the partition the frequencies of different SA values are uniform and
the numbers of different SA values is minimized, and the method in [20][8] does not take
into account the NSAs values of the records. In addition, all the above methods do not
take into account the correlation between SA and each of NSAs. Therefore, as stated in
Section III, while the records of the blocks in the partition divided by these methods are
anonymized by the above anonymizing techniques, there is more correlation loss.

3. Problem Definition

Consider a dataset T , in which there are 3 classes of attributes: (1) identifier attributes
(IDs), such as name, social security number, IDs are removed in the published table to
prevent immediate identification of individuals; (2) sensitive attribute (SA), the SA of in-
dividual’s record is the sensitive value of individual; (3) non-sensitive attributes (NSAs),
which contain all attributes that do not fall into the previous two categories and which
taken together, can potentially identify an individual. Each record in T represents a dis-
tinct individual, and each SA value must be distinctively different. We introduce the ’dif-
ferent’ in two aspects: (1) if SA is a nominal attribute that each value in a SA value set of T
would be semantic distinguishable, and (2) if SA is a numerical attribute the difference of
any two values are greater than a certain threshold. Otherwise, T should be preprocessed.

3.1. Attack Assumption and ℓ-diversity

We assume an attacker may obtain the NSAs and the IDs of any record in T by sources
other than T ∗ (e.g. a public voters table). Let H be the attacker’s knowledge containing
NSAs values and IDs values of all known individuals. In the worst case, the attacker may
access to the NSAs of every individual, thus by joining H and T ∗ on NSAs, record t∗ in
T ∗ may be linked to an individual (i.e., t∗ is the anonymized record of the individual’s
record). ℓ-diversity principle aims at preventing the attacker from finding an individual’s
actual SA value with a probability higher than 1/ℓ.

Definition 1 (ℓ-diversity principle [14], [15]) Let T ∗ be an anonymized data table of T .
A records block B∗ of T ∗ is ℓ-diversity, if there are at least ℓ different SA values, which
may be the actual SA values of the records in B∗, and the numbers of the different SA
values are all not more than ⌊|B∗|/ℓ⌋. T ∗ is ℓ-diversity, if all the blocks of T ∗ are ℓ-
diversity.

Even if the attacker has known that the record of victim is included in B∗ by joining
H and T ∗ on NSAs, the attacker could not infer victim’s actual SA value with a probability
higher than 1/ℓ, since at least ℓ different SA values all may be victim’s actual SA value,
and the numbers of the SA values are not more than ⌊|B∗|/ℓ⌋.
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3.2. Our Goal

While the original block B is anonymized (to generate B∗), the anonymization methods
all destroy the correlations. In addition, as stated in Section II, some methods also lose
other information, since the NSAs values of records have been dealt. As H may be ob-
tained from public resources, data accepter may prefer to care the correlations between
SA and NSAs.

Therefore, our goal is to acquire a local optimal partition of T such that the
anonymized table T ∗, which is consisted of the anonymized blocks (of the blocks of
the partition), meets the following two conditions:

(1) ℓ-diversity principle is satisfied.
(2) the correlation loss between SA and NSAs is as less as possible.

3.3. Problem Definition and Optimizing Model

Consider any anonymized block B∗ in T ∗ (with ℓ-diversity). Let B be the original block
of B∗, t1, t2, . . . , tn be the records of B(n = |B|) and t∗1, t

∗
2, . . . , t

∗
n be the corresponding

anonymized records in B∗. Assume the SA value-set (multiset) composed of the SA values
appeared in B are S = {s1 : c1, s2 : c2, . . . , sm : cm}; m is the number of different SA
values, (m ≥ ℓ); ci is the number of the records with the SA value si (in B). For each
ci(1 ≤ i ≤ m), ci ≤ ⌊|B|/ℓ⌋, (i.e., ci/|B| ≤ 1/ℓ), since T ∗ is ℓ-diversity.

Property 1 the mean value of the probabilities, which the records (t∗) in B∗ are assigned
to their actual SA values (t [SA]), is p(t∗, t[SA]) =

∑m
i=1 (

ci
n )

2 ≤ 1
ℓ .

Proof. p(t∗, t[SA]) = 1
n

∑n
i=1 p(t

∗
i , ti[SA]) = 1

n (c1 ×
c1
n + c2 × c2

n

+ . . .+ cm × cm
n ) = 1

n

∑m
i=1

ci×ci
n =

∑m
i=1(

ci
n )

2 .

∀t∗i ∈ B∗, 1 ≤ i ≤ n, p(t∗i , ti[SA]) ≤ 1
ℓ , as B∗ is ℓ-diversity.

Thus, 1
n

∑n
i=1 p(t

∗
i , ti[SA]) ≤ 1

ℓ .

Therefore, p(t∗, t[SA]) =
∑m

i=1 (
ci
n )

2 ≤ 1
ℓ .

The precise correspondences (such as an actual SA value is assigned to an individual
in B) are all converted to imprecise correspondences (such as m different SA values are as-
signed to the individual in B∗) by anonymization methods. Thus, the smaller the value of
m is, the more precise correspondence is (i.e., the less correlation loss is), and the higher
the probability value is, the more precise correspondence is (i.e., the less correlation loss
is). However, ℓ is the minimal value of m and 1/ℓ is the maximal value of the probability,
due to ℓ-diversity.

Therefore, for each block B∗ of T ∗, the bigger the value of the average probability
p(t∗, t[SA]) is, the less correlation loss is (i.e., the more precise correspondence is). In
addition, as

∑m
i=1 ci = n,

p(t∗, t[SA]) =
m∑
i=1

(
ci
n
)
2
=

c21 + c22 + . . .+ c2m
(c1 + c2 + . . .+ cm)2

.
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Having computed the partial derivatives of p(t∗, t[SA]) for c1, c2, . . . , cm, we acquire
the conditional extreme value, i.e., while the values of c1, c2, . . . , cm are the same and m
is ℓ, the value of p(t∗, t[SA]) is maximized, the maximal value is 1/ℓ.

However, the optimal partition that put the records with the same NSAs values into
the same blocks (with the demands of ℓ-diversity) is NP-hard [7] [11]. Thus, there are
often many blocks having more SA values and uneven frequencies of SA values, such
that the p(t∗, t[SA]) values of the anonymized blocks of these blocks are lower. To gen-
erate ℓ-diverse T ∗ (of T ) so that the correlation loss is as less as possible, we propose an
optimizing model.

Definition 2 (Optimizing model) Let T ∗ be an anonymized data table of T . For each
block B∗ of T ∗ (let B∗ be the anonymized block of B), if the following conditions (1),
(2), (3) and (4) are satisfied, and the p(t∗, t[SA]) is maximized, then T ∗ is an optimizing
ℓ-diverse anonymized data table.

(1) A part of NSAs (having higher correlation with SA) of the records (of B) are the
same values;

(2) ci/n ≤ 1/ℓ, 1 ≤ i ≤ m;
(3)

∑m
i=1 ci = n;

(4) ℓ ≤ m ≤ n.

In the best case, the NSAs of the records of B should have the same values. While the
records with different NSAs values must be merged to the block for meeting the demands
of ℓ-diversity, we should ensure that a part of NSAs (having higher correlation with SA)
of the records of B are the same values, as stated in the condition (1), i.e., we should as
less as possible break the correlations (between NSAs and SA in T ) in B∗. In addition, the
conditions (2), (3) and (4) ensure that B∗ is ℓ-diversity.

4. Anonymization on Refining Partition

We follow the following framework. (1) The records are divided into blocks with the
anonymizing demands of ℓ-diversity. (2) Based on the optimizing model, the initial parti-
tion is refined. (3) The records of each block of the refining partition are anonymized by
the methods such as anatomy, generalization or slicing, etc.

4.1. Initial Partitioning

To preferentially retain the correlations between a part of NSAs (having more interrelated
with SA) and SA, which further increases the data utility of anonymized table, we also
propose a partitioning approach based on the lexicographic and NSAs sorting by the cor-
relation between NSA and SA.

1) Computing correlation
Mean-square contingency coefficient [4] is a chi-square measure of correlation be-

tween two categorical attributes. For continuous attributes, we first apply discretization
to partition the range of a continuous attribute into intervals and then treat the collection
of interval values as a discrete value-set. Given a NSA (A1) with value-set of data table
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v11 , v12 , . . . , v1d1 , and SA with value-set of data table s1, s2, . . . , sd. Their sizes of value-
sets are thus d1 and d, respectively. The mean-square contingency coefficient between A1

and SA is defined as:

ϕ2(A1, SA) =
1

min{d1, d} − 1
×

d1∑
i=1

d∑
j=1

(fij − fi.f.j)
2

fi.f.j
.

Here, fi. and f.j are the fraction of occurrences of v1i and sj in the data, respec-
tively. The fij is the fraction of co-occurrences of v1i and sj in the data. The fi. and
f.j are the marginal totals of fij : fi. =

∑d
j=1 fij and f.j =

∑d1

i=1 fij . Obviously,
0 ≤ ϕ2(A1, SA) ≤ 1. The higher the value of ϕ2(A1, SA) is, the more related between A1

and SA are.
2) Partitioning
Having computed the correlations for SA and all NSAs of data table T , the NSAs

of T are sorted by their correlations in descending. Then, the records of T are sorted
by lexicographic NSAs order. The records are partitioned in a top-down fashion. First,
we consider attribute A1, which the value of ϕ2(A1, SA) is the biggest among all NSAs
(A1, A2, . . . , A|NSAs|), and put records with the same A1 value in the same block. This
results in a set of blocks B1, B2, . . . , Bm, (assume d1 = m). However, some blocks may
not satisfy the anonymizing demands of ℓ-diversity. For each such block Bj , we random
find a neighboring block Bx (either Bj−1 or Bj+1), and merge Bx with Bj . After we have
done with A1, we recursively partition the resulting blocks using the next attribute in order
(i.e., A2). In some blocks, the records may have different A1 values (due to merging).
For such blocks, we do not attempt to further decompose them recursively using another
attribute. The partitioning strategy is repeated until all blocks are finalized or there are no
more attributes that can be used for recursive partitioning. The detailed process is shown
in Algorithm 1.

Each block of the initial partition generated by Algorithm 1 satisfies the anonymiz-
ing demands of ℓ-diversity. As shown in line 1 of Algorithm 1, B is divided into
B1, B2,. . .,Bm using the current NSA (i.e., Ai). For each Bj which do not meet the
anonymizing demands of ℓ-diversity, a neighboring block of Bj (i.e., Bx) is merged to
Bj . At worst, B1, B2, . . . , Bm are all merged to the block (i.e., B), and B satisfies the
anonymizing demands of ℓ-diversity (as stated by the Precondition of Algorithm 1). Thus,
at the end of the iterations (line 2 ∼ 5), the sub-blocks of B must meet the anonymizing
demands of ℓ-diversity. Some sub-blocks of B, which have different Ai values (due to
merging), are output. In some sub-blocks of B, the records have the same Ai values. If
i = |NSAs|, output such sub-blocks. Otherwise, the partition attempts to further decom-
pose them until all blocks are finalized or there are no more attributes that can be used
for recursive partitioning. Therefore, as stated above, each block of the initial partition
generated by Algorithm 1 satisfies the anonymizing demands of ℓ-diversity.

4.2. Refining Partitioning and Anonymizing

To maximize the mean probabilities which individuals are assigned to their actual SA
values, according to the optimizing model, in each block of partition there should exactly
be ℓ different SA values, and the frequencies of different SA values should be higher
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Algorithm 1 Partitioning (B, ℓ,Ai)
Precondition: B satisfies the anonymizing demands of ℓ-diversity.
Input: a set of records B, parameter in ℓ-diversity, attribute Ai is used for partitioning.
Output: sub-blocks of B.
1: Partition B into B1, B2, . . . , Bm using Ai

//Assume |Ai| = m.
2: for each Bj which do not meet the anonymizing demands of ℓ-diversity do
3: Random find Bx as a neighboring block of Bj

// Bx may be Bj−1 or Bj+1

4: Merge Bj and Bx

5: end for
6: for each Bj do
7: if (∃ta, tb ∈ Bj ∧ ta[Ai] ̸= tb[Ai]) ∨ (Ai = A|NSAs|) then
8: Output(Bj) //Output the block Bj

9: else
10: Partitioning (Bj , ℓ, Ai+1) // recursive call
11: end if
12: end for

and uniform. Therefore, we refine the initial partition such that any block of the refining
partition is composed of ℓ records with mutual different SA values. The residual records
of the neighbor block of initial partition are merged to form a sub-block (composed of
ℓ records with different SA values) of refining partition. In this case, the p(t∗, s) value
of each anonymized block of the block in the refining partition is the maximum value
(i.e., 1/ℓ). Finally, the last residual records (which the number of records with different
SA values is less than ℓ) are respectively inserted into the corresponding sub-blocks of the
refining partition. The detailed process is shown in Algorithm 2.

Property 2 In Algorithm 2, for each Bi (1 ≤ i ≤ m), at the end of the iterations (line 4
∼ 8), the number of nonempty buckets is |Bi| mod ℓ, and there is only one record in each
nonempty bucket.

Proof. For each iteration, ℓ records with the mutual different SA values are removed from
the ℓ largest nonempty buckets (i.e., in each bucket, only one record is random removed).
So the iterations all are executed ⌊|Bi|/ℓ⌋ times, denoted as I1, I2, . . ., I⌊|Bi|/ℓ⌋, respec-
tively.

Otherwise, we assume the iterations all are executed ⌊|Bi|/ℓ⌋−1 times. At the end of
the iterations, the number of the nonempty buckets is at most ℓ-1, (otherwise, the iterations
could not have terminated). Then there is a set of nonempty buckets with at least 2 records
(as the number of the residual records (termed x) is ℓ ≤ x < 2ℓ and the number of the
nonempty buckets is at most ℓ− 1).

Let a residual buckets (rb) have at least 2 records. Before iteration I⌊|Bi|/ℓ⌋−1 starts,
at most ℓ-1 buckets (including rb) have at least 3 records (otherwise, there would be
ℓ nonempty buckets after I⌊|Bi|/ℓ⌋−1, contradicting the fact that I⌊|Bi|/ℓ⌋−1 is the last
iteration). Thus, rb loses a record for I⌊|Bi|/ℓ⌋−1, meaning that, before I⌊|Bi|/ℓ⌋−1, the rb
has at least 3 records.

Similarly, before I⌊|Bi|/ℓ⌋−2, at most ℓ − 1 buckets (including rb) have at least 4
records (otherwise, there would be ℓ buckets with at least 3 records after I⌊|Bi|/ℓ⌋−2,
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contradicting our earlier analysis). Thus, rb loses a record for I⌊|Bi|/ℓ⌋−2, meaning that,
before I⌊|Bi|/ℓ⌋−2, the rb has at least 4 records.

Carrying out the same discussion to the other iterations, we arrive at a fact that the rb
has at least ⌊|Bi|/ℓ⌋+2 (i.e., ⌊|Bi|/ℓ⌋+1) records before I1. This fact violates that there
are at most |Bi|/ℓ records with the same SA values in Bi.

For the similarly reason, we could get the fact, which there are at least ⌊|Bi|/ℓ⌋ + 1
records in a bucket before I1, and this fact violates that there are at most ⌊|Bi|/ℓ⌋ records
with the same SA values in Bi, if the iterations are executed less than ⌊|Bi|/ℓ⌋ times. Thus,
when the iterations terminate, it must have been executed ⌊|Bi|/ℓ⌋ times. So the number
of the residual records is |Bi| mod ℓ. The residual records must have mutual different SA
values (i.e., each non residual bucket has only one residual record.), otherwise, assume
there are two residual records having the same SA value s, using the above similarly
analysis, before I1, there must be ⌊|Bi|/ℓ⌋ + 1 records have the same SA value s. This
fact violates that there are at most |Bi|/ℓ records with the same SA values in Bi.

Property 3 In Algorithm 2, for each Bi (1 ≤ i ≤ m), at the end of the iterations (line 4
∼ 8), ⌊|Bi|/ℓ⌋ blocks (i.e., Sub B[i1], Sub B[i2], . . ., Sub B[i⌊|Bi|/ℓ⌋]) are generated. If
|Bi| mod ℓ is not zero, then for each residual record (t), there is a Sub B[ic], (1 ≤ c ≤
⌊|Bi|/ℓ⌋), in which the SA values of the records are different with t[SA].

Proof. Assume, on the contrary, there is a residual record (t), for ∀ Sub B[ic], (1 ≤
c ≤ ⌊|Bi|/ℓ⌋), ∃t′ ∈ Sub B[ic] ∧ t[SA]= t′[SA]. Then, the number of the records (hav-
ing the same SA value with t) is ⌊|Bi|/ℓ⌋ + 1. This fact violates that there are at most
⌊|Bi|/ℓ⌋ records with the same SA values in Bi. Thus, for each residual record (t), there
is a Sub B[ic], (1 ≤ c ≤ ⌊|Bi|/ℓ⌋), in which the SA values of the records and t are mutual
different.

Property 4 In Algorithm 2, for each record t in R B (line 16), there is a block Sub B[j]
(1 ≤ j ≤ count), which t[SA] and the SA values of the records in Sub B[j] are mutual
different.

Proof. For ∀t ∈ R B, ∃Bi(1 ≤ i ≤ m) ∧ t ∈ Bi, as t is a residual record of Bi (at
the end of the iterations (line 4 ∼ 8)). By Property 3, we know that there is a Sub B[ic],
(1 ≤ c ≤ ⌊|Bi|/ℓ⌋), in which the SA values of the records are different with t. Thus, the
Sub B[ic] would be as Sub B[j] (1 ≤ j ≤ count).

Here we propose a hypothesis. Let T ∗
3 be an anonymized table, which is generated by

the following two steps.
First, for each Bi,(1 ≤ i ≤ m), if |Bi| mod ℓ is not zero, then all the residual records

are inserted into their corresponding sub-blocks (since as stated in Property 3, for each
residual record (t), there is a Sub B[ic], (1 ≤ c ≤ ⌊|Bi|/ℓ⌋), in which the SA values of the
records are different with t[SA]). Let (p(t∗, s))′ be the mean probability, which individuals
are assigned to their actual SA values in the anonymized blocks of the sub-blocks of Bi.
As stated in Property 1, p(t∗, s) is the mean probability that individuals are assigned to
their actual SA values in the anonymized blocks of Bi. Then, p(t∗, s) ≤ p(t∗, s)′, as
shown in Property 5.

Second, T ∗
3 is composed of the anonymized sub-blocks of these sub-blocks of B1, B2,

. . ., Bm. Assume T ∗
2 is composed of the anonymized blocks of B1, B2, . . . , Bm, and T ∗

1
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Algorithm 2 Refining-partition-anonymizing (T, ℓ)
Precondition: (1) T satisfies the anonymizing demands of ℓ-diversity; (2) the records in T have
been sorted by lexicographical and NSAs attributes (A1, A2, . . . , A|NSAs|) ordering.
Input: a data table T , the parameter in ℓ-diversity.
Output: anonymized table T ∗.
1: Partitioning (T, ℓ, A1) // also by others partition approach

// Let B1, B2, . . . , Bm be the blocks of initial Partition
// Let Sub B be an array consisted of sub-blocks
// Let count be counter, which initial value is 0
// R-B is used to retain residual records, which
// initial value is Φ.

2: for each Bi do
3: Hash the records in Bi by their SA values to buckets

//each bucket per SA value; at least ℓ non-empty hash
//buckets due to at least ℓ records with the different SA values in Bi

4: while (there are at least ℓ non-empty hash buckets) do
5: Take ℓ largest non-empty buckets b1, b2, . . . , bℓ
6: Set count= count+1
7: Set Sub B[count]=Φ // i.e., Sub B[count]is empty
8: Random remove a record of each bj to Sub B[count] // 1 ≤ j ≤ ℓ
9: end while

10: Remove the record of each nonempty bucket to R B
//only |Bi| mod ℓ nonempty buckets, each nonempty
//bucket per record, as shown in Property 2

11: while there are at least ℓ records with different SA values in R B do
12: Set count= count+1
13: Set Sub B[count]= Φ // i.e., Sub B[count]is empty
14: Remove these ℓ records of neighbor blocks to Sub B[count]
15: end while
16: end for
17: if R B is non empty then
18: for For each t in R B do
19: Find a Sub B[j] such that

∃Bi(t ∈ Bi) ∧ ∃Sub B[j](Sub B[j] ⊆ Bi) ∧ ∀t′ ∈ Sub B[j](t′[SA] ̸= t[SA]),
1 ≤ i ≤ m, 1 ≤ j ≤ count
// as shown in Property 4

20: Remove t to Sub B[j]
21: end for
22: end if
23: Anonymize each Sub B[i], (1 ≤ i ≤ count)

// by such as slicing, anatomy, generalization, etc.
24: Output the anonymized block of Sub B[i]
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is generated by anonymizing on refining partition. Then, T ∗
1 , T ∗

2 and T ∗
3 satisfy Property

6.

Property 5 p(t∗, s) ≤ p(t∗, s)′

Proof. As stated in Property 1, S = {s1 : c1, s2 : c2, . . . , sd : cd}, d is the number
of different SA values in Bi, cj is the number of the records having sj as SA value, and
p(t∗, s) =

∑d
j=1(

cj
|Bi| )

2. There are following two cases.
Case 1 (the frequencies of the SA values in Bi are uneven): assume cb(1 ≤ b ≤ d) is

biggest among c1, c2, . . . , cd. Then cb ≤ ⌊|Bi|/ℓ⌋ (as there are at most ⌊|Bi|/ℓ⌋ records
with the same SA values in Bi, and cd must be integer). Thus,∑d

j=1(
cj
|Bi| )

2 < 1
|Bi| ×

∑|Bi| cb
|Bi| =

cb
|Bi| ≤

⌊|Bi|/ℓ⌋
|Bi| .

Therefore, the average probability of Bi is p(t∗, s) < ⌊|Bi|/ℓ⌋
|Bi| . But the average prob-

ability, which these individuals are assigned to their actual SA values in the anonymized
blocks of Sub B[i1], Sub B[i2], . . . and Sub B[i⌊|Bi|/ℓ⌋] is

p(t∗, s)′ = 1
|Bi|

∑⌊|Bi|/ℓ⌋
x=1

∑|Sub B[ix]|
1

1
|Sub B[ix]| =

⌊|Bi|/ℓ⌋
|Bi| .

Thus, p(t∗, s) < p(t∗, s)′.
Case 2 (the frequencies of the SA values in Bi are uniform): then the c1, c2, . . . , cd are

equal (denoted by c), and |Bi| = c× d and d ≥ ℓ and c/|Bi| ≤ 1/ℓ.
The mean probability, which the individuals are assigned to their actual SA values in

the anonymized block of Bi, is

p(t∗, s) =
∑d

j=1(
cj
|Bi| )

2 =
∑d

j=1(
c

|Bi| )
2 = d×c

|Bi| ×
c

|Bi| =
c

|Bi| =
1
d .

The mean probability which these individuals are assigned to their actual SA values
in the anonymized blocks of Sub B[i1], Sub B[i2], . . . and Sub B[i⌊|Bi|/ℓ⌋] is

p(t∗, s)′ = 1
|Bi|

∑⌊|Bi|/ℓ⌋
x=1

∑|Sub B[ix]|
1

1
|Sub B[ix]| = ⌊|Bi|/ℓ⌋

|Bi| = ⌊(d×c)/ℓ⌋
d×c ≥

⌊(d×c)/d⌋
d×c = c

d×c = c
d×c = 1

d .

Thus, p(t∗, s) ≤ p(t∗, s)′.
According to Case 1 and Case 2, p(t∗, s) ≤ p(t∗, s)′.

Property 6 The average probabilities, which individuals are assigned to their actual SA
value in T ∗

1 , is more than that of T ∗
3 and T ∗

2 .

Proof. According to Property 5, for each Bi,(1 ≤ i ≤ m), p(t∗, s) ≤ p(t∗, s)′. Therefore,
the average probability, which individuals are assigned to their actual SA value in T ∗

3 , is
more than that of T ∗

2 .
In the following, we prove that the average probability of T ∗

1 is more than that of T ∗
3 .

Assume at the end of line 14 of Algorithm 2, there are t1, t2, . . . , tp in R B. Among
them, assume ta1 , ta2 , . . . , taz (z ≤ p) be a part of residual records of Bi, (1 ≤ i ≤ m).
At the end of the iterations (line 4 ∼ 8), let there be y residual records of Bi, then
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z ≤ y ≤ ℓ− 1, as some residual records of Bi and some residual records of the neighbor
blocks of Bi may be merged to a new sub-block of refining partition (line 10 ∼ 13).

At the end of the iterations (line 4 ∼ 8), let the sub blocks of Bi be Sub B[i1],
Sub B[i2], . . ., Sub B[i⌊|Bi|/ℓ⌋]. At the end of the iterations (line 16 ∼ 18), i.e., ta1 , ta2 ,
. . ., taz have been inserted into some sub blocks (by Property 4) of Bi. Then the average
probability, which the individuals (whose records are in Bi) are assigned to their actual
SA values in T ∗

1 , is:

p(t∗, s)′′ = 1
|Bi| (

(y−z)
ℓ +∑⌊|Bi|/ℓ⌋

x=1

∑|Sub B[ix]|
j=1

1
|Sub B[ix]| ) =

⌊|Bi|/ℓ⌋
|Bi| + (y−z)

|Bi| .

But the average probability, which the individuals (whose records are in Bi) are
assigned to their actual SA values in T ∗

3 , is

p(t∗, s)′ = 1
|Bi|

∑⌊|Bi|/ℓ⌋
x=1

∑|Sub B[ix]|
1

1
|Sub B[ix]| =

⌊|Bi|/ℓ⌋
|Bi| .

As z ≤ y, y−z
|Bi| ≥ 0.

Thus, p(t∗, s)′ ≤ p(t∗, s)′′.
In addition, as stated above, the mean probability of T ∗

3 is more than that of T ∗
2 . Thus,

the mean probability of T ∗
1 is more than that of T ∗

2 .

4.3. The Analysis of Anonymization on Refining Partition

1) Security Analysis
Assume that the T ∗ is generated by the Algorithm 2 based on slicing (anatomy or

generalization, etc.). Since in each block of T ∗ there are at least ℓ different SA values and
the numbers of the different SA values are the same value 1, the probabilities, which the
individuals (linked to the anonymized block by their NSAs values) are assigned to their
actual SA values, all are not more than 1/ℓ. Therefore, T ∗ is ℓ-diversity.

2) Utility Analysis
(1) T ∗ retains more correlations
In this section, we illustrate that the T ∗ generated by our approach has more data

utility from the following two aspects.

Property 7 The correlations between NSA (having more interrelated with SA) and SA
are retained in T ∗.

Proof. Assume that the NSAs sorting by the correlations (between NSAs and SA in T ) in
ascending are A1, . . . , Ay, , A|NSAs|. Let y(1 ≤ y ≤ |NSAs|) be the maximum value,
such that in each blocks of T ∗ the records have the same Ay value. Let vx1 , vx2 , . . . , vxdx

be the set which is consisted of the Ax values in T , and dx be the size of such set.
s1, s2, . . . , sd is consisted of the SA values in T , and d be the size of such set.

For each x, (1 ≤ x ≤ y), in each block of T ∗, the records have the same Ax value,
due to our partition approach. Thus, each record of T ∗ has the same Ax value with that
of the homologous record of T , no matter what methods (such as generalization, anatomy
(or bucketization) and slicing, etc.) have been used to generate T ∗, i.e., the Ax values of
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the records in T ∗ retain their original forms in T . Therefore, for each vxi (1 ≤ i ≤ dx),
the frequency of vxi value in T ∗ (i.e., f∗

xi
.) is equal to fxi . (i.e., the frequency of vxi value

in T ).
The frequency of SA value in T ∗ is equal to that of the homologous SA values in T ,

as the above anonymizing methods do not destroy the frequency of SA value of T . Thus,
for each sj(1 ≤ j ≤ d), the frequency of sj in T ∗ is equal to that of in T , i.e., f∗

.j is equal
to f.j .

In addition, let fxi.j be the co-occurrences of vxi and sj in T , i.e., there are fxi.j

records, which Ax values are vxi and SA values are sj . Based on our partition approach
we know that the records are divided into fxi.j sub-blocks of the refining partition. In each
sub-block, there only is one record has the SA value sj , as the SA values of the records in
each sub-block are mutual different. Since the Ax values of the records in each sub-block
are the same value, and the Ax values of the records of fxi.j sub-blocks are the same
value, in the anonymized sub-blocks of the fxi.j sub-blocks (in T ∗), the Ax values of the
records remain vxi . Therefore, while the co-occurrences of vxi and sj are calculated in
T ∗, there only are the fxi.j blocks having the co-occurrences, and there only is one co-
occurrence in each block. Therefore, the co-occurrences of vxi and sj in T ∗ (i.e., f∗

xi.j
)

remain fxi.j , which is the co-occurrences of vxi and sj in T .
In conclusion, each parameter of ϕ2(Ax, SA) calculated in T ∗ is the same as that is

calculated in T . Thus, the ϕ2(Ax, SA) value in the T ∗ is the same as that is calculated in
T , since all the values of the parameters of the formula ϕ2(Ax, SA) computed in T are
the same as that are calculated in T ∗. As 1 ≤ x ≤ y, the NSA (having more interrelated
with SA) and SA are retained in T ∗.

Our approach increases the utility of T ∗, as the correlations between a part of the
NSAs (having more interrelated with SA) and SA are retained in T ∗.

(2) T ∗ has lower bound of RE
The reconstruction error [20] [13] [12] [18] [2] (denoted by RE) often is used to mea-

sure the information loss (between NSAs and SA) of published table caused by selected
anonymized technique, such as slicing, anatomy and generalization, etc.

As stated in [1], the actual NSAs values of the records of published table are easy
to be acquired, in this section while the RE of the anonymized table is computed, the
information loss of NSAs values of records may not be taken into account, even if the
anonymized table is generated by generalization. For illustration purposes, and to show
the RE of the anonymized table generated by our method (i.e., refining partitioning and
anonymizing), assume that T ∗ is generated by anatomy, as all the NSAs values of the
records in T ∗ retain original forms. We demonstrate that T ∗ has lower bound of RE, as
shown in Property 8.

For each block B∗ of T ∗ (B is the original block of B∗), let SB be the SA value-set
composed of all the SA values appeared in B. For each individual (t) whose record is
linked to B∗ by the NSAs values of t, the RE of t is the probability that all the values in
SB (which are not the actual SA value of t) are assigned to t.

Property 8 T ∗ has lower bound of RE.

Proof. Let |T | = n, and at the end of line 14 of Algorithm 2, there are r records in R B.
There are following two cases.
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Case 1 (r = 0): by Algorithm 2 we know that each block B in T ∗ has ℓ individual
records, and their SA values are mutual different. Therefore, the probability that each
individual (t) is assigned to the actual SA value of t is 1/ℓ. So the RE of t is 1 − 1/ℓ.
Thus the RE of all individual records in T ∗ are∑n

1 (1−
1
ℓ ) = n× (1− 1

ℓ ).

Case 2 (r ̸= 0): at the end of line 14 of Algorithm 2, there are n − r individual
records which have been divided into blocks, in which there are exactly ℓ individual
records having mutual different SA values. According to the analysis of Case 1, the total
RE of these records is

(n− r)× (1− 1/ℓ).

Next, we show after inserting a residual record t to a block, in which the SA values
of the records and the SA value of t are mutual different (as shown in line 16 ∼ 19 of
Algorithm 2), the overall RE increases by 1. Without loss of generality, assume that t is
inserted to a block (with d records). Before the insertion, following the derivation of Case
1, the total RE of the records in the block is d× (1− 1

d ). After the insertion, the total RE
becomes (d + 1) × (1 − 1

d+1 ), so that the total RE of the records in the block increases
by:

(d+ 1)× (1− 1
d+1 )− d× (1− 1

d ) = 1.

As mentioned earlier, before the insertion step starts, the total RE equals (n − r) ×
(1− 1

ℓ ). Therefore, after insertion all r residual records, the total RE becomes:
(n− r)× (1− 1

ℓ ) + r = n× (1− 1
ℓ )× (1 + r

n×(ℓ−1) ).
That is greater than the lower bound n× (1− 1/ℓ) by a factor of (1 + r

(n×(l−ℓ)) ).
Generally T usually is a large data table, the number of the residual records is far less

than n, so r ≪ n× (ℓ− 1), i.e.,1 + r
n×(ℓ−1) ≈ 1.

Therefore, in this case, the total RE of the individual records in T ∗ is extremely close
to the lower bound.

Actually the higher the probabilities that the individuals are assigned to their actual SA
values are, the lower bound of RE is. In our approach, the probabilities that individuals
are assigned to their actual SA values are increased, as stated in Property 5. Thus, T ∗

has lower bound of RE. In the same time, the lower bound of reconstruction error of T ∗

illustrates that our approach is valid to increase the data utility of the published data.
(3) Cost Analysis
Before we apply Algorithm 2, we need compute the correlations between NSAs and

SA, then rearrange the order of NSAs and sort the records for Algorithm 1. Suppose the
number of attributes in NSAs is b, each partition defined by the first attribute of NSAs
recursively is repartitioned up to b times. In the worst case, the cost of the partition is
|T | × (b+ log(|T |)). In addition, for each block B of initial partition, the iterations (line
4 ∼ 8) are executed ⌊|B|/ℓ⌋ times. In the worst case, the |B| mod ℓ residual records need
be inserted in the sub blocks of B (lines 16 ∼ 18). In generally, |B|, ℓ and b are negligible
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comparing with |T |. Therefore, the overall cost of anonymization on refining partition is
O(|T | × log(|T |)).

5. Experiments

All of the experiments are conducted in Delphi7.0 and are run on an Intel Core 2.8 GHz
machine and 2 GB RAM with Windows XP. We use the Adult dataset from the UC Irvine
machine learning repository [10], which is comprised of data collected from US census.
The dataset has been used in several literatures [14] [15] [11] [19] [13] for privacy pre-
serving data publication. Records with missing values are eliminated, and there are 30718
valid records used in our experiments. The Adult dataset contains 15 attributes in total.
We randomly project 8 attributes (Age, Sex, Education-Level, Marital-Status, Race, Work-
lass, Country, Occupation) from the original table as the experimental dataset, and the
attributes for Adult dataset in our experiments are described in TABLE I. The Occupation
is taken as SA and the other attributes are taken as NSAs.

Table 1. Description of the dataset

ID Attribute Type Cardinality

1 Age Continuous 72
2 Sex Categorical 2
3 Education-Level Continuous 16
4 Marital-Status Categorical 7
5 Race Categorical 5
6 Work-Class Categorical 7
7 Relationship Categorical 6
8 Occupation Categorical 14

In this section, we illustrate that the T ∗ generated by our method has less correspon-
dences (between NSAs values and SA values of records) loss. If the correspondences (be-
tween NSAs values and SA values of records) in T ∗ are not damaged, then for each NSA
(Ax) of NSAs, there is not the correlation (between Ax and SA) loss, since the value of
ϕ2(Ax, SA) in T is equal to the value of ϕ2(Ax, SA) in T ∗. Therefore, the less the corre-
spondence loss is, the less correlation loss is (the more data utility of T ∗ is).

The count queries [20] [12] [18] [2] usually are used to measure the correspondences
loss of anonymized table. However, the methods only select a small part of records of
T as query predicates. Thus, the count queries do not accurately measure the loss. To
accurately measure the correspondences loss, the approach of [9] is used in this paper, all
the records of T are taken as query predicates to query in anonymized table T ∗. Assume
S is the SA value-set composed of the SA values of the records in T . For each record (t) in
T , let St be the SA value-set composed of SA values of the records having the same NSAs
values with t. Obviously, for each s in S − St, in T there is not the record, which has
the NSAs values t[NSAs] and has the SA value s. But in T ∗ the values in S − St may be
the SA values of t∗ (the anonymized record of t), as the anonymization methods (such as
anatomy, slicing, generalization, etc.) all disturb the correspondence between NSAs and
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SA of the records of T . Thus, the probability, which the values in S − St may be the
SA value of t∗ (in T ∗), is taken as the normalized correspondences loss penalty (NLP) of
the record t (as shown in Definition 3). The minimum value of NLP(t∗) is zero, and the
correspondences loss is zero when record t∗ is generated from t. The GLP is a normalized
version of NLP. The smaller the value of NLP(t∗) is, the better data utility is achieved,
so do as GLP(T ∗). In this paper, the GLP is used to measure the correspondences loss of
anonymized table generated by different anonymization approaches.

Definition 3 (GLP [8],[9]]) Let T ∗ be an anonymized data table of T . Assume that S is
the SA value-set of T . Let t[SA] be the SA value of t, and St be a SA value-set consisted of
the SA values of the records having the same NSAs values with t, i.e., ∀t ∈ T, ∃St(t[SA] ∈
St)∀t′ ∈ T (t[NSAs] = t′[NSAs] → t′[SA] ∈ St). The normalized correspondences loss
penalty that generate record t∗ from t (t and t∗ belong to the same individual) is NLP.
NLP(t∗)=

∑
s∈(S−St)

Pr(t
∗[SA] = s). The GLP is a normalized version of the NLP.

In the following discussion, our method anonymization on refining partition is de-
noted by ARP, the anonymization on the initial partition is denoted by AIP. We select
bucketization as the anonymization approach of ARP and AIP, since we only to compare
the correlation loss of anonymized data, as stated in our goal (of Section III). Since the
partition of anatomy [20] (denoted by AT) often is used in other methods [19] [13] [18],
we compare the GLP of AT with ARP. In addition, since non-homogeneous generalization
(denoted by NG) also is used to reduce the information loss caused by generalization, as
stated in literature [19], we compare the GLP of NG with ARP. Without loss generality,
we also generate the partition of NG by Algorithm 1.

Our experiments demonstrate that the execution-time and correspondences loss of
ARP comparing with AIP, NG and AT, when privacy level (ℓ), the size (n) of the dataset
and the size (d) of NSAs of dataset are varied.

5.1. Varying Privacy Level

1) Experimental results
In this experiments, we set the size of the dataset n=20 thousands. With privacy level

ℓ increase, the execution time and the GLP of four methods are shown in Fig. 1 and Fig.
2.

(1) With ℓ increase, the execution times of four approaches are increasing, as shown
in Fig. 1. Among them, the execution time of NG is always maximal. The execution time
of ARP is more than that of AT and AIP, and there are fluctuations in the execution time
of AT.

(2) With ℓ increase, the GLP of four approaches are increasing, as shown in Fig. 2.
Among them, the GLP of AT is always maximal. The GLP of ARP and NG are almost the
same in statistical sense, and their values are always minimal.

2) The analysis of the experimental results
(1) For the experimental result (1), comparing with ARP and NG, the anonymization

of AIP is directly applied on the initial partition, so AIP spends less time than that of
ARP and NG. Comparing with ARP, NG separately anonymizes the NSAs of each record
of each block of initial partition, but ARP entirety anonymizes the NSAs of the records
of each sub-blocks. Thus, ARP spends less time than that of NG. Comparing with AT,
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Fig. 1. Execution time; varying ℓ

the partition approach of AIP need spend more time on computing the information of
SA values of blocks (for judging the demands of ℓ-diversity), the approach of AT only
counts the numbers of records of blocks (for judging the demands of ℓ-diversity), as the
SA values of the records of each block of AT are mutual different. The fluctuations in the
execution time of AT is because of the randomization of the partition, and with ℓ increase,
the execution time of AT is increasing, since it need spend more time on partitioning. With
ℓ increase, the numbers of the records in the blocks of initial partition are increasing, so
AIP spends more time on computing the information of SA values of blocks (for judging
the demands of ℓ-diversity), and comparing with AIP, ARP and NG need spend more time
to anonymize records. Therefore, with ℓ increase, the execution time of AIP, ARP and NG
are increasing.

(2) For the experimental result (2), in each block of AT, the SA values of records are
mutual different, and the NSAs values of records may be different since AT is not care
about the NSAs values of records. Thus, the GLP of AT is always maximal. Although
the records with same NSAs values are divided into same blocks of AIP, the numbers
of different SA values in the blocks of AIP are always more than ℓ and the records with
different NSAs values would be in the same block due to neighbor block merging (to meet
the demands of ℓ-diversity). Therefore, although the GLP of AIP is less than that of AT,
the GLP of AIP is still always more than that of NG and ARP, since comparing with
that of AIP, each individual is assigned to less SA values in the anonymized table of NG
and ARP. For the same reason the GLP values of NG and ARP are almost the same in
statistical sense. With ℓ increase, each individual would be assigned to more SA values in
the anonymized tables of four methods, but these values are not always the SA values of
the records with same NSAs values as that of the individual, so the GLP values of four
methods are increasing.
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Fig. 2. The correspondences loss (GLP); varying ℓ

5.2. Varying the Size of Dataset

1) Experimental results
In this experiments, we set privacy level ℓ=5. With the size of the dataset n increase,

the execution time and the GLP values of four methods are shown in Fig. 3 and Fig. 4.
(1) With n increase, the execution times of the four methods are increasing, as shown

in Fig.3. Among them, the execution time of NG is always highest while the execution
times of AT and AIP are less than that of NG and ARP.

(2) With n increase, the GLP of four methods are decreasing, as shown in Fig.4.
Obviously, the GLP of AT is always the maximal, while the GLP of NG and ARP are
always less than that of AIP and AT.

2) The analysis of the experimental results
(1) For the experimental result (1), with n increase, there are more records need be

anonymized, so the execution times of four methods are increasing. Comparing with NG
and ARP, the anonymization of AIP is directly applied on the initial partition, so the
execution time of AIP is less than that of ARP and NG. The execution times of ARP is less
than that of NG, as NG separately anonymizes the NSAs of each record of each block of
initial partition, but ARP entirety anonymizes the NSAs of the records of each sub-blocks.

(2) For the experimental result (2), with n increase, there are more records with the
same NSAs values in original data table, and the size of the SA value-set consisted of the
SA values of the records with the same NSAs values is increasing. Thus, the probability
that each record t takes SA values in value-set St (consisted of the SA values of the records
having the same NSAs values with t) is increasing (S − St is decreasing), so the GLP of
four methods are decreasing.

As AT does not take into account that put the records with same NSAs values into same
blocks, in the anonymized data of AT, the probability that each record t is assigned to the
SA in value-set (St) is small. Thus, in the same n values, the GLP of AT is always the
maximal. Comparing with AT, AIP divides the records with same NSAs values into same
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Fig. 3. Execution time; varying n
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Fig. 4. The correspondences loss (GLP); varying n
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blocks, so, in the same n values, the GLP of AIP is smaller than that of AT. However, in
the blocks of AIP, there always are more than ℓ records, and the records with different
NSAs values would be divided into the same block due to neighbor block merging (to
meet the anonymizing demands of ℓ-diversity). Therefore, in the same n values, the GLP
value of AIP is always more than that of NG and ARP. As NG and ARP are based on the
same initial partition (generated by our method), and in the anonymized data of the two
methods, the probabilities that individuals are assigned to their actual SA values are local
maximal, the GLP values of NG and ARP are almost the same in statistical sense.

5.3. Varying the Size of NSAs

1) Experimental results
In this experiments, we set the privacy level ℓ=5 and set the size of a dataset n = 20

thousands. With the size (d) of the NSAs of the dataset increase, the execution times and
the GLP values of four methods are shown in Fig. 5 and Fig. 6.

As stated above, there are 8 attributes in the above experiments dataset T , and the
Occuption is taken as SA, the other attributes are taken as NSAs. The correlations are
computed by the mean-square contingency coefficient (as mentioned in Section IV). As-
sume that the NSAs sorting by the correlations (between NSAs and SA in T ) in ascending
are A1, A2, . . . , A7. We respectively project attributes, A1SA, A1A2SA, A1A2A3SA, . . .,
A1A2A3A4A5A6A7SA, from T as experimental datasets T1, T2, . . . , T7. Thus, the size
(d) of the NSAs in T1 is 1 (i.e., d = 1), the size (d) of the NSAs in T2 is 2 (i.e., d = 2), . . . ,
the size (d) of the NSAs in T7 is 1 (i.e., d = 7).

The anonymized datasets of the 7 datasets (T1, T2, . . . , T7) respectively are generated
by the four methods, the execution time and the GLP values of the four methods are
shown in Fig. 5 and Fig. 6. The abscissa 1 is the anonymized dataset of T1, abscissa 2 is
the anonymized dataset of T2, . . . , the abscissa 7 is the anonymized dataset of T7.

(1) With the size (d) of NSAs increase, the execution time of AIP increase, and the
execution time of AT is invariable. Yet, the execution times of ARP and NG decrease
at first, and then increase, as shown in Fig.5. Among them the execution time of NG is
always highest, the execution time of AIP is always lowest, while the execution time of
ARP is more than that of AIP and AT.

(2) With the size (d) of NSAs increase, the GLP of four methods are increasing, as
shown in Fig.6. Among them, the GLP of AT is always highest, while the GLP of NG and
ARP are less than that of AIP. The GLP of NG and ARP are almost the same in statistical
sense, and their values are always minimal.

2) The analysis of the experimental results
(1) For the experimental result (1), with the size (d) of NSAs increase, more NSAs are

used in recursively partition, so the initial partition of AIP, ARP and NG consume more
times. AIP directly anonymize the records on the initial partition, so the execution time of
AIP increases, and it is lower than that of ARP and NG. Although the execution time of
the initial partition is low when d is small, the record-blocks of the initial partition may
be larger, ARP and NG need to consume more time to anonymize the records of the larger
records blocks. Therefore, while d is small, ARP and NG still consume more time. With d
increasing, the records blocks of initial partition are smaller, ARP and NG only consume
less time to anonymize the records of the record-blocks. However, with d increasing, more
times need to be consumed on the initial partition. So with d is increasing, the execution
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times of ARP and NG decrease at first, and then increase. As stated above, ARP always
spends less time than that of NG, as ARP entirety anonymizes the NSAs of the records of
each sub-blocks. As AT does not consider the NSAs of the records, the execution time of
AT is invariable.
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Fig. 5. Execution time; varying d

(2) For the experimental result (2), with the size (d) of NSAs increase, there are less
records with the same NSAs values in original data table, the size of the SA value-set con-
sisted of the SA values of the records with the same NSAs values is decreasing. Thus, the
probability that each record t takes SA values in value-set St (consisted of the SA values
of the records having the same NSAs values with t) is decreasing (S − St is increas-
ing), so the GLP of four methods are increasing. As stated above, Algorithm 1 ensures
that the records with the same NSA (having more interrelated with SA) values are divided
into same blocks, and without loss generality, we also generate the partition of NG by
Algorithm 1, so anonymization on the records of the blocks causes less correspondence
loss, especially while d = 1, the records with the same A1 values are divided into the
same blocks, the GLP values of ARP, AIP and NG are zero. In addition, as stated above,
anonymization on refined partition causes the higher probability that records are assigned
to their actual SA values in the anonymized tables, so the GLP of NG and ARP are less
then that of AIP. As AT does not consider the NSAs of the records, the GLP of AT always
is higher than that of the other methods.

From the above experiments, we can conclude that ARP and NG could retain more
correspondences than that of AIP and AT, and although the GLP of ARP and NG are
almost the same in statistical sense, ARP spends less times than that of NG.
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Fig. 6. The correspondences loss (GLP); varying d

6. Conclusions and Future work

An approach of anonymizing on the refining partition of initial partition (ARP) has been
constructed, so that in same privacy level ARP preserves more utility than anonymization
on the initial partition (AIP). In addition, ARP has more utility than that of AT. A method
of initial partition also has been design, although in same privacy level and initial partition
ARP and NG have almost the same information loss in statistical sense, ARP spends less
times than that of NG, and ARP can be used for slicing, anatomy, randomization and
generalization, etc., but NG only is used for generalization.

For future work, we may consider to optimize the partition of the dataset with multiple
sensitive attributes, and apply our approach in practical privacy preserving data publish-
ing.
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