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Abstract. Programmers are often forced to implement performance-critical appli-
cations at a low abstraction level. This leads to programs that are hard to develop
and maintain because the program text is mixed with low level optimization tricks
and is far from the algorithm it implements.
Even if compilers are smart nowadays and provide the user with many automatically
applied optimizations, practice shows that in some cases it is hopeless to optimize
the program automatically without the programmer’s knowledge. A complementary
approach is to allow the programmer to fine tune the program by providing him with
language features that make the optimization easier. These are language abstractions
that make optimization techniques explicit without adding too much syntactic noise
to the program text.
This paper presents such language abstractions for two well-known optimizations:
bitvectors and SIMD (Single Instruction Multiple Data). The language features are
implemented in the embedded domain specific language Feldspar which is specif-
ically tailored for digital signal processing applications. While we present these
language elements as part of Feldspar, the ideas behind them are general enough to
be applied in other language definition projects as well.
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1. Introduction

The abstraction level of programming languages has dramatically increased during the
journey from assembly to modern functional and modeling languages. On the other hand,
more abstraction usually means less programmer control over platform specific features
of the code. In theory, optimizing compilers can solve this problem and generate object
code that optimally uses the memory structure and the instruction set of a given platform.
However, practice shows that there are many application areas where low abstraction level
languages (usually C or even assembly) are used either to support special hardware or to
meet the strict runtime performance and memory consumption requirements. This is one
reason for the fact that C is usually in the first 3 most popular languages (not rarely on
the first place) and even assembly is among the most popular 10-20 according to statistics
like the Tiobe Index [8] or LangPop [7].

Low abstraction level is a risk from the maintenance point of view. Code is more
verbose, and it reflects more how data is stored and computation is performed instead of
what is stored and computed. Therefore it is harder to understand and to change. This
situation is even worse if the source code is optimized for a given hardware-software
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ecosystem: Uses special hardware instructions to make computation faster, changes data
layout according to cache lines, rearranges instructions to hide memory access overhead,
changes according to the optimization capabilities of a given compiler.

These are examples of what we will refer to as low level optimization in this paper. The
main objective of this paper is to find ways to give control to the programmer over these
optimizations while preserving the maintainability of the software. Our our approach is
to create domain specific language features, suitable abstractions for given optimization
techniques in order to combine easy-to-maintain source code with efficient target code
and to simplify the supporting compiler modules. We will do so by exploring two specific
optimization techniques: bitvectors and SIMD, and presenting corresponding libraries of
the Feldspar domain specific programming language. Using these libraries induces min-
imal changes compared to the unoptimized source code while increases the runtime per-
formance considerably. Finally, the paper identifies the key ideas behind these libraries
to generalize the results and make them applicable in future language implementation
projects.

The paper is organized as follows. The next section presents the two optimization
techniques to be used throughout the paper as example, and also gives a brief introduction
to our implementation language. Section 3 presents language abstractions for bitvectors.
It first explains the concept using a simple algorithm then proceeds with a real-world
example: cyclic redundancy check, finally discusses the implementation of the library.
Section 4 uses the scalar product algorithm as the example to present the abstractions
for SIMD optimization, then introduces the most important aspects of the corresponding
library implementation. Section 5 compares our method to related work, while the final
section concludes the paper by pointing out the most important aspects of our solution.

2. Technical background

This section introduces the concept of two widely used optimization techniques, bitvec-
tors and SIMD, that will be used as examples later on in the paper. The Feldspar language,
used for the implementation of our concepts, is also presented.

2.1. Bitvectors

The smallest addressable data types of all platforms are larger than a single bit, so general
programming languages usually use a whole word (which is the most conveniently acces-
sible data type of the platform) for storing a bool. This is not a problem when boolean
values are used only in condition evaluations, but implementing algorithms that process
series of boolean values is usually challenging:

– Using the vector construction of a given language with boolean values usually leads
to the use a whole word of the hosting platform per boolean. This means 8-times to
64-times more memory consumption compared to what would be required. Even if
accessing a word seems to be faster then accessing a single bit, the increased memory
footprint and decreased locality can impact cache performance so seriously that it will
become the main performance bottleneck causing overall speed degradation [15].
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– Writing optimized code involves packing bits into other larger words, getting and
setting bits by shifting and masking. The resulting code no longer shows the origi-
nal abstractness of the algorithm, which is harder to understand and maintain, and
engineers capable of touching this code cost far more [20].

Usually one of the above mentioned approaches is favored over the other depending
on the exact real world context without recognizing the need to find a better, more general
solution. In order to get one step closer to this general solution, one can use libraries which
implement bitvectors. One such standard library is the Standard Template Library of C++
(STL) which contains a specialized implementation of the vector container dedicated to
bools: vector<bool> [19]. Its implementation solves the storage issue while keeping
the code in an easily maintainable shape. However, boolean operations can be done in one
step on all bits placed in the same word leading to 8-times to 32-times performance boost.
Unfortunately STL’s vector<bool> cannot guarantee such optimizations.

In order to get this performance boost, the underlying bitvector implementation should
be clever enough to find out when operations can be transformed into one single com-
pound operation executed on multiple bits at once. One way is to involve difficult code
analysis techniques and have some of the typical code patterns transformed into more ef-
ficient code. Another way is to let the programmer use special constructions to instruct
the compiler where to apply such optimizations. This way the programmer is in con-
trol instead of relying on unpredictable compiler optimizations. This approach is used by
Feldspar.

2.2. Single Instruction, Multiple Data

The technique to increase performance by doing instructions at once on multiple data is
called SIMD (Single Instruction, Multiple Data). We organize more than one piece of data
into packets and try to do operations on the packet itself. To be precise, there are two ways
of processing multiple data in parallel on one CPU core:

– The SIMD way is to use large registers to store multiple smaller values and support
special instructions which operate on such registers capable of doing parallel primi-
tive operations on the individual values. The drawback is that every operation paired
with every possible operand size needs a separate instruction to be implemented in
hardware resulting in an instruction boom giving more complicated hardware [18]. It
is typical to have from 32-bit up to 128-bit SIMD capable registers giving the chance
to pack 2, 4, 8 or 16 values in one register depending on the type used.

– The MIMD way (Multiple Instruction, Multiple Data) is used when one has the
chance to execute multiple instructions parallel on the same core. This means ex-
plicitly issuing parallel instructions coming from one thread of execution and should
not be confused with hyper-threading techniques. Standard CISC (Complex Instruc-
tion Set Computer) and RISC (Reduced Instruction Set Computer) processors do not
support this style of execution. Only VLIW (Very Long Instruction Word) processors
have this capability like the TMS320C6000 family of DSP processors which have 8
parallel execution units per core. The advantage of this technique is that it does not
need special instructions to meet our needs. The disadvantage is that it is hard to
compile programs which can continuously use all parallel units of the CPU [10].
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The SIMD way is to compile vector operations into platform dependent code which is
built of a specific SIMD instruction set. The x86/x64 platform has SSE, ARM has NEON,
MIPS has DSP ASE, and PowerPC has AltiVec as its SIMD instruction set.

The different methods of compiling SIMD capable code are:

– SIMD intrinsics of the target platform can be generated into the C source to have
SIMD instructions compiled. All platforms have completely different intrinsics, so
this increases the compiler’s complexity but gives the full potential of the platform’s
SIMD capabilities.

– GCC, from version 4.2, supports automatic vectorization for some platforms and has
some special attributes to generate SIMD capable vector types by hand [17]. This
support generally fits the C language, so this does not give a solution for operations
which do not have their non-SIMD C language counterpart. Examples for such oper-
ations are dot-product or summing of values inside a vector. Functionality like these
should still be generated by hand (using intrinsics).

– LLVM does support vector types which are the best candidates for an LLVM backend
to compile platform specific SIMD instructions from LLVM bytecode [21]. However,
this has the same problems as the previous approach.

Current approaches [22] [16] [13] for SIMD code generation concentrate only on a
specific problem or algorithm. In contrast, our method presented in section 4 benefits
from the extra information given in the program code of a domain specific language. By
using these language abstractions we can give a more general solution with less difficult
heuristics compared to the referenced approaches.

2.3. Feldspar

Feldspar [9] is a domain specific language for digital signal processing (DSP). It is an em-
bedded language in Haskell: it consists of a set of special Haskell libraries. The language
is a functional one. It reimplements a selection of Haskell idioms that are useful for DSP
applications and can be compiled efficiently to the target object languages, currently C99
and LLVM.

Feldspar has a core language consisting of arithmetic, logic and bit operations, con-
ditional branching and loop-like constructs to process sequences of data. The compiler
of the language translates this core to the target languages. Most of the language features
are implemented as lightweight libraries built on top of the core language. This modular
design allows one to create new language features without modifying the core compiler.
Both language features presented in this paper are of this kind.

The most important language abstraction on top of the Feldspar core language is
the Vector library. Many standard list processing functions of Haskell are redefined by
Feldspar to work on vectors. For example, the tail function removes the first element
of a vector. Another example is zipWith that takes a function of arity two and two vec-
tors. It zips the two vectors, i.e. it forms pairs of the elements located at the same index
and applies the function on these pairs. If the arguments of zipWith differ in length,
the length of the result will be that of the shorter input, and the extra elements at the end
of the longer input are discarded. The Vector library guarantees an optimization called
vector fusion: an arbitrarily complex vector expression is fused into a single loop. For
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example, the expression zipWith (+) v (tail v) produces a single loop with the
instruction result[i] = v[i] + v[i+1] inside.

By design, the elements of Feldspar’s vectors can be computed independently. This
allows back-ends to parallelize these computations. In addition to this, Feldspar’s latest
version has support for task parallelism. Note, however, that none of the optimizations dis-
cussed in this paper require thread-parallel execution: these are techniques to be applied
on sequential portions of the code.

3. Language Abstraction for Bitvectors

We have created a BitVector library for Feldspar that provides the user with types like
BitVector Word32. The programmer can manipulate a bitvector of this type simi-
larly to a sequence of boolean values, while the compiled code stores 32 booleans in each
32-bit word and processes the bitvector word-by-word instead of bit-by-bit.

3.1. Introductory example

For example let us write a function that takes a sequence of booleans and produces a
sequence of booleans such that the ith element of the result is true if and only if both
values at positions i and i + 1 in the input are true. Figure 1 shows the implementation
using the original V ector library of Feldspar.

vec1 :: Vector (Data Bool) -> Vector (Data Bool)
vec1 v = zipWith (&&) v (tail v) ++ vector [False]

Fig. 1. First implementation using the Vector library

Functions tail and zipWith work as discussed before in section 2.3. The func-
tion (++) is used to concatenate two vectors. In this case, the single element vector
vector [False] is appended the end to keep the original size.

Let us compile this function to C99 and run it with an input of 256 boolean values.
The architecture we used stores each boolean value in one byte, therefore the input and
output arrays need half kilobyte of memory in total. The resulting loop will perform 255
iterations with the instruction
result[i] = v[i] && v[i+1]
and an extra iteration with
result[255] = v[255] && false.
This solution wastes memory and runs slowly.

Using the vector library one can boost the performance only by lowering the abstrac-
tion level considerably. This solution is shown on figure 2.

This solution uses vectors of 32-bit words and the logic of the original algorithm on
boolean sequences is enforced using bitwise conjunction (.&.), disjunction (.|.) and
shifting ( shiftLU, shiftRU) operations. The performance of this solution is much
better than the previous one: in order to process 256 boolean values, the input and output
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vec2 :: Vector (Data Word32) -> Vector (Data Word32)
vec2 v = zipWith (.&.) v v’ ++ end

where
v’ = zipWith (.|.)

(map (‘shiftLU‘ 1) v)
(map (‘shiftRU‘ 31) (tail v))

end = indexed 1
(\i -> last v .&. (last v ‘shiftLU‘ 1))

Fig. 2. Optimized implementation using the Vector library

arrays consume only 64 bytes of memory in total. The loop in the resulting C code per-
forms
result[i] = v[i] & ((v[i] << 1) | (v[i+1] >> 31))
seven times and sets the last word as
result[7] = v[7] & (v[7] << 1).
On the other hand this solution is not easier to understand and maintain than the corre-
sponding C code.

The BitVector library is able to compose the readability of the first solution with the
performance of the second one by making the solution in Figure 3 possible.

bitvec :: BitVector Word32 -> BitVector Word32
bitvec v = zipWith (&&) v (tail false v)

Fig. 3. Solution using the BitVector library

The code is almost the same as that of the first solution except that we use bitvectors
instead of vectors and the tail function takes an extra boolean argument instead of
explicit concatenation. The reason for the latter difference is that each operation of the
BitV ector library has to keep the length of the boolean sequence divisible by the word
length. Therefore the tail operation, while removing the first element, appends the extra
boolean argument to the end of the sequence. The generated C code is almost the same
that the one from the second, low level solution.

Table 1 shows the run times in microseconds for the three presented solutions work-
ing on 256-element arrays. The results shown are obtained by calculating the average
execution time over 1000 runs for each of the algorithms.

Runtime performance measurements were carried out on an Intel Core i5-460M CPU
running at 2.53 GHz and having 3MB of L3 cache. The machine is running Linux with
kernel 2.6.38-8 and gcc 4.5.2.

The Feldspar programs were compiled using the 0.4.0.2 version of the Feldspar com-
piler. The source and generated codes as well as the main functions used for the perfor-
mance measurements can be downloaded from [5].
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vec1 vec2 bitvec
default 2.334 µs 0.123 µs 0.122 µs

-O3 0.956 µs 0.014 µs 0.015 µs
Table 1. Running times of the vector and bitvector solutions

3.2. Cyclic Redundancy Check

Cyclic redundancy check (CRC) algorithms are used to compute a fixed length checksum
of arbitrary long bit sequences. The checksum is used as error-detecting code or some-
times as a hash function.

The algorithm is based on binary polynomial division: The input sequence is divided
by a given control polynomial and the remainder is the result. The input is first padded
with zero bits at the end, then a window is applied to the beginning of the padded input. In
each iteration, the window is shifted one bit towards the end of the input. If the bit leaving
the window is 1, the new window contents are xor-ed with the control bits, otherwise it is
left unchanged. This algorithm is easy to implement in terms of boolean sequences, see
Figure 4.

crc_bool :: Vector1 Bool -> Vector1 Bool -> Vector1 Bool
crc_bool input control

= fold step (take n padded) $ drop n padded
where

n = length control
padded = input ++ repl n false
step window bit = head window ?

( zipWith (/=) (tail window ++ repl 1 bit) control
, tail window ++ repl 1 bit
)

repl n val = indexed n $ const val

Fig. 4. CRC implementation using boolean vectors

The iteration is governed by the fold function that executes step repeatedly. The initial
value for this loop (i.e. the first contents of the window) is the first n bits (take n padded),
and each iteration processes one more bit from the remaining padded input (i.e. drop n padded).

Each step examines the first bit in the window (head window) to decide if the exclu-
sive or operation (zipWith (/=)) is needed or not. The window shift is implemented
by removing its first bit (tail window) and appending the next bit of the input at the
end (++ repl 1 bit).

This implementation is easy to write and understand, but it is way too inefficient to
be useful in practice since each bit is represented as a boolean value stored in at least
one byte. In addition to the storage problem, the exclusive or operation is done bit-by-bit
instead of performing a bitwise xor operation on 8, 16 or 32 bits depending on the CRC
width.
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We use the BitV ector library again to optimize this algorithm while keeping its clar-
ity. Figure 5 shows the 16 bit version.

crc_bitvector
:: BitVector Word16 -> Data Word16 -> Data Word16

crc_bitvector input control
= fold step (first padded) $ dropUnits 1 padded
where

padded = input ++ replUnit 1 0
step window bit = first $ head window’ ?

( zipWith (/=) (tail bit window’) control’
, tail bit window’
)

where
window’ = single window
control’ = single control

Fig. 5. CRC implementation with bitvectors

Instead of the boolean vectors of the original implementation, here the input is a
bitvector represented as a sequence of 16 bit words. The control polynomial and the result
are 16 bit words.

The structure of the iteration, the padding and the implementation of the step function
closely follow the original code. The reason for some of the differences is that the state of
the iteration (the window) is of type Data Word16 instead of a vector. For this reason
helper functions are used to get the first word of a bitvector (first) and to convert a
word to a bitvector (single). The functions dropUnit and replUnit are provided
by the BitVector library to remove a given number of complete words from the beginning
of a bitvector and to create a bitvector by replicating a word a given number of times.
The special tail function for bitvectors, accepting two parameters, has already been
discussed earlier, in section 3.1.

The performance measurements were carried out the same way as described in sec-
tion 3.1, except that the Feldspar compiler version was 0.6.0.2 in this case. The presented
implementations were run on 160 bit input and 16 bit control vectors. Zero and one bits
were evenly distributed in both sequences to make all branches of the algorithm evenly ex-
ecuted. Averaging over 1000 repeated executions, the boolean version takes 53 microsec-
onds to execute while the bitvector version takes this figure down to 22 microseconds,
yielding a speedup of 241%.

The reason for the huge speedup is that the bitvector solution performs 16 times less
iterations compared to the one using boolean vectors. This suggests a 16 times speedup,
but we also have to consider that a single iteration of the bitvector solution is heavier than
in case of boolean vectors due to the shifting and masking operations involved.
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3.3. Implementation

The BitVector library provides a new container type in Feldspar, an alternative to the
original Vector library. It reimplements the most important vector operations and extends
this set by bitvector-specific functionality. The library has been released with Feldspar
and can be downloaded from the Hackage library database [4].

The most important feature of Feldspar’s vectors is loop fusion. It does not matter
how many operations are composed to process the input vector, the generated C code
implements these using a single loop without the need for temporary storage. There is a
well defined set of exceptions: operations that actually compute the vector elements and
store them in memory. This way the optimization is guaranteed to happen and the result
is well predictable, in contrast to traditional compiler optimization techniques.

Feldspar’s vector fusion relies on the representation of vectors, which is basically
composed of its length and an index function. The index function tells how to compute the
element of the vector at a given index. Each time a vector operation is used to transform
the vector, the index function is modified accordingly. When the vector is finally computed
and written to memory, a single loop iterates through the index set and the loop body
evaluates the index function.

The BitVector library provides the same fusion technique and extends it with the ca-
pability of processing 8, 16 or 32 bits together, even if the algorithm was defined in a
bit-by-bit manner.

data BitVector w
= BitVector
{ segments :: [Segment w]
}

data Segment w
= Segment
{ numUnits :: Data Length
, elements :: Data Index -> Data w
}

Fig. 6. Data types for the representation of bitvectors

As seen in Figure 6, a BitVector is a list of segments. This is necessary to be able
to implement concatenation efficiently: concatenated bitvectors will become the segments
of the result. Each segment is composed of the number of words in that particular segment
(numUnits) and an index function from indexes to words. This is the key to implement
the fusion functionality discussed above.

Both data types are parametric over the word length. The w type parameter can be
instantiated by Word8, Word16 and Word32.

Implementation of the bitvector specific optimizations are well demonstrated by the
definition of the map function, depicted in Figure 7.

The purpose of the map function is to transform each element of the input vector
(bv) using a given function (f) which, in case of bitvectors, is a bool-to-bool function.
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map :: (Data Bool -> Data Bool) -> BitVector w -> BitVector w
map f bv = boolFun1 f result

where
result f’ =

BitVector $
Prelude.map (\s -> s{elements = f’ . elements s})

(segments bv)

Fig. 7. Implementation of the map function for bitvectors

The helper function boolFun1 is used to lift the function f to a word-to-word function.
For example, logical negation is lifted to the bitwise not operation on words. The lifted
function is denoted as f’ and is composed with the index functions of the input bitvector’s
segments to form the segments of the result.

Index function transformation and the lifting of boolean functions are the two ideas
that drive the implementation of all bitvector operations. Note however, that many of them
are tricky to implement. The tail function, for example, has to remove the first bit of the
sequence. In order to do this the transformed index function has to compute each word
of the bitvector out of two consecutive words of the original bitvector using shifting and
masking operations. The complexity of the zipWith operation, on the other hand, is
caused by the fact that the segmentation of the zipped bitvectors may differ.

4. Language Abstraction for SIMD

We have created a Feldspar library that allows SIMD optimization at a high abstraction
level. This library provides types like SIMD4 Int16 meaning that four Int16 values are to
be processed together.

We will use scalar product as an example. Let us first implement it without any opti-
mization, using the standard Vector library only. The result is shown in Figure 8.

scalarProd :: Vector1 Int16 -> Vector1 Int16 -> Data Int16
scalarProd a b = sum (zipWith (*) a b)

Fig. 8. Original scalar product implementation

We multiply the corresponding elements of two vectors and sum the results. The
Feldspar compiler transforms this to a single loop that makes as many iterations as the
number of elements in the vectors.

In order to make this code more efficient on a target platform that supports SIMD
operations, we may pack multiple elements to be processed together. Figure 9 shows this
optimized solution.

There are two changes compared to the original code. Instead of Int16s we use SIMD4
Int16s as vector elements and as a last step of the computation we have to call sum4
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scalarProdSIMD
:: Vector (SIMD4 Int16) -> Vector (SIMD4 Int16) -> Data Int16

scalarProdSIMD a b = sum4 (sum (zipWith (*) a b))

Fig. 9. Scalar product implementation using the SIMD library

(one of the SIMD-specific operations provided by the library) to get the final result. The
latter change is needed because the multiplication in the first parameter of zipWith and
the addition behind sum are overloaded such that they work on SIMD packets. For this
reason the result of the summation is a packet of four integers. In order to get the final
result, sum4 is used to add these four numbers.

scalarProd scalarProdSIMD speedup
default 517 µs 468 µs 10.5%

-O3 227 µs 172 µs 32%
Table 2. Running times of the scalar product implementations.

Table 2 summarizes the running times of the two presented implementations working
on vectors of 100000 elements. The results shown are obtained by averaging over 1000
runs of the algorithms. The performance measurements were carried out the same way as
described in section 3.1.

4.1. Implementation

There is a notable difference between the design of the two presented libraries. Bitvectors
overload vector operations and are used instead of vectors. SIMD types overload standard
integer arithmetic and are typically used together with the standard vector library.

data (Packable2 a) => SIMD2 a = SIMD2 (Data (Pack2 a))

data (Packable4 a) => SIMD4 a = SIMD4 (Data (Pack4 a))

data (Packable8 a) => SIMD8 a = SIMD8 (Data (Pack8 a))

Fig. 10. Definition of the SIMD types.

Figure 10 shows the definition of the SIMD types provided by the library. Each of
them is parametric with a packable constraint on the type variable a. For example, Int8
and Int16 are instances of the Packable4 type class, because the targeted architec-
tures support packing four of them together. Pack4 is a type function that tells the size
of the packets. For example:
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type Pack4 Int16 = Int64

According to this, Vector (SIMD4 Int16) is isomorphic to a vector of 64 bit
integers. However, arithmetic on SIMD4 Int16 elements and on Int64 values work
differently. An addition instruction on two SIMD4 Int16 values a and b generate the
feldspar_4x16_add(a,b) expression in the C code, where feldspar_4x16_add
is an inline function having platform- and/or compiler-specific implementation.

typedef int16_t v4hi __attribute__ ((vector_size (8)));

static inline
int64_t feldspar_4x16_add( int64_t arg1, int64_t arg2 )
{

v4hi temp = ((* (v4hi*) &arg1) + (* (v4hi*) &arg2));
return *((int64_t*) & temp);

}

Fig. 11. GCC-specific implementation of a SIMD addition operation

Figure 11 shows the implementation of feldspar_4x16_add in case of using gcc
specific language extensions. The type v4hi is defined to be 8 bytes long by the attribute
vector_size (8) and containing int16_t elements. The generated Feldspar code
uses 64 bit integers that are passed to the feldspar_4x16_add function. These pa-
rameters are type casted to v4hi SIMD packets to perform the arithmetic needed, then
the result is casted back to int64_t.

Interested readers are referred to [5] in order to access the source code of the SIMD
library.

5. Related Work

The most popular optimization related language features are pragmas and pragma-like
keywords that control some aspects of how the compiler works. Some of these, like the
register and align keywords of C [2] or the Default Storage Pool pragma of Ada [3]
control where data is stored. The inline pragma is present in both languages to give hints
to the compiler which function definitions to inline at the call sites. The unroll pragma in
C can be used to advise the compiler how to unroll the annotated loops.

One can also find pragma-like features in logic and functional languages. The cut
operator (!) of Prolog [1] is used to make programs more efficient by restricting the
backtrack algorithm performed by the Prolog runtime environment. In Haskell [12], the
very same symbol is the stricktness flag that controls which parts of data structures are to
be eagerly evaluated to weak head normal form when a piece of data of a specific type is
created. There are compiler-specific marks as well: Unboxed types, using the # symbol,
are provided by the GHC Haskell compiler [6] to ensure that primitive data types are
stored by their raw value and not through a pointer on the heap.
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On the positive side, pragmas does not affect the readability and maintainability of
programs much while they allow fine tuning the performance on a given platform. On
the other hand, they are limited in the sense that they only switch on and off standard
optimization algorithms built into the compiler for the affected fragments of the program.
Using pragmas it is usually not possible to achieve transformations necessary to turn a
program operating on a boolean array to one that operates on a bitvector and compress 8
to 64 iterations of the original code into a single instruction. Even if a given optimization
can be activated by a pragma, in many cases it is not guaranteed to happen. It is up
to the power of the static analyzer algorithms built into the compiler if the requested
transformation actually happens. In summary, our method can be used to implement more
powerful and more predictable optimizations.

There are many programming language elements that support modularization and
moving complexity from business logic code to libraries: package system, classes with
encapsulation, templating mechanisms etc. These can be used to hide highly optimized
implementations from the users of the library. A good example, closely related to our
paper, is the vector<bool> specialized C++ template class, which provides the com-
pact representation of bitvectors. On the other hand, it cannot achieve loop fusion and
word-based processing of bitvectors that our solution guarantees.

Another question is the cost of implementation of optimization related language fea-
tures. Without any particular support from the compiler architecture, the compiler itself is
to be modified to add new syntax or to affect how code generation is done. An interesting
method to make language extensions less costly is OpenC++. This language is based on
C++ and, in addition, provides meta level features to define language extensions. The im-
plementation of an extension consists, on one hand, of a meta language program defining
how to compile the language extension to regular C++, and, on the other hand, of runtime
support code. The OpenC++ compiler transforms the source program according to the
defined extensions to C++ code that should be linked with the runtime support code.

OpenC++ can be used to implement language extensions for optimization purposes
that are more complex and powerful than pragmas and traditional libraries. For example,
the OpenC++ tutorial [11] shows how to implement operators for a matrix library that
can do the same kind of fusion optimization that Feldspar Vectors are designed for (see
Section 2.3).

The main difference compared to our approach is that OpenC++ language extensions
are defined in terms of manipulations of the abstract syntax tree, while we exploit the
potential in language embedding to achieve the power of syntax tree manipulation in a
much lighter weight form, that is similar to traditional library implementation.

6. Conclusion

Sections 3 and 4 have shown two examples for language abstractions that provide consid-
erable performance improvements while not degrading the readability and maintainability
of the programs. All this required only a moderate implementation effort to add support
for the new language features to the compiler in a modular way, without modifying the
core Feldspar compiler.

There are three ingredients of our solution that make this possible: staging, language
embedding and domain specific abstractions.
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Staging means that one writes a program that creates another program that solves the
original problem. In our case, the libraries we added to the Feldspar language implemen-
tation generate C code (with the help of the Feldspar core compiler) for bitvector and
SIMD specific operations. This opens up more optimization possibilities compared to a
library written in the object language.

Language embedding is a technique to implement a new (usually domain specific)
language within an existing (usually general purpose) programming language. This tech-
nique is known to simplify DSL development, since there is no need to create lexer, parser
and most of the semantic checks can also be done by the compiler of the so called host
language. Furthermore, in case of the embedding technique [14] that Feldspar uses, the
host language automatically becomes a meta language for the DSL. This means, in our
case, that the full power of Haskell can be used to generate and combine Feldspar pro-
grams. This power also comes with safety: The rich and strict type system of Haskell is
an essential in constructing the presented language abstractions. Recall that the most im-
portant difference between the presented unoptimized and optimized programs was their
type, which was used to switch on or off the bitvector and SIMD specific optimizations.

Using domain-specific abstractions means that the language features do not aim to
solve all kinds of programming problems, instead, they concentrate on a given problem
domain and provide nicer and more efficient toolset for that particular domain. The solu-
tions presented in this paper are good examples of this approach. For loops and indexing
operations of C can be used to process or write an array in any particular order. The map ,
fold and other similar operations provided for Feldspar vectors and bitvectors are more
restricted, but they are well-suited for the domain of Feldspar: digital signal processing.
This means that the typical algorithms of this domain can be expressed more concisely
and elegantly than using explicit loops an indexing. Furthermore, static analysis of ar-
bitrary loops in order to achieve the optimizations presented in this paper is far more
complex then our libraries. For example, to achieve the optimizations of the presented
Bitvector or SIMD library using traditional compiler techniques one needs to unroll the
loop, then change the order of instructions inside, finally find the instructions that can be
collapsed into a single bitwise operation or platform-specific SIMD instruction. Note that
the earlier mentioned unroll pragma, which is nontrivial in itself, is only the first step of
this transformation.

The main message of the paper is that it is possible to combine the readability and
maintainability of high level programming with advanced optimization techniques using
proper domain-specific language elements. The embedded language Feldspar provided us
with an environment where such language abstractions are possible to add modularly to
the existing language. On the other hand, the ideas presented in this paper can also be
used in other DSLs, if it is possible to add new abstract types, define operations on them
and control how these are compiled to target code.
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Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: A domain specific language for digital
signal processing algorithms. In: MEMOCODE. pp. 169–178. IEEE Computer Society (2010)

10. Chassaing, R., Reay, D.: Digital Signal Processing and Applications with the TMS320C6713
and TMS320C6416 DSK (Topics in Digital Signal Processing). Wiley-IEEE Press, 2nd edn.
(2008)

11. Chiba, S.: Open c++ tutorial. Tokyo: University of Tsukuba (1998)
12. (ed.), S.M.: Haskell 2010 Language Report. URL http://www.haskell.org/onlinereport/haskell2010

(2010)
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streaming programs. In: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation. pp. 281–294. PLDI ’05, ACM, New York, NY, USA
(2005)

21. Thielemann, H.: Compiling signal processing code embedded in haskell via llvm. In: CoRR.
vol. 1004.4796 (2010)

22. Wu, P., Eichenberger, A.E., Wang, A.: Efficient simd code generation for runtime alignment and
length conversion. Code Generation and Optimization, IEEE/ACM International Symposium
on 0, 153–164 (2005)

http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-language
http://feldspar.inf.elte.hu/ComSIS2013/
http://feldspar.inf.elte.hu/ComSIS2013/
http://langpop.com
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html


1514 Gergely Dévai et al.
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