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Abstract. Logic Programming languages, such as Prolog, offer a great potential for
the exploitation of implicit parallelism. One of the most noticeable sources of im-
plicit parallelism in Prolog programs is or-parallelism. Or-parallelism arises from
the simultaneous evaluation of a subgoal call against the clauses that match that
call. Nowadays, multicores and clusters of multicores are becoming the norm and,
although, many parallel Prolog systems have been developed in the past, to the best
of our knowledge, none of them was specially designed to explore the combina-
tion of shared and distributed memory architectures. Conceptually, an or-parallel
Prolog system consists of two components: an or-parallel engine (i.e., a set of in-
dependent Prolog engines which we named a team of workers) and a scheduler. In
this work, we propose a team-based scheduling model to efficiently exploit paral-
lelism between different or-parallel engines running on top of clusters of multicores.
Our proposal defines a layered approach where a second-level scheduler specifies a
clean interface for scheduling work between the base or-parallel engines, thus en-
abling different scheduling combinations to be used for distributing work among
workers inside a team and among teams.
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1. Introduction

Logic Programming languages, such as Prolog, provide a high-level, declarative approach
to programming. In general, logic programs can be seen as executable specifications that
despite their simple declarative and procedural semantics allow for designing very com-
plex and efficient applications. The inherent non-determinism in the way logic programs
are structured as simple collections of alternative logic clauses makes Prolog very attrac-
tive for the exploitation of implicit parallelism. The advantage of implicit parallelism is
that one can develop specialized run-time systems to transparently explore the available
parallelism in programs, thus freeing the programmers from the cumbersome task of ex-
plicitly identifying it.

Prolog programs offer two major forms of implicit parallelism: and-parallelism and
or-parallelism [5]. And-Parallelism stems from the parallel evaluation of subgoals in a
clause, while or-parallelism results from the parallel evaluation of a subgoal call against
the clauses that match that call. In both cases, we expect the parallel system to automat-
ically identify opportunities for transforming parts of the computation (i.e., subgoals in
a clause or clauses from a predicate) into concurrent instances of parallel work. These
concurrent instances can be seen as independent Prolog engines which cooperate in the
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parallel execution of the main program. We will often refer to these Prolog engines as
workers.

Arguably, or-parallel systems, such as Aurora [7] and Muse [3], have been the most
successful parallel logic programming systems so far. Intuitively, the least complexity of
or-parallelism makes it more attractive and productive to exploit than and-parallelism,
as a first step. However, practice has shown that a main difficulty, when implementing
or-parallelism, is how to efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses. One of the most suc-
cessful or-parallel models that solves the multiple bindings problem is environment copy-
ing, that has been efficiently used in the implementation of or-parallel Prolog systems
both on shared memory [3, 10] and distributed memory [16, 9] architectures.

Another major difficulty in the implementation of any parallel system is the design
of scheduling strategies to efficiently assign computing tasks to idle workers. A parallel
Prolog system is no exception as the parallelism that Prolog programs exhibit is usually
highly irregular. Achieving the necessary cooperation, synchronization and concurrent
access to shared data among several workers during execution is a difficult task. For envi-
ronment copying, scheduling strategies based on dynamic scheduling of work have proved
to be very efficient [2]. Stack splitting [4, 8] is an alternative scheduling strategy for en-
vironment copying that provides a simple and clean method to accomplish work splitting
among workers in which all available work is statically divided beforehand in comple-
mentary sets between the sharing workers. Due to its static nature, stack splitting was
thus first introduced aiming at distributed memory architectures [16, 9] but, recent work,
also showed good results for shared memory architectures [15, 14].

Motivated by the intrinsic and strong potential that Prolog has for implicit parallelism
and by our past experience in designing and developing parallel systems based on en-
vironment copying [10, 9, 15, 14], we thus propose a novel computational model to effi-
ciently exploit or-parallelism for clusters of low cost multicore architectures. Nowadays,
the increasing availability and popularity of multicore processors have made our personal
computers parallel with multiple cores sharing the main memory. Multicores and clusters
of multicores are now the norm and, although, many parallel Prolog systems have been
developed in the past [5], most of them are no longer available, maintained or supported.
Moreover, to the best of our knowledge, none of them was specially designed to explore
the combination of shared and distributed memory architectures. On one hand, the shared
memory based models take advantage of synchronization mechanisms that cannot be eas-
ily extended to distributed environments and, on the other hand, the distributed memory
based models use specialized communication mechanisms that do not take advantage of
the fact that some workers can be sharing memory resources.

To address the combination, one alternative would be to design a novel model from
scratch trying to unite some of the techniques from the existent shared and distributed
memory based models. Another alternative, is our proposal that introduces a layered ap-
proach with two levels of computational units, single engines (or workers) and or-parallel
engines (or teams of workers). At the worker level, or-parallelism is explored by using the
already available models for scheduling/distributing work among workers inside a team.
For single multicore architectures or clusters of single core/processor architectures, our
layered approach should thus achieve similar performance since it simply reuses the cur-
rently available or-parallel models. To schedule/distribute work between teams, we intro-
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duce a second-level team-based scheduler and we specify a clean interface for scheduling
work between the or-parallel engines, thus enabling different scheduling combinations to
be used for distributing work among workers inside a team and among teams. Our pro-
posal resembles the concept of teams used by some models combining and-parallelism
with or-parallelism, like the Andorra-I [13] or ACE [6] systems, where a layered approach
also implements different schedulers to deal with each level of parallelism.

The remainder of the paper is organized as follows. First, we introduce some back-
ground about or-parallelism and the environment copying model. Next, we introduce our
layered approach and discuss the major design issues, algorithms and challenges. Last,
we advance directions for further work. Throughout the text, we assume the reader will
have good familiarity with the general principles of Prolog implementation, and namely
with the WAM [1]. When discussing some technical details, we will take as reference
the state-of-the-art Yap Prolog system [12], that integrates or-parallelism based on the
environment copying model and supports both dynamic and static scheduling of work.

2. Or-Parallelism

Or-parallelism arises when a subgoal call unifies with more than one of the clauses defin-
ing the predicate for the subgoal call at hand. In such a case, the parallel execution
of the bodies of the alternative matching clauses corresponds to the exploitation of or-
parallelism. A convenient way to visualize or-parallelism is through the or-parallel search
tree. Figure 1 illustrates the or-parallel search tree for a small logic program and the query
goal a(X,Y).

a(X,Y) :- b(X), b(Y).
a(X,Y) :- c(X), c(Y).
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c(2).

a(X,Y)

b(X) c(X)

b(Y) c(Y)b(Y) c(Y)

X=one
Y=one

X=one
Y=two

X=two
Y=one

X=two
Y=two

X=1
Y=1

X=1
Y=2

X=2
Y=1

X=2
Y=2

X=one X=two X=1 X=2

(a) program (b) or-parallel search tree

Fig. 1. An or-parallel search tree

The query goal a(X,Y) is non-deterministic since it unifies with both clauses of predi-
cate a/2. In turn, the execution of each clause for a/2 leads, respectively, to subgoal calls
to predicates b/1 and c/1, which are also non-deterministic. In Fig. 1, the search tree nodes
represent the non-deterministic subgoal calls and the multiple alternatives in such nodes
correspond to or-work that can be exploited in parallel. Or-parallelism is thus an efficient
way of searching for alternative answers to a query and it frequently arises in applications
that explore a large search space via backtracking. This is the typical case in applica-
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tion areas such as expert systems, optimization and relaxation problems, certain types of
parsing, natural language processing, deductive database systems, among others.

Intuitively, or-parallelism seems simple to implement since the various alternative
branches of the or-tree are independent of each other. However, parallel execution can
result in conflicting bindings for common variables. For any two different branches of the
or-tree, there are a set of ancestor nodes than are common to both branches. A variable
created in one of these common nodes might be bound differently in the two branches. In
Fig. 1, we can see that the two variables X and Y , created in the top node, have different
combinations of bindings in different branches. The environments of alternative branches
have to be organized in such a way that conflicting bindings can be easily discernible. This
problem, known as the multiple bindings problem, is a major problem when implementing
or-parallelism.

3. Environment Copying

One of the most successful or-parallel models that solves the multiple bindings problem
is the environment copying model. In the environment copying model, each worker keeps
a separate copy of its own environment, thus the bindings to common variables are done
as usual (i.e., stored in the private execution stacks of the worker doing the binding) and
without conflicts. Every time a worker shares work with another worker, all the execution
stacks are copied to ensure that the requesting worker has the same environment state
down to the search tree node where the sharing occurs.

As a result of environment copying, each worker can proceed with the execution ex-
actly as a sequential engine, with just minimal synchronization with other workers. Syn-
chronization is mostly needed when updating scheduling data and when accessing shared
nodes in order to ensure that unexplored alternatives are only exploited by one worker.
All other WAM data structures, such as the environment frames, the heap, and the trail do
not require synchronization.

At the engine level, the search tree nodes are implemented as choice points in the
local stack [1]. A choice point stores the open alternatives left to try. A choice point frame
is pushed onto the local stack when a subgoal call unifies with more than one candidate
clause and it is popped off when the last alternative clause is taken for execution. A choice
point contains the necessary information to restore the state of the computation back to
when the first clause was entered; plus a reference to the next open clause to try, in case
the current one fails.

3.1. Incremental Copying

To reduce the overhead of stack copying when sharing work, an optimized copy mecha-
nism called incremental copy [3] takes advantage of the fact that the requesting worker
may already have traversed part of the path being shared. Therefore, it does not need to
copy from the sharing worker the stacks referring to the whole path from root, but only
the stacks starting from the youngest node common to both workers.

For example, consider that worker Q asks worker P for sharing work. To implement
incremental copying, Q should start by backtracking to the youngest common choice
point with P , therefore becoming partially consistent with part of P . Then, if Q receives
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a positive answer from P , it only needs to copy the differences between P and Q. These
differences can be easily calculated through the information stored in the common choice
point found by Q and in the top registers of the execution stacks of P . Care must be taken
about variables older than the youngest common choice point that were instantiated by P ,
as incremental copying does not copy these bindings. Worker Q thus needs to explicitly
install the bindings for such variables. This process, called the adjustment of cells outside
the increments, is implemented by searching the trail stack for bindings to variables older
than the youngest common choice point [3].

3.2. Or-Frames

Deciding which workers to ask for work and how much work should be shared is a func-
tion of the scheduler. A fundamental task when sharing work is to turn public the private
choice points, so that backtracking to these choice points can be synchronized between
different workers. Public choice points are treated differently because we need to synchro-
nize workers in such a way that we avoid executing twice the same alternative. Strategies
based on dynamic scheduling of work, use or-frames to implement such synchroniza-
tion [3]. Figure 2 shows a schematic representation of the sharing process between two
workers using or-frames.

(b) after sharing

P Q

public
region

private
region
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b2

c3

choice
points

or-frames

b3
b2

a2

c3

(a) before sharing
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choice
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a2

c3

Q
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Fig. 2. Or-frames and public choice points

A worker sharing work adds an or-frame data structure to each private choice point
made public. Each or-frame stores the reference to the next available alternative, as pre-
viously stored in the corresponding private choice point, and supports a mutual exclusion
mechanism that guarantees atomic updates to the or-frame data. Shared nodes become
represented by the newly created or-frames and by a getwork pseudo-alternative. Back-
tracking to a public choice point will thus always trigger the execution of the getwork
pseudo-alternative and its execution allows for a synchronized access to the unexplored
alternatives among the workers sharing the corresponding or-frame. The set of all or-
frames form a tree that represents the public search or-tree.
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3.3. Stack Splitting

Stack splitting was first introduced to target distributed memory architectures, thus aim-
ing to reduce the mutual exclusion requirements of the or-frames when accessing shared
nodes of the search tree. It accomplishes this by defining simple and clean work splitting
strategies in which all available work is statically divided beforehand in two complemen-
tary sets between the sharing workers. In practice, with stack splitting the synchronization
requirement is removed by the preemptive split of all unexplored alternatives at the mo-
ment of sharing. The splitting is such that both workers will proceed, each executing its
branch of the computation, without any need for further synchronization when accessing
shared nodes. This matches the problem of having a pool of tasks to compute and either
(i) access the pool to get the next available task every time a worker runs out of work
(dynamic scheduling) or (ii) divide the tasks between the available by assigning each task
to a specific worker (static scheduling).

The original stack splitting proposal [4] introduced two strategies for dividing work:
vertical splitting, in which the available choice points are alternately divided between the
two sharing workers, and horizontal splitting, which alternately divides the unexplored
alternatives in each available choice point. Diagonal splitting [9] is a more elaborated
strategy that achieves a precise partitioning of the set of unexplored alternatives. It is a
kind of mix between horizontal and vertical splitting, where the set of all unexplored al-
ternatives in the available choice points is alternately divided between the two sharing
workers. Another splitting strategy [17], which we named half splitting, splits the avail-
able choice points in two halves. Figure 3 illustrates the effect of these strategies in a work
sharing operation between a busy worker P and an idle worker Q.

Figure 3(a) shows the initial configuration with the idle worker Q requesting work
from a busy worker P with 7 unexplored alternatives in 4 choice points. Figure 3(b)
shows the effect of vertical splitting, in which P keeps its current choice point and alter-
nately divides with Q the remaining choice points up to the root choice point. Figure 3(c)
illustrates the effect of half splitting, where the bottom half is for worker P and the half
closest to the root is for worker Q. Figure 3(d) details the effect of horizontal splitting,
in which the unexplored alternatives in each choice point are alternately split between
both workers, with workers P and Q owning the first unexplored alternative in the even
and odd choice points, respectively. Figure 3(e) describes the diagonal splitting strategy,
where the unexplored alternatives in all choice points are alternately split between both
workers in such a way that, in the worst case, Q may stay with one more alternative than
P . For all strategies, the corresponding execution stacks are first copied to Q, next both
P and Q perform splitting, according to the splitting strategy at hand, and then P and Q
are set to continue execution.

3.4. The Yap Prolog System

The Yap Prolog system [12] implements or-parallelism based on the environment copying
model and supports both dynamic and static scheduling of work. To implement dynamic
scheduling, Yap follows the original Muse approach which uses or-frames to synchro-
nize the access to the open alternatives. To implement static scheduling, two different
approaches were followed. In the first approach, the engine was designed to run in Be-
owulf clusters [9]. More recently, a second approach was designed to run in multicores
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Fig. 3. Alternative stack splitting strategies
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and it has shown to be very competitive when compared with the original or-frames ap-
proach [15, 14].

When running in shared memory architectures, Yap’s workers can be either processes
(the engine using processes is called YapOr [10]) or POSIX threads (the engine using
threads is called ThOr [11]). The memory organization for YapOr/ThOr is quite similar
for all the approaches (see Fig. 4(a)). The memory of the system is divided into two ma-
jor address spaces: the global space and a collection of local spaces. The global space
contains the code area inherited from Yap and all data structures necessary to support
parallelism. Among these structures is static information about the execution, such as the
number of workers, and dynamic information responsible for determining the end of the
execution. Each local space represents one worker and contains the execution stacks in-
herited form Yap (heap, local, trail and auxiliary stack) and information related to the
execution of that worker such as the youngest public choice point, share and prune re-
quests or the load of that worker [10, 11].

When running in distributed memory architectures, Yap’s workers are processes, each
with independent global and local spaces (see Fig. 4(b)). Despite not specially designed
for it, this approach also fits in shared memory architectures, i.e., we can have some
workers running on the same computer node, but as fully independent processes.
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Fig. 4. Memory layout for: (a) workers in shared memory; (b) workers in distributed memory; and
(c) teams of workers in clusters of multicores

4. Layered Approach

The goal behind our proposal is to implement the concept of teams and specify a clean
interface for scheduling work between teams, trying to reuse, as much as possible, Yap’s
existing infrastructure. We define a team as a set of workers (processes or threads) who
share the same memory address space and cooperate to solve a certain part of the main
problem. By demanding that all workers inside a team share the same address space im-
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plies that all workers should be in the same computer node. On the other hand, we also
want to be possible to have several teams in a computer node or distributed by other nodes.

For workers inside a team, we can thus distribute work using both dynamic or static
scheduling of work. For distributing work among teams, we can apply any of the four
(static) stack splitting strategies described before. This idea is similar to the MPI/OpenMP
hybrid programming pattern, where MPI is usually used to communicate work among
workers in different computer nodes and OpenMP is used to communicate work among
workers in the same node.

4.1. Memory Organization

In order to support teams, there are several changes that need to be made. An important
one is the memory organization of the system. Figure 4(c) shows the new memory layout
to support teams of workers. Each team of workers mimics the previous memory layout
for a set of workers in shared memory (see Fig. 4(a)), where the memory of the system
is divided into a global space, shared among all workers, and a collection of local spaces,
each representing one worker’s team. In this new memory layout, we can also have several
teams sharing the same memory address space and, in particular, sharing the global space.
To accomplish that, the information stored in the global space is now related with teams
instead of being related with single workers. Moreover, the global space now includes
an extra area, named team space, where each team stores static information about the
team and dynamic information about the execution of the team, such as, to determine
if the team is out of work or if it has finished execution. The collection of local spaces
maintains its functionality, i.e., it stores the execution stacks and information about the
state of the corresponding worker.

Since our aim is to target clusters of multicores, the complete layout for the new mem-
ory organization can be seem as a generalization of the previous approach for distributed
memory architectures (see Fig. 4(b)), but now instead of single workers with independent
global and local spaces, we may have teams, individual teams or collection of teams as
described above, sharing the same memory address space.

4.2. Mixed Scheduling

One of the main advantages of using teams is that we can combine the scheduling strate-
gies mentioned before. Therefore we may have teams using static scheduling while others,
at the same time, use dynamic scheduling. Figure 5 shows a schematic representation of
what we want to achieve with our proposal. In this example, we have a cluster composed
by two computers nodes, N1 and N2. The computer node N1 has two teams, team A and
team B, with 3 and 4 workers each. The computer node N2 has only one team, team C
with 10 workers.

Regarding the scheduling strategy adopted to distribute work inside the teams, teams
A and C are using dynamic scheduling with or-frames, while team B is using stack split-
ting. To distribute work among teams, we only use stack splitting. This is mandatory
since we want to have a single scheduling protocol to distribute work between teams (be-
ing they in the same or in different computer nodes) and we want to fully avoid having
synchronization data structures, such as the or-frames, being shared between teams. Note
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Fig. 5. Work scheduling within and among teams

that having the access to the open alternatives in data structures shared between teams,
not only would have a great impact in the communication overhead required to keep them
up-to-date, but would also not clarify the notion of being a team. If two teams are syn-
chronizing the access to the open alternatives, in fact they are not two different teams but
only one, because no decision regarding the shared open alternatives can be made without
involving both teams.

Independently of the scheduling strategy, teams will have to communicate among
them when sharing work or when sending requests to perform a cut or to ensure the termi-
nation of the computation. To implement the communication layer, we can use a message
passing protocol, for teams physically located in the same or in different computer nodes,
or a shared memory synchronization mechanism, for teams in the same computer node.
Note that, in this latter case, synchronization is being use to implement communication
and not for scheduling purposes, as discussed before.

4.3. Work Sharing

To distribute work inside a team, we can use, with minor adaptations, any of Yap’s current
dynamic or static schedulers for shared memory. Since these schedulers were developed
to deal with workers that are sharing the same memory address space, they can thus be
easily extended to support work sharing inside a team. As discussed before, this is not
the case for work sharing among teams. To deal with that, our approach is thus to im-
plement a layered approach, similar to the one used by some of the models combining
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and-parallelism with or-parallelism [13, 6], and for that a second-level scheduler will be
used.

Since the concept of a team implies that we must give priority to the exploitation of
the work available inside the team, we will only ask for work to other teams when no
more work exists in a team. However, even though that it is the entire team that is out
of work, the sharing process will still be done between two workers, being the selected
worker of the idle team then the responsible for sharing the new work with its teammates.

Figure 6 shows a schematic representation of the sharing process between teams. Con-
sider the cluster configuration in Fig. 5 and assume that team C has run out of work and
that team A was selected by C’s scheduler to share work with it. Figure 6(a) shows the
state of team A before the sharing request from C. The three workers in team A are ex-
ecuting in the private region of the search tree and all share the youngest three choice
points. The top public choice point is already dead, i.e., without open alternatives, but the
second and third public choice points have two (b2 and b3) and one (c4) open alternatives,
respectively.

When team A receives the sharing request from team C, one of the workers from A
will be selected to share part of its available (private and/or public) work and manage the
sharing process with the requesting worker from C. For the sake of simplicity, here we
are considering that this is done by the workers 0 of each team, workers W (A, 0) and
W (C, 0). Since this is a sharing operation between teams, static scheduling is then the
strategy adopted to split work. In particular, in this example, we are using the vertical
splitting strategy.

To implement vertical splitting, W (A, 0) thus needs to alternately divide its choice
points with W (C, 0). However, since team A is using or-frames to implement dynamic
scheduling of work inside the team, we cannot apply the original stack splitting algo-
rithm [15, 14] to split the available work in the public region of the search tree (please re-
member that stack splitting avoids the use of or-frames). To solve that problem, W (A, 0)
constructs an array with the open alternatives per choice point that it will hand over to
W (C, 0). This array is illustrated in Fig. 6(c). The motivation for using this array is the
isolation between the alternatives being shared and the scheduling strategy being used,
therefore allowing that two teams can share work, independently of their scheduling
strategies. Note that, when splitting work in a public choice point, first W (A, 0) needs
to gain (lock) access to the corresponding or-frame, then it moves the next unexplored
alternative from the or-frame to the array of open alternatives, updates the or-frame to
null and unlocks it.

At the end, the array with the open alternatives and the execution stacks of W (A, 0)
are copied to W (C, 0). Figure 6(b) shows the configuration of both teams after the sharing
process. In team A, we can see the effect of vertical splitting by observing the new dead
nodes in the branch of W (A, 0). In team C, we can see that W (C, 0) instantiated the
work received from W (A, 0) as fully private work. W (C, 0) will only share its work, and
allocate the corresponding or-frames if team C is also using dynamic scheduling, when
the scheduler inside the team notifies it to share work with its teammates.

4.4. Load Balancing

An important goal of our team-based scheduler is to achieve an efficient distribution of
work between the different teams in order to optimize resource usage and thus minimize
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response time. A good strategy, when searching for a team to request work, would be
to select the busy team that holds the highest work load and that is nearest to the idle
team. The work load is a measure of the amount of open alternatives and being near cor-
responds to a closer position in the search tree. Nevertheless, selecting such a team would
require having precise information about the position and work load of all workers in all
teams, which cannot be possible without introducing a considerable communication and
synchronization overhead. A more reasonable solution is to find a compromise between
the load balancing efficiency and the overhead required to support the implementation.

In our proposal, each worker holds a private load register, as a measure of the exact
number of open alternatives in its current branch, and each team holds a private load
vector, as a measure of the estimated work load of each fellow team. The load register
keeps its functionality [10, 15, 14] and is used to support the process of selecting a busy
worker to request work from, when a teammate runs out of work. The load vector is used
to support the process of selecting a busy team to request work, when another team runs
out of work.

The load vector is updated in two situations: when requesting work and when detect-
ing termination. A trivial case occurs when receiving a sharing request, a zero work load
can be automatically inferred for the requesting team. We do not introduce specific mes-
sages to explicitly ask for work load information and, instead, the existing messages are
extended to include that information. When receiving a sharing request, the answering
message is extended to include the work load of the answering team. When detecting ter-
mination, the termination tokens are extended to include the work load of all teams. The
following section shows more details about the load vector usage.

5. Algorithms

In this section, we present in more detail the set of algorithms that implement the key
aspects of our proposal.

5.1. Searching for Available Work

Algorithm 1 shows the pseudo-code for the GetWorkFromWorker() procedure that,
given an idle worker W belonging to a team T , searches for a new piece of work for W .
In a nutshell, we can resume the algorithm as follows. Initially, W starts by selecting a
busy worker B from its teammates to potentially share work with (line 4). Next, it sends a
share request to B (line 5) and if the request gets accepted, then both workers perform the
work sharing procedure, according to the scheduling strategy (dynamic or static) being
used in T (line 6). After sharing, W returns to Prolog execution (line 7). Otherwise, if the
sharing request gets refused, then W should try another busy worker from T , while there
are teammates with available work (line 3).

On the other hand, if all workers in T run out of work (i.e., all workers in T are also
executing the GetWorkFromWorker() procedure), then one of the workers, named
the master worker1, will be selected to search for work from the other teams (line 8),

1 Since all workers are out of work, there is no difference in selecting one or another worker to be
the master worker and any worker can play that role.
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Algorithm 1 GetWorkFromWorker(W )

1: T ← GetTeam(W )
2: while TeamNotF inished(T ) do
3: while HasAvailableWork(T ) do
4: B ← SelectBusyWorker(T )
5: if SendWorkerRequest(B) = ACCEPT then
6: InstallWorkFromWorker(W,B)
7: return true
8: if W = MasterWorker(T ) then {W will search for work from the other teams}
9: if GetWorkFromTeam(W ) then {W has obtained work from another team}

10: return true
11: else {all teams should finish execution}
12: SetTeamAsFinished(T )
13: return false

and for that it executes the GetWorkFromTeam() procedure (line 9). If the call to
GetWorkFromTeam() succeeds, this means that the master worker has obtained a new
piece of work from another team and, in such case, it returns to Prolog execution to start
exploiting it (line 10). Otherwise, if the call to GetWorkFromTeam() fails, this means
that all teams are out of work and, in such case, team T is set as finished (line 12) and all
workers in T then finish execution by returning failure (line 13).

Algorithm 2 shows the pseudo-code for the GetWorkFromTeam() procedure that,
given a master worker W , searches for a new piece of work from the other teams. Initially,
W uses its load vector to select a busy team S from the set of available teams to potentially
share work with (lines 1–3). Next, it sends a share request to the selected team S (line 4)
and, if the request gets accepted, it performs the work sharing procedure with S (line 5)
and returns successfully (line 6). Otherwise, if the sharing request gets refused, then W
updates the load vector for team S (line 8) and tries another busy team, while there are
teams with available work (line 2). On the other hand, if all teams run out of work (i.e.,
all master workers are also executing the GetWorkFromTeam() procedure), then W
returns failure (line 9).

Algorithm 2 GetWorkFromTeam(W )

1: load[ ]← GetLoadV ector()
2: while TeamsWithAvailableWork(load[ ]) do
3: S ← SelectBusyTeam(load[ ])
4: if SendTeamRequest(S) = ACCEPT then
5: InstallWorkFromTeam(W,S)
6: return true
7: else {request rejected}
8: load[S]← GetLoadFromAnswerRequest(S)
9: return false

Finally, Algorithm 3 shows the pseudo-code for checking if there are teams with avail-
able work. If no busy team exists in the given load vector, then the termination detection
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mechanism is invoked (lines 1–2). When detecting termination, the load vector is updated
accordingly to include the work load of all teams. If no busy team still exists in the up-
dated load vector, then all teams are definitively out of work and the procedure returns
failure (lines 3–4). Otherwise, it succeeds (line 5).

Algorithm 3 TeamsWithAvailableWork(load[ ])

1: if NoBusyTeam(load[ ]) then
2: load[ ]← TerminationDetection()
3: if NoBusyTeam(load[ ]) then
4: return false
5: return true

5.2. Handling Requests

We next present in Algorithm 4 the pseudo-code for handling sharing requests. Please
remember that we may have to deal with requests from workers in other teams or from
workers in the same team. The main difference between both situations is that team re-
quests (the former case) are first delegated to the team’s busy worker B with the highest
work load (lines 2–5). This delegation is done by the first worker that checks for the re-
quest (line 2). The selected busy worker B will then be the one responsible to answer the
request (lines 6–13).

Algorithm 4 CheckRequests(W )

1: T ← GetTeam(W )
2: if HasTeamRequest(T ) then
3: R← GetRequestingTeam()
4: B ← SelectBusyWorker(T )
5: DelegateTeamRequestToWorker(R,B)
6: if HasDelegatedRequest(W ) then
7: R← GetRequestingTeam()
8: if HasAvailableWork(W ) then
9: AnswerRequest(R,ACCEPT )

10: ShareWorkWithTeam(W,R)
11: else
12: load← GetLoad()
13: AnswerRequest(R,REJECT, load)
14: if HasWorkerRequest(W ) then
15: I ← GetRequestingWorker()
16: if HasAvailableWork(W ) then
17: AnswerRequest(I, ACCEPT )
18: ShareWorkWithWorker(W, I)
19: else
20: AnswerRequest(I, REJECT )
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Both situations are then very similar. A given worker W with pending sharing re-
quests may accept or refuse them accordingly to its current work load. If W has available
work to share, i.e., if its work load is higher than a threshold value, it accepts the shar-
ing request and starts the sharing process by calling the ShareWorkWithTeam() or
the ShareWorkWithWorker() procedure (lines 9–10 and 17–18 respectively). Other-
wise, it replies with a negative answer (lines 13 and 20). In the case of a delegated (team)
request, W includes in the answering message its current work load.

5.3. Work Sharing

At last, we present the algorithms for work sharing. We start with the work sharing op-
eration between workers in the same team. Algorithm 5 shows the pseudo-code to be
executed by the sharing worker and Algorithm 6 shows the pseudo-code to be executed
by the requesting worker.

Algorithm 5 ShareWorkWithWorker(W, I)

1: stacks← GetStacks(W )
2: if SchedulingMode() = STATIC then {W’s team is using static scheduling}
3: SendStacks(I, stacks)
4: strategy ← GetSplittingStrategy()
5: ApplyStackSplitting(stacks, strategy)
6: else {[W’s team is using dynamic scheduling}
7: PublishPrivateWork(stacks)
8: orframe← GetY oungerOrFrame(stacks)
9: AddWorkerToPublicRegion(W, orframe)

10: AddWorkerToPublicRegion(I, orframe)
11: SendStacks(I, stacks)

Algorithm 6 InstallWorkFromWorker(W,B)

1: stacks← RecvStacks(B)
2: InstallStacks(W, stacks)
3: if SchedulingMode() = STATIC then
4: strategy ← GetSplittingStrategy()
5: ApplyStackSplitting(stacks, strategy)

Given a sharing worker W and an idle worker I , the ShareWorkWithWorker()
procedure proceeds as follows. If W ’s team is using static scheduling, W starts by send-
ing its execution stacks to I (line 3) and then it applies stack splitting to its own stacks
accordingly to the splitting strategy in use (lines 4–5). Otherwise, if using or-frames, W
turns public its private choice points (line 7), adds both workers to the or-frames in the
public region (lines 8–10) and sends its execution stacks to I (line 11).

On the other hand, in the InstallWorkFromWorker() procedure, the given idle
worker W starts by receiving the execution stacks from the sharing worker B (line 1),
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install the stacks (line 2) and, if using static scheduling, applies stack splitting accordingly
to the splitting strategy in use (lines 3–5).

Finally, we discuss the work sharing operation between workers in different teams.
Algorithm 7 shows the pseudo-code to be executed by the sharing worker and Algorithm 8
shows the pseudo-code to be executed by the requesting worker.

Algorithm 7 ShareWorkWithTeam(W,R)

1: stacks← GetStacks(W )
2: cp← GetY oungerChoicePoint(stacks)
3: i← GetChoicePointDepth(cp)
4: strategy ← GetSplittingStrategyForSharingWorkBetweenTeams()
5: if SchedulingMode() = STATIC then {W’s team is using static scheduling}
6: repeat {store open alternatives to share with R}
7: alts[i]← GetOpenAlternativeAndApplyStackSplitting(cp, strategy)
8: cp = PreviousChoicePoint(cp, stacks)
9: i← i− 1

10: until i
11: else {W’s team is using dynamic scheduling}
12: repeat {store open alternatives to share with R}
13: if IsPrivateChoicePoint(cp) then
14: alts[i]← GetOpenAlternativeAndApplyStackSplitting(cp, strategy)
15: else {cp is public}
16: LockOrFrame(cp)
17: alts[i]← GetOpenAlternativeAndApplyStackSplitting(cp, strategy)
18: UnlockOrFrame(cp)
19: cp = PreviousChoicePoint(cp, stacks)
20: i← i− 1
21: until i
22: SendStacks(R, stacks)
23: SendOpenAlternatives(R, alts[ ])
24: load← GetLoad()
25: BcastLoadInfo(W, load)

Given a sharing worker W and a requesting team R, the ShareWorkWithTeam()
procedure proceeds as follows. If W is using static scheduling inside its team, then W
starts by applying stack splitting to its own stacks (lines 6–10) accordingly to the split-
ting strategy to be used for sharing work between teams (line 4) and, at the same time,
initializes the array with the open alternatives to be shared with R (line 7). Note that for
sharing work between teams, we can apply any of the four stack splitting strategies de-
scribed before. Otherwise, if W ’s team is using or-frames, the procedure is similar. The
main difference is that for public choice points we must synchronize the access to the cor-
responding or-frame (lines 16–18) before applying the stack splitting strategy to be used
for sharing work between teams and initializing the array with the open alternatives to be
shared with R (lines 12–21). In both cases, at the end, W sends the execution stacks and
the array with the open alternatives to R and broadcasts its load info to all other teams
(lines 22-25).
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Algorithm 8 InstallWorkFromTeam(W,S)

1: stacks← RecvStacks(S)
2: alts[ ]← RecvOpenAlternatives(S)
3: InstallStacks(W, stacks)
4: cp← GetY oungerChoicePoint(stacks)
5: i← GetChoicePointDepth(cp)
6: repeat {install open alternatives}
7: OpenAlternative(cp)← alts[i]
8: cp← PreviousChoicePoint(cp, stacks)
9: i← i− 1

10: until i

In the InstallWorkFromTeam() procedure, the given idle worker W starts by re-
ceiving the execution stacks and the array of open alternatives from the sharing worker
in team S (lines 1–2), install the stacks (line 3) and install the open alternatives from the
received array (lines 4–10).

6. Conclusions

We have proposed a novel computational model to efficiently exploit or-parallelism from
the recent architectures based on clusters of multicores. The main goal behind our pro-
posal is to implement the concept of teams in order to decouple the scheduling of work
from the architecture of the system. In particular, our approach defines a layered approach
where a team-based scheduler specifies a clean interface for scheduling work between the
base or-parallel engines, thus enabling different scheduling combinations to be used for
distributing work among teams in the same or in different computer nodes.

Currently, we have already started the implementation of the new model in the Yap
Prolog system, trying to reuse, as much as possible, the existing infrastructure that sup-
ports both dynamic and static scheduling of work for or-parallelism based on the envi-
ronment copying model. Beyond the implementation of the initial prototype, further work
will include: (i) support incremental copying between teams; (ii) avoid speculative work,
i.e., avoid work which would not be done in a sequential system; and (iii) support se-
quential semantics, i.e., predicate side-effects must be executed by leftmost workers, as
otherwise we may change the sequential behavior of the program.
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