An Efficient Wormhole Attack Detection Method in Wireless Sensor Networks

Guowei Wu, Xiaojie Chen, Lin Yao, Youngjun Lee, Kangbin Yim

Wireless sensor networks are now widely used in many areas, such as military, environmental, health and commercial applications. In these environments, security issues are extremely important since a successful attack can cause great damage, even threatening human life. However, due to the open nature of wireless communication, WSNs are liable to be threatened by various attacks, especially destructive wormhole attack, in which the network topology is completely destroyed. Existing some solutions to detect wormhole attacks require special hardware or strict synchronized clocks or long processing time. Moreover, some solutions cannot even locate the wormhole. In this paper, a wormhole attack detection method is proposed based on the transmission range that exploits the local neighborhood information check without using extra hardware or clock synchronizations. Extensive simulations are conducted under different mobility models. Simulation results indicate that the proposed method can detect wormhole attacks effectively and efficiently in WSNs.