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Abstract. In this article, device-free human presence detection method 
based on principal components analysis of the radio signal strength 
variations is proposed. The method increases user awareness for 
automated power management interaction in residential power saving 
systems. Motivation comes from a need for decreasing the installation 
complexity and development costs induced by the integration of 
specific human presence detection sensors. The method exploits the 
fact that a human body interferes with radio signals by introducing 
irregularities in the radio signature which indicate possible human 
presence. By analyzing radio signals between radio transceivers 
embedded in 2.4 GHz wireless power outlets, the original environment 
is not visually modified and a certain level of sensorial intelligence is 
introduced without additional sensors. The analysis of the signal 
strength variations in principal components space enhances the 
detection accuracy level of human presence detection method, 
retaining low installation costs and improving overall energy 
conservation. 

Keywords: energy awareness, human presence detection, principal 
components analysis, radio irregularity, RSSI, smart outlets, Zigbee. 

1. Introduction 

Due to the rise of the global energy demands, the electricity price increase 
and the limitation of natural resources used for electricity generation, several 
considerations about the energy saving have been brought up recently [1], 
[2], [3], [4], [5]. An optimized approach for residential electric energy 
conservation requires installation of power metering devices. The European 
Union and the European Regulators’ Group for Electricity and Gas have 
proposed an initiative [6] to encourage the installation of smart power meters 
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in all homes across Europe during the next decade. The most frequently used 
solution for smart power metering is made in a form of smart power outlets. 
Smart outlets offer the possibility for additional energy-related services such 
as on-demand power management, overview of the consumed energy and 
power switching of plugged devices. Such an approach provides more 
accessible information which help people to use energy more efficiently.  

Although consumers are aware about their power consumption, their habits 
are very difficult to change and in many cases no corrective actions that 
would decrease the power consumption are taken. Therefore, there exists a 
need for automated power management solution, which does not require a 
user to intervene. To enable the automatic response, it is necessary to 
establish the interaction with the environment by integrating a number of 
sensors, mainly for human presence detection. An example of interactive 
energy saving platform is proposed in the previous work as “Ecosystem for 
Smart Home” (ESH) [5]. The ESH improves the power consumption 
efficiency by connecting smart power outlets and smart light switches, which 
are part of pre-existing electrical installations, with human presence detection 
sensors. The integration of sensors and smart power nodes increases user 
awareness of the smart home for the advanced automated power 
management. 

Human presence detection method, proposed in this article, is motivated 
by a need for decreasing the installation complexity and development costs 
induced by the integration of specific sensors in smart energy environment. 
As opposed to the original ESH framework which incorporates various human 
presence detection sensors, the proposed method detects human presence 
without specific sensors. The detection is enabled only by analyzing and 
quantifying radio signal strength variations at the inputs of radio transceivers 
embedded in wireless nodes. This approach exploits the fact that human 
bodies interfere with radio signals, causing fading and shadowing effects. 
Therefore, irregularities in the radio signature, given in a form of received 
signal strength indicator’s (RSSI) variations, are considered as an indication 
of possible presence in the room. The method extracts principal components 
from a covariance matrix composed of samples that present signal strengths 
gathered from wireless links inside a room. Principal component analysis 
enhances the accuracy level with small percentage of false alarms and 
improves the overall probability of human presence detection. Since the most 
of indoor environments contain power outlets, replacing them with smart 
power outlets would not modify the environment visually, but existing 
electrical installations would be extended with the detection capability. The 
use of radio irregularity from radio links in an already installed network of 
wireless power outlets preserves the transparency of smart home devices, 
supports high level of sensorial intelligence and has low installation cost. 

The paper is structured as follows. In Section 2, an overview of device-free 
methods for human presence detection is given, including theoretical 
background. In addition, an overview of smart energy systems for residential 
use is introduced. The proposed human presence detection method is 
explained in Section 3. The ESH system which incorporates the proposed 
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method is described in Section 4. Experimental results are given in Section 5. 
At the end of the paper, in Section 6, a conclusion with an idea for the future 
improvement is given. 

2. Related Work and Theoretical Framework 

Radio irregularity is a common phenomenon which is often considered as a 
shortcoming of radio networks. A number of experiments set in [7] and [8] 
explain that radio irregularity is mainly caused by two factors: device 
properties and the propagation medium. Device properties include: the 
antenna type, the transmitter’s radiated power, the receiver’s sensitiv ity, and 
signal-to-noise ratio. Medium properties include the background noise and 
the environmental factors such as obstacles within the propagation path. 
When the signal travels through a medium, it may be absorbed, scattered, 
reflected or diffracted. At microwave frequencies, absorption by molecular 
resonance is a major factor affecting the radio propagation [9]. Scattering 
occurs when the signal propagates through a medium which contains a large 
number of objects smaller than the signal’s wavelength. Reflection occurs 
when the signal encounters an object which is larger than the signal’s 
wavelength. Diffraction occurs when the signal encounters an irregular 
surface, such as sharp edges. 

The irregularity of the radio signals is even more expressed when a human 
body encounters the signal in its propagation path. The human body is 
comprised of molecules of water which are able to additionally absorb, 
diffract, scatter or reflect the energy of the radio signal. Therefore, the 
presence of a human within the wireless network range results in significant 
signal strength variations at the receiver, whereas the degree of the signal 
strength variation is correlated with the level of human motion.  

Woyach et al. [10] report that the shadowing effect caused by a human 
subject moving in the line-of-sight path between two communicating wireless 
nodes can be used for human motion detection. Such an approach, mainly 
based on RSSI variations analysis is extended for the outdoor people 
counting mechanism [11]. Lee et al. [12] investigated the feasibility of 
intrusion detection by characterizing the signal strength fluctuations and 
translating them into sufficient information that corresponds to an intruder’s 
activity. The presented idea is extended for an indoor automated people 
counting mechanism [13]. Intruder detection method [14] enabled by 
exploiting RSSI considerations, confirms the hypothesis that irregularities in 
the RSSI signature can be used as human presence indication. Through 
distributed processing of RSSI samples, nodes deployed in an indoor 
environment can also detect human presence and possibly help in localizing 
and tracking moving individuals, as shown by Kaltiokallio et al. [15]. The use 
of RSSI variations due to radio irregularity for security threats detection 
alongside a roadway, explained by Puzo et al. [16], demonstrates the ability 
of passive wireless sensor networks (PWSN) to be applied for the outdoor 



Bojan Mrazovac et al. 

ComSIS Vol. 10, No. 1, January 2013 426 

surveillance. Patwari and Wilson [17] explain how multi-path fading can be 
used for the benefit of device-free localization systems. In such environments 
denoted as “RF sensor networks”, a human position can be inferred by 
measuring the absorption, reflection, scattering and diffraction of an 
electromagnetic wave, intersected by the human body. Device-free human 
localization in indoor environments using “RF sensor networks” is also the 
topic of the research presented by Deak et al. [18]. The phrase “RF sensor 
network” comes from the fact that the wireless network itself is the sensor, 
using RF signals to probe the environment. It is important to mention that a 
human does not need to be carrying a wireless device to be detected. Zhang 
et al. [19] proposed an RF sensor network operating at 870 MHz for indoor 
people tracking. The positioning method is based on capturing the RSSI 
dynamics of the reflected signals, which varies due to subject movement. 
That approach is further extended in [20] to implement the system capable of 
multiple persons tracking, simultaneously moving in the monitored area. The 
algorithm is based on distributed dynamic clustering that improves the 
localization accuracy when multiple subjects are present. Moussa and 
Youssef [21] demonstrate the feasibility of device-free passive intruder 
detection and localization by using the moving average of RSSI variance to 
detect the intrusion events. 

The most of the existing residential smart energy solutions have one 
important attribute in common: they rely on various sensor technologies and 
sensor networks, such as [1], [2], [5], [22], [23], [24], [25], [26]. Because of the 
important impact of sensor networks applications in smart home’s 
environmental challenges, the authors of this paper have tried to make a 
synthesis between “RF sensor networks” and residential smart energy 
systems. In order to detect human presence in smart energy infrastructure, 
an algorithm that characterizes the signal strength variations, has been 
previously proposed in [27] and [28]. The algorithm is incorporated into the 
smart power outlets, by enabling them to detect human presence only by 
analyzing and quantifying radio signal strength variations incorporated in 
exchanged messages. The RSSI standard deviation and discrepancies 
between the mean value of a set of RSSI samples and the set’s min and max 
values are compared to define the interval of the initial signal strength 
variation. During the runtime, each outlet is polled periodically by the specific 
controller device, to obtain their current RSSI values from the messages 
exchanged with other outlets. The algorithm compares read RSSI values with 
the interval’s bounds. When the human steps into the monitoring area, the 
signal strength variation exceeds the previously set bounds and reports the 
presence of a subject. The shortcoming of such an approach is that the 
algorithm monitors RSSI variation intensity on each link independently. It is 
enough that the interval is exceeded only at one link and the detection will be 
reported. This is also the case for many related researches that were 
performed in a controlled environment. Unfortunately, in real environment, 
the external noise (e.g. interferences from another room, or single link 
variations for specific positions in the room) can disturb a radio link in the 
monitoring room, resulting in reported false alarms. 
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In order to improve the presence detection for real-world applications, the 
RSSI processing algorithm resistant to external noise is proposed in this 
paper. To meet the requirement, the authors propose the use of Principal 
Components Analysis (PCA). The RSSI variation intensity is given as a 
function over the entire network of radio links (RSSI) in the monitoring room. 
The links are simultaneously processed, therefore in a case when a few links 
are interfered with the external noise, the power of the majority of links will 
minimize, or even entirely suppress the noise. PCA successfully filters out 
the disturbed signals in order to preserve the correct detection.  

3. Human Presence Detection Method based on Principal 

Components Analysis of the Signal Strength 

Principal components analysis [29], [30] is a useful statistical technique used 
in many forms of statistical analysis, from biomedical signal processing [31] 
to computer graphics and pattern recognition [32]. It presents a simple, non-
parametric method for extracting relevant information from confusing and 
large data sets. PCA is a variable reduction procedure. It is useful when 
samples are obtained on a large number of variables that are mutually 
correlated. PCA helps identifying patterns in the data, and expressing the 
data in a way that highlights their similarities or differences. Because of this 
variables redundancy, it is possible to reduce the large set of observed 
variables into a smaller number of principal components while retaining as 
much as possible of the variation present in the original data set. As the final 
result, each principal component contains new information about the original 
data and is ordered so that the first few components account for most of the 
variability. In the proposed algorithm, PCA compresses raw RSSI inputs 
obtained from each radio link, in order to extract principal components that 
are used to emphasize the variability of the signal strength. 

A set of RSSI samples obtained from a communication link between two 
wireless nodes (outlets) inside the same room forms the zero-mean column 
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Vector 
klinkToNod  stores the information about RSSI signature from the 

link between a node which is currently polled by the home controller, and 
another node which communicates with the polled node. Each value 
sample(i) denotes an RSSI sample obtained from that link, whereas the 
counter i takes its values from 1 to N, for N that is the number of samples in 
the observed time window. Counter k takes its values from 1 to K-1, where K 
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represents the number of all active nodes inside the detection scope. Links 
toward remaining nodes represent an ensemble of K-1 sensing links. The 
entire ensemble can be compactly expressed by the N×(K-1) data matrix 
Nod, which defines (K-1) observations of the random process: 

 

 121 .  klinkToNodlinkToNodlinkToNodNod  (2) 

Once the samples are collected, the shift interval which includes number of 
p samples from each column of matrix Nod needs to be defined. Over new 
set of p samples, the standard deviation (STD) is calculated. The interval of 

first p samples is further represented through the value 
pstdLink , which 

shows the standard deviation of the vector p calculated over a single link. 
Afterwards, the STD is performed for the rest of the columns of matrix Nod 
which contain the data from other active links. That way, the shifting interval 
and the STD calculation applied to p samples from each column can be 

saved in a new vector kz  : 

  .... 121  Kk stdLinkstdLinkstdLinkz  (3) 

The procedure for the creation of the vector kz  is repeated for each K-th 

node, after the node is polled by the home controller. Counter k denotes the 
id of the polled node and takes its values from 1 to K, where K is the number 
of nodes in the environment. The calculated values are stored into new (K-
1)×K matrix X: 

  ,...21 KzzzX   (4) 

whose columns represent transposed vectors kz , for each wireless node. 

After the samples are collected it is important to determine how much the 
dimensions vary from the mean value with respect to each other. For that 
purpose the statistical measure covariance (cov) is used: 
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where iz  and 
jz  denote mean values from the set of samples per vectors   

iz and 
jz , respectively: 
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The expression (5) is divided by (K-1)-1, because the data represent only a 
sample. This gives the result that is closer to the standard deviation, which 
would result if the entire population is used. As the next step of the algorithm, 
all the possible covariance values between the variables should be calculated 
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and stored into covariance matrix 
XC . By using the equation (4) that defines 

the matrix of links X, the covariance matrix can be expressed as: 

.
1)1(

1 T

X XX
K

C


  
 (7) 

Each row of X corresponds to all measurements of a particular link. Each 
column of X corresponds to a set of measurements from one particular 

polling cycle. The matrix 
XC  

captures correlations between all the possible 

pairs of measurements. A large value of 
XC  

indicates high redundancy 

between measurements, whereas small indicates low redundancy.  
PCA enables the linear transformation that maps the data from a higher 

dimensional space to a lower dimensional space. Low dimensional space is 

determined by the strongest eigenvectors of the covariance matrix 
XC , 

known as principal components. The eigenvectors of 
XC  

are non-zero 

vectors that, after being multiplied by the matrix 
XC  

remain proportional to 

the original vector or become zero. An eigenvalue represents the scalar 
which defines how the eigenvector changes (stretches, flips, shrinks or leaves 

unchanged) when it gets multiplied by matrix 
XC . 

If W is a vector space and w is a vector from that space, then w represents 

an eigenvector of matrix 
XC  

with eigenvalue  , defined as: 

.wwCX   (8) 

The eigenvalues of 
XC  

can be calculated as the roots of characteristic 

polynomial which can be derived from the expression: 

,0)det(  ICX   (9) 

where det stands for determinant and I is the K×K identity matrix. The 
eigenvectors correspond to principal components whereas the eigenvalues 
correspond to the variance defined by the principal components. Once the 

eigenvectors are found from the covariance matrix 
XC , the next step is to 

order them by eigenvalues, highest to lowest, which orders the principal 
components by their significance. By ignoring less significant components, 
the final data set will have less dimensions than the original. The last step of 
the algorithm is to form the Feature Vector fv which is constructed by using 
the most significant eigenvalues. By analyzing the eigenvalues saved in the 
vector fv, the presence of a human can be determined. No presence 
implicates very low RSSI variations and therefore low eigenvalues (very 
close to value 0). When a human subject is present, RSSI variations from 
wireless links are becoming higher, with strongly expressed deviations from 
the mean value, which implicates higher eigenvalues. The detection bound is 
set to be the maximal value from the fv during the phase of training (no 
humans in the room). During the runtime, the eigenvalues which are higher 
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than the bound, report human presence. Lower eigenvalues report the empty 
room.  

4. Case Study – System Design for Residential Energy 

Awareness 

In one of the previous papers a smart energy system for the residential use 
has been presented [5]. The system is comprised of the home controller 
device, 2.4GHz (IEEE 802.15.4) wireless smart outlets, 2.4GHz smart light 
switches and a number of residential sensors. All these devices are 
connected to the residential smart power network. By interpreting user-
defined power saving schemes given in a form of XML based scripts [33] the 
user awareness of the entire system is increased. Increased awareness 
enables automation of instructions that generate ambient intelligence 
environment. The concept is depicted in Fig.1. 

 

Fig. 1. The concept of human presence detection method based on wireless smart 
outlets, light switches and the analysis of RSSI variations  

Implementation of the proposed method for presence detection requires at 
least two smart wireless power outlets, which can be combined with smart 
light switches. The communication control, periodic polling mechanism and 
the RSSI data analysis are implemented within the core software modules of 
the home controller. The home controller (illustrated in Fig. 2) is made in a 
form of a software platform based on POSIX/C open standards which provide 
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scalability. The software is platform independent and can be easily ported to 
various POSIX-based target controllers.  

 

 

Fig. 2. The home controller software design. The home controller is comprised of 
adaptation layer which provides communication toward user interface; RSSI analyzer 
which polls each outlet and analyzes RSSI data; the communication module which 
provides communication with the smart wireless nodes and user interfaces; the 
device handler which provides device drivers for smart nodes; and the behavioral 
scripts interpreter which provides engine for user-defined power saving schemes 
execution 

The device handler module connects device drivers for smart outlets and 
light switches with the central processing unit, providing a communication 
mechanism for wireless nodes polling and RSSI data reading. The device 
handler controls the message flow as the response on detection events. The 
RSSI analyzer enables periodic polling of wireless nodes to retrieve the 
current values of RSSI. The home controller polls each node (outlet) in turn 
on every 100ms and saves the received values in the local storage database. 
That way the system is able to detect even a human running with the fastest 
known speed without unnecessary frequent polling that can bring high 
processing loads to the system.  

Once a node receives the polling command from the home controller it 
sends its RSSI table as a broadcasted message. The message contains a 
table of RSSI values toward all links (other wireless outlets) nearby. During 
the period of one node polling the other nodes are in the “listening” mode, so 
there is no interference or superposition of signals between them. The 
broadcasted message is received by the controller as well as by other nodes 
which update their RSSI tables with the values of signal strength received for 
that link. The nodes are able to receive the message from the controller as 
well as from neighboring nodes. Once the message is received, the RSSI 
analyzer saves the received values in the local database and waits for the 
next 100ms, to poll another node inside a room. After a polling cycle, the 
controller can generate a functional status by monitoring the principal 
components, extracted from the matrix of RSSI values, as explained in the 
previous section. 
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Smart outlets and light switches (shown in Fig. 3), presented in details in 
[5] and [34], fit into existing electrical installations, power sockets on the wall. 
Smart outlets provide power to electrical devices with standard flat, two-pole 
AC power plug (CEE 7/16) which is designed for voltages up to 250V and 
currents up to 2.5A. Besides simple on/off switching, sockets and light 
switches are able to pass any percentage of power to the consuming electric 
device (e.g. light dimmer). IEEE 802.15.4 transceiver (2.4GHz Zigbee) is 
used as the wireless communication module. Smart outlets are powered from 
220-240Vac (±10%) 50Hz current electric power supply. It is an inexpensive 
and the safest way to provide full compatibility with the regulatory 
requirements. With an average current of 35mA and the operational voltage 
of 3.3V for an outlet and 2.4V for a switch, the power supply consumption is 
approx. 0.12W per an outlet and 0.08W per a switch. 

 

 

Fig. 3. The smart power outlet and smart light switch; the retrofit design that fits into 
existing electrical installation on the wall (CEE 7/16 standard)  

 

 

Fig. 4. The smart power outlet software design. Smart power outlet is comprised of: 
module for RSSI broadcast which sends a broadcast message on each polling 
instruction received from the home controller; the communication module which 
establishes Zigbee communication protocol with the controller and other smart 
nodes; the command interpreter which executes the switch and the dimming control; 
and the module for power measurement which provides consumption data 

The smart outlets and light switches incorporate specific firmware which is 
implemented to enable: (1) the access to the consumption overview on 
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demand, (2) switching the plugged devices on or off, and (3) environmental 
sensing by broadcasting RF messages to neighboring nodes. The firmware 
modules are illustrated in Fig. 4. 

The module for power measurement sends its current values periodically 
(each second) to the home controller. The power consumption for daily, 
weekly and monthly basis are processed within the home controller and 
stored into the local database. The module for RSSI broadcast waits for an 
event from the home controller which actuates the RSSI message 
broadcasting. The same module receives broadcasted messages from other 
nodes during the polling cycle. Parsed message is saved in the structure, 
which is provided to the home controller after the node is polled. Command 
interpreter executes commands received from the home controller, such as 
dimming control, switching the plugged device on or of, etc. The smart light 
switch firmware design is similar to the smart outlet firmware. 

5. Experimental Results for Human Presence Detection 

The test bed described in the previous section was installed in two buildings. 
In the first building, walls were made of concrete parts (exterior wall) and 
gypsum attached to the steel construction (interior wall) isolated with 
fiberglass wool. The gypsum wall thickness was 15cm and the concrete wall 
was 30cm. In the second building, the walls were made of aluminum and 
plastic covers, 30cm thick and mounted on steel construction, isolated with 
fiberglass wool. In each building a room was selected and four smart nodes 
were installed and placed strategically. Three of them (smart outlets) have 
been positioned at an elevation of 40cm above the floor and the last one 
(smart switch) was positioned at an elevation of 120cm above the floor. The 
testing room made of concrete and gypsum walls (further referred to as R1) 
was 536×530cm, whereas the room with aluminum and plastic walls (further 
referred to as R2) was 960×580cm large. The rooms’ layouts and the 
positions of a subject (shown as points P1-P5 for R1, apropos P1-P6 for R2) 
and nodes positions (shown as squares N1-N4) are illustrated in Fig.5. 

Coordinates of each node in R1, relatively to the central position, as well 
as positions of a testing subject, are given in Table 1. All the coordinates are 
given in cm, and measured relatively to the central position. The central 
position is located in the down left corner. 
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Fig. 5. The experimental rooms’ layout. On the left - the room with concrete and 
gypsum walls; on the right - the room with aluminum walls with plastic slices 

Table 1. Human subject’s and wireless nodes’ positions in R1 

Node 
name 

Node 
coordinates 

Subject’s 
position 

Subject’s 
coordinates 

N1 (73, 211) P1 (0, 78) 
N2 (54, 477) P2 (270, 75) 
N3 (474, 428) P3 (424, 254) 
N4 (519, 66) P4 (306, 420) 
- - P5 (120, 255) 

 

Coordinates of each node in R2, relatively to the central position, as well 
as positions of a testing subject are given in Table 2. The central position is 
also located in the down left corner. The coordinates are given in cm. 

Table 2. Human subject’s and wireless nodes’ positions in R2 

Node 
name 

Node 
coordinates 

Subject’s 
position 

Subject’s 
coordinates 

N1 (410,530) P1 (220,305) 
N2 (600,530) P2 (410,305) 
N3 (795,40) P3 (500,150) 
N4 (410,40) P4 (690,150) 
- - P5 (945,305) 
- - P6 (955, 500) 

 
According to scattering, diffraction, absorption and reflection of the signal 

in these environments, two test scenarios were defined. In the first scenario, 
the room was empty for a period of two minutes, and no detection was 
reported. Once a subject entered the room, he performed clockwise walking 
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around the table within the room, by passing the positions P1-P5, from the 
Fig. 5 - left. After one minute of walking, the subject was standing in each 
position P1-P5, for a minute, without movements. The scenario tried to 
confirm the hypothesis that the detection of human presence or movement is 
possible by analyzing the extracted principal components from the sets of 
RSSI variations retrieved from each wireless link. Sets of raw RSSI samples, 
before PCA processing, are logged and presented in Fig. 6. The values are 
given in dBm, but the idea is that the algorithm takes raw 8bit values into the 
processing. In that case no additional conversions are necessary during the 
runtime. The 8bit RSSI value is in signed 2’s complement on a logarithmic 
scale with 1-dB step and must be corrected with an RSSI offset to get the real 
RSSI value in dBm. For CC2530 transceiver, the RSSI offset is 73 dB. Real 
RSSI is calculated by subtracting the RSSI offset from the converted 8bit 
RSSI value. 

From the Fig. 6 it can be noticed that in the position P1 the RSSI variation 

was emphasized only at the link N1→N4 in both directions. It is explained as 
a result of signal reflection by the human body which was very close to the 
line-of-sight between outlets N1 and N4. In the position P2, the human body 

shadowed the links N1→N4 and N4→N1, and the most of the radio signal 
was absorbed by the human body which is the main reason for lower RSSI 
values. In the position P2, the links N2→N4 and N4→N2 were distorted with 
the reflection by the human body. Therefore, high RSSI variation in the 
position P2 for links between outlets N2 and N4 can be noticed. Moreover, 

the position P2 had slight influence to the links N1→N3 and N3→N1 that 
were distorted by the vicinity of human body which slightly reflected the 
signal. The human position P3 mostly absorbed the signal from the links 

N2→N4 and N4→N2, and reflected the signals from the links N3→N4, 

N4→N3 and N1→N4, N4→N1. Position P4 shadowed the links N1→N3 and 

N3→N1 and absorbed the signal. The position P5 shadowed the links 

N1→N3 and N3→N1 and reflected the signals from the rest of links, except 

for N3→N4 and N4→N3 which were far from the current human position. At 
the end of the experiment the room was empty again for two minutes.  
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Fig. 6. Raw RSSI samples data observed in the first experimental room – R1 

From the aspects of radio irregularity feature, the conclusion for the first 
scenario can be deduced: (1) RSSI for all wireless nodes that have 
communicated far from the human, varied slightly or had a constant value. 
(2) When the human was positioned closer to a node, without obstructing the 
line-of-sight, RSSI varied significantly. The larger variation is explained as 
the consequence of the signal reflection. (3) When the human obstructed the 
line-of-sight on one link, the RSSI did not vary much comparing to the other 
links, but was diverse comparing to the initial values.  

It can be clearly noticed that the appearance of a human subject induced 
RSSI variations in the environment. Particularly, during subject’s walking, 
RSSI variations have been emphasized at all links.  

Once the data set is collected for a number of samples (interval p – the 
testing was performed for the interval of 12, 24 and 36 RSSI samples) the 
matrix Nod given by (2) is formed, for each link. After the matrix X is created 

and the matrix XC  is calculated, the principal components are extracted. The 

graphical presentations of principal components stored in the Feature Vector 
fv for the time interval of 550 seconds are shown in Fig. 7, Fig. 8 and Fig. 9, 
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depending of the interval p (12, 24 and 36, respectively). Different values for 
p are used to experimentally determine the optimal number of samples that 
can achieve accurate detection and preserve fast system response. The first 
200 principal components are used to define the detection bound, and this 
phase is known as the training phase. During the training phase no human 
should be present in the room, otherwise high detection bound can be set. 
The detection bound is calculated as the maximal value of principal 
components from the training phase. The values higher than the calculated 
bound report detection.  

In the Fig. 7 the result of the applied PCA for the shifting interval p which 
includes 12 samples is shown. The first high peak (after the sample 200) 
reports the presence of a human. As defined in the scenario, the human was 
walking for a minute (the following 200 samples). During the motion, the 
principal components powers are strongly emphasized and human presence 
can be easily detected with 100% accuracy. The human standing without 
movements is less expressed on principal components and the detection 
accuracy is lower. The following high peaks show the transitions from each 
position P1-P5 to the next one. The defined human positions gradually affect 
the radio links in the room. All the links are not immediately obstructed with 
the human body and high discrepancies between them exist. Some of the 
links would still have low RSSI variations before their line-of-sight becomes 
intersected. As the human moves to the centre of the room (positions P3, P4 
and P5), the power of principal components increases. The overall detection 
accuracy, with p defined to include 12 samples, is approx. 75.3% for human 
presence (which includes walking and standing in each position P1-P5), 
whereas the accuracy for the empty room detection is 100%.  
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Fig. 7. PCA analysis results for R1 - an array of principal components for the shift 

interval defined to be p=12 and the input data representing the matrix X which 
contains standard deviations of the RSSI samples 
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Around the sample 400 the subject moved to the position P1 and stopped. 
Although the principal components in that position have low power, the most 
of them exceed the detection bound. The power of principal components is 
lower in the P1, because only several links are affected with the human body.  
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Fig. 8. PCA analysis results for R1 - an array of principal components for the shift 

interval defined to be p=24 and the input data representing the matrix X which 
contains standard deviations of the RSSI samples 
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Fig. 9. PCA analysis results for R1 - an array of principal components for the shift 

interval defined to be p=36 and the input data representing the matrix X which 
contains standard deviations of the RSSI samples 

In the Fig. 8, the shifting interval is comprised of 24 samples. The 
detection accuracy is approx. 93.6% for human presence. The empty room 
detection is 100% accurate. This shifting interval is more robust to false 
detections. In Fig. 9, the shifting interval is comprised of 32 samples, which is 
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the most robust to errors and the human presence detection is 97.8% 
accurate, whereas empty room is detected in 100% cases. 

The false detection rate decreases as the number of samples of the 
interval p grows, but the processing time is increasing for the calculation of 
principal components. For p is 24 and 36, the polling time of 100ms for each 
outlet is insufficient, because the algorithm can not extract the eigenvalues in 
400ms, which is the time period until the next polling cycle. From the number 
of experiments, the optimal polling time per outlet is determined to be 200ms 
if p is 24, and 350ms if is p is 36. For p is 12, the polling time of 100ms is 
satisfactory but the false detections rate is higher. Therefore, the solution for 
improving the processing speed is to implement an incremental algorithm 
which calculates eigenvalues only by using the previously calculated principal 
component as a predictor. The predictor is combined with the RSSI samples 
stored in n×1 vector, where n is the number of links. Instead of processing 
p×p matrix of RSSI samples, the improved algorithm calculates principal 
components from the vector. The fuzzy reasoning filter [35] would be useful 
to additionally isolate all the values below the calculated bound and the 
results would become more accurate. The detailed description of the filter 
and the incremental algorithm are not considered in this paper. 

Another approach is the definition of the matrix X from (4), as the matrix of 
raw RSSI samples, instead of standard deviations. In that case, the matrix X 
is equal to the matrix Nod from (2) and the definition of the matrix does not 
require the calculation of the standard deviation per interval p. In the Fig. 10 
the result of the applied PCA algorithm for the interval p which includes 12 
raw samples is shown. Human presence detection accuracy is 76.4% and the 
detection of the empty room is accurate in 99.6% cases. 
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Fig. 10. PCA analysis results for R1 - an array of principal components for the shift 

interval defined to be p=12 and the input data representing the matrix X which 
contains raw RSSI samples 

In the Fig. 11 and Fig. 12 the extracted principal components for raw RSSI 
inputs and p defined to be 24 and 36 are shown, respectively. The false 
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detection rate decreases as the interval p grows. For p=24, human detection 
accuracy is 94.2% and the empty room detection accuracy is 100%, whereas 
for p=36, human detection accuracy is 97.9%, and the empty room detection 
accuracy is 100%. Unfortunately, the same issue with the increased latency 
of the system response exists. However, the detection accuracy increases 
when raw values are used instead of standard deviations. The detection 
accuracy of these two types of inputs for the variation of the p interval is 
shown in Fig. 13.  
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Fig. 11. PCA analysis results for R1 - an array of principal components for the shift 

interval defined to be p=24 and the input data representing the matrix X which 
contains raw RSSI samples 
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Fig. 12. PCA analysis results for R1 - an array of principal components for the shift 

interval defined to be p=36 and the input data representing the matrix X which 
contains raw RSSI samples 
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Fig. 13. The detection accuracy is shown for both standard deviations and raw 

values, including p=12, 24 and 36. The accuracy is given for human presence 

detection during: walking, standing in positions P1-P5, and transition from Pn to 

Pn+1 (where n counts from 1 to 5). The detecion of the empty room is shown as well 

The test scenario in R2 was slightly different from the previous one. The 
room R2 was empty for a period of two minutes, and no detection was 
reported. Once a human stepped into the room, he was standing in each 
position P1-P6 from the Fig. 5-right for one minute without movements. After 
samples from all positions were collected, the subject performed one minute 
of walking within the room by passing the positions P1-P6. Because of the 
walls’ structure, this environment formed a Faraday’s cage. The signal was 
interfered with the reflection by the walls and the RSSI variation is noticed 
even in the empty room. Sets of raw RSSI samples retrieved from each link 
between nodes, before PCA processing are logged and presented in Fig. 14. 
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Fig. 14. Raw RSSI samples data observed in the second experimental room – R2 

In the position P1, small RSSI variations were present on several links. In 
the position P2, the human body shadowed the links between nodes N1 and 
N4, so the most of the signal strength was absorbed. The position P2 had 

slight influence to the links N1→N3, N3→N1, N2→N4 and N4→N2 that were 
distorted by the vicinity of human body which induced the signal reflection. 
The human position P3 was responsible for signal reflection between nodes 

N2 and N4 and also for the links N2→N3 and N3→N4 in both directions. The 
position P4 caused very strong signal reflection for links between nodes N2 
and N4, and also N3 and N4, whereas the signals between nodes N2 and N3 
were absorbed. The human body position P5 induced RSSI variations on 
links between nodes N1 and N3. The strongest impact on the signal strength 
in the position P5 was noticed for the links between nodes N2 and N3. The 
influence of the position P5 in combination with the wall reflection was 
responsible for the increased RSSI variation. The position P6, which was the 
furthest position from all nodes, did not affect the RSSI. Therefore, human 
presence detection was not possible. The position P6 is defined as the “blind 
position”, which is out of the detection scope. At the end of the experiment 
the human was walking around the room, by moving closer to nodes N2, N3 
and N4, and radio links therein, without obstructing the line-of-sight between 
nodes N1 and N2. After one minute of walking, the room was empty, as it 
was at the beginning of the experiment, for a minute. 

After the matrix X is created by using (4) and the covariance matrix XC  

(7) is calculated by using standard deviations of the RSSI samples for 
specific interval p, the principal components are extracted and stored into the 
Feature Vector fv. The graphical presentations of the principal components 
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for 1420 samples (568 seconds) with different values of the interval p, are 
shown in Fig. 15, Fig. 16 and Fig. 17. 
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Fig. 15. PCA analysis results for R2 - an array of principal components for the shift 

interval defined to be p=12 and the input data representing the matrix X which 
contains standard deviations of the RSSI samples  

For principal components around the samples 500 and 1000, from the Fig. 
15, a higher probability of false detections occurs. The detection bound is 
also calculated during the initial 200 samples when the room was empty. The 
detection accuracy using PCA in R2 with p defined to include 12 samples is 
around 53.9% for presence, and 100% for the empty room detection. 
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Fig. 16. PCA analysis results for R2 - an array of principal components for the shift 

interval defined to be p=24 and the input data representing the matrix X which 
contains standard deviations of the RSSI samples 

In the Fig. 16 and Fig. 17, the shifting interval is comprised of 24 and 36 
samples, respectively. For the case when p is 24 samples the detection 
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accuracy is around 81.6% for presence and 100% for the empty room. For 
the case when p is 36 samples the detection accuracy is around 90.4% for 
presence and 100% for the empty room. 
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Fig. 17. PCA analysis results for R2 - an array of principal components for the shift 

interval defined to be p=36 and the input data representing the matrix X which 
contains standard deviations of the RSSI samples 
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Fig. 18. PCA analysis results for R2 - an array of principal components for the shift 

interval defined to be p=12 and the input data representing the matrix X which 
contains raw RSSI samples 

The wall reflection which was interfered with the reflection by the human 
body mostly affected signals in this environment. Although the initial radio 
map was disturbed in this environment, human presence and motion were 
successfully recognized for most of the positions. Only for the “blind position” 
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P6, the detection accuracy was very low. The integration of the additional 
outlets would improve the radio coverage in large rooms. 

Another approach is the definition of the matrix X (4) as the matrix of raw 
samples, as in the previous experiment. In Fig. 18 the result of the applied 
PCA algorithm for the shifting interval p which includes 12 raw samples is 
shown. The human presence detection accuracy is 54.1% and the accuracy 
of the empty room detection is 99.1%. In Fig. 19 and Fig. 20, the result of the 
applied PCA for the interval p which includes 24 and 36 raw samples is 
shown, respectively. The false detection rate decreases as the number of p 
samples grows, but larger p implicates longer latency which should be 
optimized with an iterative method combined with the fuzzy filter. 
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Fig. 19. PCA analysis results for R2 - an array of principal components for the shift 

interval defined to be p=24 and the input data representing the matrix X which 
contains raw RSSI samples 

The human presence detection accuracy for the p interval of 24 samples is 
approx. 83%, whereas the accuracy for the empty room detection is 100%. 
The human presence detection accuracy for p=36 samples is 91.5%, whereas 
the empty room detection accuracy is 100%. The detailed error distribution, 
depending of p and the input samples, is shown in Fig. 21. 

As concluded for the previous experiment, the same conclusion can be 
deduced for this experiment: the detection accuracy increases when using 
raw RSSI values, in contrary to standard deviations of the RSSI. 
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Fig. 20. PCA analysis results for R2 - an array of principal components for the shift 

interval defined to be p=36 and the input data representing the matrix X which 
contains raw RSSI samples 
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Fig. 21. The detection accuracy is shown for both standard deviations and raw 

values, including p=12, 24 and 36. The accuracy is given for human presence 

detection during: walking, standing in positions P1-P6, and moving from Pn to Pn+1 

(where n is 1 to 6). The detecion of the empty room is also shown 

5.1. Energy Saving Experiment 

The integration of the provided energy-saving system [5] with the proposed 
method for human presence detection, enabled a prototype realization. The 
prototype has been installed in four, the least frequently occupied rooms in an 
average household. The primary goal was to demonstrate the proposed 
method operating in real conditions for the energy saving. Energy saving has 
been achieved by utilizing two approaches: (1) if there is nobody present in 
the room for more than 10 seconds, turn the light in that room off, (2) always 
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decrease the brightness of lights in the household by 10%, what should be 
unnoticeable to users but saves an amount of energy. To be able to provide 
the comparison between the regular human behavior on energy saving and 
the proposed prototype, 8 bulbs of 100W combined with 12 smart outlets and 
4 smart light switches have been installed in each room (4 smart nodes and 2 
bulbs per a room). In each room, one bulb was under regular control (manual 
on/off switching), which included the worst case - a user leaves the light on 
after leaving a room. The second bulb was under automatic control. The 
automatic control is achieved by using predefined power behavior schemes, 
which define system responses on human presence detection events. 
Operational “energy saving” mode switched off the light after 10 seconds 
when no-presence was reported by the RSSI analyzer module (from Fig. 2), 
and also switched the light on, almost immediately, when a human entered 
the room. In each room, both bulbs (lamps) were plugged to smart outlets in 
order to provide the power consumption logging for the detailed comparison. 

The experiment has been performed during one working day with four-
member family (two adults and two kids). Two bedrooms, one bathroom and 
a foyer have been defined as test rooms, where the real presence of humans 
was the most dynamic. The test subjects performed the normal behavior at 
home, trying to manually switch off the lights in each unoccupied room. All 
the rooms were properly covered with the radio signal and no “blind positions” 
were recognized. The walls were made of concrete and brick blocks, 30cm 
thick for exterior walls and 20cm for interior wall.  

Supported with the proposed presence detection algorithm, the energy 
consumption used for lights was decreased from 1220 W/h to 730 W/h at the 
end of the day. In the Fig. 22, the power consumption, achieved by using 
regular and automatic control is shown, per each hour during the experiment. 
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Fig. 22. Measured power consumption in the experimental house by comparing 
manual interaction for lights control (blue) and automatic “energy saving mode” (red) 

For this experiment, PCA used inputs of p=24 raw samples. With the 
polling time of 200ms per an outlet, the detection could be reported on each 
800ms, including additional 600ms for the PCA processing and the 
generation of a functional status. This is the optimal time with the high 
accuracy, suitable for this experiment. For p=36 samples, the functional 
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status can be generated after approx. 2.8s (including the polling cycle for 
detection), which is too long. The polling time of 200ms is acceptable when 
the number of smart nodes is four or less. For additional smart nodes, the 
polling time has to be reduced to 100ms. The detection accuracy for p=12 
(100ms polling) is not optimal.  

6. Conclusion 

PCA presents a simple method for extracting relevant information from 
confusing and large data sets. It is a variable reduction procedure and is 
useful when samples are obtained on a large number of variables that are 
mutually correlated. PCA helps identifying patterns in the data, and 
expressing the data in a way that highlights their similarities or differences. 
Because of this variables redundancy, it is possible to reduce a large set of 
observed variables into a smaller number of principal components, while 
retaining as much as possible of the variation present in the original data set.  

The presented article confirms the hypothesis that human presence 
detection is possible by applying the PCA to the set of RSSI samples 
obtained from radio links between wireless power outlets. The experimental 
results show that PCA inputs, given in a form of raw RSSI samples, provide 
more accurate results for human presence detection, than the inputs which 
describe the dispersion of the signal, such as standard deviation. More 
accurate detection requires larger set of input samples, which implicates 
larger processing time and overall system response delay. For the future 
improvement, the testing would be performed in another buildings made of 
different materials, with dynamic changes of the furniture layout which can 
introduce additional interferences (noise) to the system. The testing in such 
environments would be helpful for finding patterns that would enable the 
definition of a fuzzy reasoning algorithm which would improve the accuracy 
of human presence detection. Aditionally, an incremental method needs to be 
defined which would speed up the processing time, and the overall system’s 
response for the larger number of additional wireless smart nodes.  

The presented solution can significantly conserve electric energy in a 
household, by executing automatic operations which switch off power on 
devices that are not used for a specified period of time. The test subjects 
confirmed that 1s to 1.5s are acceptable for the functional status generation. 
However, the further intention is to decrease the system’s response without 
decreasing the accuracy of the proposed algorithm. 
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