
DOI: 10.2298/CSIS120202045Z

Active Semi-supervised Framework with Data

Editing

Xue Zhang
1,2

 and Wangxin Xiao
2,3

1
 Key Laboratory of High Confidence Software Technologies, Ministry of Education,

Peking University, Beijing 100871, China
1
School of Electronics Engineering and Computer Science,

Peking University, Beijing 100871, China
2
 Department of Computer Science, Jinggangshan University, Ji’an 343009, China

jane_zhang@pku.edu.cn
3
School of Traffic and Transportation Engineering, Changsha University of Science and

Technology, Changsha 410114, China

wx.xiao@rioh.cn

Abstract. In order to address the insufficient training data problem, many
active semi-supervised algorithms have been proposed. The self-labeled
training data in semi-supervised learning may contain much noise due to
the insufficient training data. Such noise may snowball themselves in the
following learning process and thus hurt the generalization ability of the
final hypothesis. Extremely few labeled training data in sparsely labeled
text classification aggravate such situation. If such noise could be
identified and removed by some strategy, the performance of the active
semi-supervised algorithms should be improved. However, such useful
techniques of identifying and removing noise have been seldom explored
in existing active semi-supervised algorithms. In this paper, we propose
an active semi-supervised framework with data editing (we call it ASSDE)
to improve sparsely labeled text classification. A data editing technique is
used to identify and remove noise introduced by semi-supervised
labeling. We carry out the data editing technique by fully utilizing the
advantage of active learning, which is novel according to our knowledge.
The fusion of active learning with data editing makes ASSDE more robust
to the sparsity and the distribution bias of the training data. It further
simplifies the design of semi-supervised learning which makes ASSDE
more efficient. Extensive experimental study on several real-world text
data sets shows the encouraging results of the proposed framework for
sparsely labeled text classification, compared with several state-of-the-art
methods.

Keywords: sparsely labeled text classification; active learning;
semi-supervised learning; data editing

Xue Zhang and Wangxin Xiao

1514 ComSIS Vol. 9, No. 4, Special Issue, December 2012

1. Introduction

Automatic text classification is of great importance due to the large volume of
text documents in many real-world applications. The goal of automatic text
classification is to automatically assign documents to a number of predefined
categories. A supervised classification model often needs a very large number
of training data to enable the classifier’s reliable performance. As we know,
manually labeling the training data for a machine learning algorithm is a tedious
and time-consuming process, and even unpractical (e.g., online web-page
recommendation). Correspondingly, one important challenge for automatic text
classification is how to reduce the number of labeled documents that are
required for building a reliable text classifier.

In order to reduce the effort involved in acquiring labeled examples, there are
two major strategies, active learning and semi-supervised learning. The aim of
active learning is to select most informative unlabeled examples for manually
labeling so that a good classifier can be learned with significantly fewer labeled
examples. Active learning has been extensively studied in machine learning for
many years and has already been employed for text classification in the past
[1-3]. Semi-supervised learning tries to learn a classification model from the
mixture of labeled and unlabeled instances, which also has been employed for
text classification [4-5]. The fusion of active learning with semi-supervised
learning can further bring advantage, thus several combination algorithms have
been proposed for text classification [6-7].

Sparsely labeled classification is a special form of classification in which only
very few labeled instances are available. It exists in many real-world
applications such as content-based image retrieval, online web-page
recommendation, object identification and text classification, where the
abundant unlabeled instances are available but the labeled ones are fairly
expensive to obtain. The sparsity of training data often leads to severe
distribution bias between the training data and the unlabeled data (we call it
training data bias). It is very difficult to learn a weak useful hypothesis with the
extremely few labeled instances. Existing semi-supervised learning and active
learning algorithms, which often need quite a number of labeled instances to
learn an initial weak useful predictor for further learning, cannot perform well for
sparsely labeled text classification [8].

Due to the poor performance of the initially learned hypothesis based on the
very few training data, it is unavoidable to contain much noise in the
self-labeled instances. Extremely few labeled training data in sparsely labeled
text classification aggravate such situation. If such noise could not be identified
and removed from the new training data set, they may snowball themselves in
the following learning process and thus hurt the generalization ability of the final
hypothesis. On the other hand, if such noise could be identified and removed by
some strategy, the performance of the active semi-supervised algorithms
should be improved. However, such useful techniques of identifying and
removing noise have been seldom explored in existing active semi-supervised
algorithms, especially using the advantage of active learning to do this. This is
one motivation of this work.

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1515

In this paper, we propose an active semi-supervised framework with data
editing (we call it ASSDE) to improve sparsely labeled text classification.
ASSDE conducts in a self-training style process. In order to efficiently integrate
active learning, we extend the standard self-training by substituting ensemble
classifiers for its single classifier. Furthermore, we introduce a data editing
technique into ASSDE by fully utilizing the advantage of active learning. Data
editing technique is used to identify and remove the noise contained in
self-labeled instances. ASSDE iterates the steps of self-labeling, active labeling
and data editing until satisfying some stopping criteria.

The main contributions of this paper may be summarized as follows:
— We propose an active semi-supervised framework with data editing

which is more effective and efficient for sparsely labeled text
classification compared with state-of-the-art algorithms.

— We carry out a data editing technique to identify and remove the noise
contained in self-labeled instances by fully utilizing the advantage of
active learning, which is novel and incurs very little computation
complexity while improving the classification accuracy.

— We propose a novel parameter ensemble strategy to extend the standard
self-training algorithm in order to efficiently integrate active learning while
incurring less computation complexity.

— We empirically demonstrate that data editing can simplify the design of
semi-supervised learning for efficiency reason, while not degrading the
performance.

— We conduct extensive experiments on three benchmark real-world text
data sets to evaluate its performance with different parameters.

The rest of this paper is organized as follows. We discuss some of the
related work in Section 2. Section 3 describes the algorithm in detail. Section 4
presents the results of the experiments. A short conclusion and future work are
presented in Section 5.

2. Related Work

A variety of algorithms for text classification have been proposed [1-14],
including supervised methods, semi-supervised methods, active methods and
the combinations. In the following, we only focus on the study and techniques
related to sparsely labeled text classification.

There are several techniques which are beneficial to sparsely labeled text
classification. These techniques includes: 1) semi-supervised learning and
active learning, 2) transfer learning [12-13], 3) feature extension with semantic
concepts [14], 4) clustering aided methods [15-17], 5) data editing [18].
Semi-supervised learning and active learning are two common used
techniques to address the problem of insufficient training data. However, they
often need quite a number of training data to train a weak useful predictor for
further learning. In sparsely labeled classification, it is very challenging, if not
impossible, to generate such weak useful predictor, which makes existing

Xue Zhang and Wangxin Xiao

1516 ComSIS Vol. 9, No. 4, Special Issue, December 2012

semi-supervised and active learning algorithms cannot be applied. The second
technique beneficial to sparsely labeled text classification is transfer learning. It
refers to the problem of retaining and applying the knowledge learned in one or
more tasks to efficiently develop an effective hypothesis for a new task.
Transfer learning techniques can be used to improve sparsely labeled
classification by transferring the useful knowledge for the problem. The third
technique beneficial to sparsely labeled text classification is to utilize the world
knowledge (e.g. Wiki, WordNet). By using the world knowledge, the feature
representation of an instance is enhanced by semantic concepts which can
weaken the feature sparsity in some degree. Clustering aided methods
beneficial to sparsely labeled classification including both expanding the
training data from unlabeled data [15] and augmenting the data set with new
features [17]. Another technique beneficial to sparsely labeled text
classification is data editing. It can be explored to indentify and remove the
noise contained in self-labeled instances. In this paper, we address the
problem of sparsely labeled text classification by active semi-supervised
learning with data editing.

In sparsely labeled classification, the generalization ability of the hypothesis
learned on the initial training data is often very poor. Thus there may contain
much noise in the self-labeled instances. In self-training style algorithms, the
early introduced noise by semi-supervised learning may snowball themselves,
which often makes the final hypothesis of very poor performance. If such noise
could be identified and removed by exploring some useful techniques, the
classification accuracy should be improved. Data editing technique could be
used for this end. In conventional studies, data editing aims to remove noisy
instances from the original training data set with the goal to improve
classification accuracy by producing smooth decision boundaries. A new
self-training style algorithm, SETRED, is proposed in [19] by introducing a data
editing technique to the self-training process to filter out the noise in the
self-labeled instances. SETRED outperforms the standard self-training, which
indicates that the performance of semi-supervised learning can be further
improved by introducing proper data editing technique. This paper shows that it
is encouraging to fuse active learning with data editing to identify and remove
the noise in the self-labeled instances. It incurs very little computation
complexity while improving the classification accuracy.

Although sparsely labeled text classification is a very significant problem in
many real-world applications, there have been very limited researches on it. A
clustering based classification method, CBC [15], is one such work. It combines
transductive support vector machines (TSVM) with k-means and iterates these
two steps alternatively. Although clustering can help to overcome the sparsity
and the training data bias, CBC has a very high computation complexity
because both TSVM and k-means are very time-consuming for sparsely
labeled high dimensional text classification. Based on kernel canonical
component analysis, OLTV (learning with One Labeled example and Two
Views) [20] and ALESLE (Active Learning with Extremely Sparse Labeled
Examples) [21] algorithms have been proposed for sparsely labeled
classification. While OLTV works in semi-supervised setting, ALESLE works in

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1517

active setting. OLTV and ALESLE require two sufficient views, which is not
practical for many real-world applications.

Phan et al. 2008 [22] propose a general framework for building classifiers
that deal with short and sparse text & Web segments by making the most of
hidden topics discovered from large-scale data collections. This framework can
be viewed as a semi-supervised learning technique, but it is flexible in that the
universal data are not necessary to have the same format as the labeled
training or future unseen data. Cai et al. 2003 [23] propose a framework for text
categorization which attempts to analyze topics from both training and test data
using probabilistic latent semantic analysis (PLSA) and uses both the original
data and resulting topics to train two different weak classifiers for boosting. Xu
et al 2008 [24] propose a web-assisted text categorization framework which
automatically identifies important keywords from the available labeled
documents to form the queries and then uses search engines to retrieve from
the Web a multitude of relevant documents. These retrieved documents are
then exploited by a semi- supervised framework.

3. ASSDE Framework

3.1. Problem Description and Notation

Let D=L∪U denote the set of instances in a p-dimensional Euclidean space R
p
,

where L={<xi,yi>}1≤i≤l is the set of labeled instances and U={xi}l+1≤i≤l+u the set of
unlabeled ones. Here yi is the class label of instance xi and l<<u. This paper
only considers single-label classification that exact one label should be
assigned to each instance in D. The set of classes is denoted by C={cr}1≤r≤|C|

and |C| is the cardinality of C and r is an integer. Each instance in L has been
labeled or assigned to one class in C, while the class label of each instance in U
is unknown and needs to be determined.

3.2. ASSDE Framework

The aim of this work is to improve sparsely labeled text classification by
introducing data editing technique into active semi-supervised framework. As
we know, one of the problems of semi-supervised learning is its learning
efficiency. To make the framework more efficient, we also expect to simplify the
design of semi-supervised learning by fully utilizing the advantage brought by
the fusion of active learning with data editing. We show empirically that data
editing can make up for the deficiency of simplifying the design of
semi-supervised learning. Table 1 gives the Pseudo-code description of
ASSDE.

Xue Zhang and Wangxin Xiao

1518 ComSIS Vol. 9, No. 4, Special Issue, December 2012

Table 1. Pseudo-code describing ASSDE algorithm

Algorithm: ASSDE
Input: the labeled set L, the unlabeled set U, cpNum, MaxcpIter, n

Output: the full labeled set D=L∪U
Progress:
 Offline:

 Computing distance matrix()
 Online:
 hi Learn(L),i=1,2,...
 Iter=0

 Repeat until no data in U can be put into SP or
 (SP,CP)=partition(U,h1,h2,…)

 If Iter<maxcpIter

 hi Learn(L),i=1,2,...
 SL=recheck(SL,h1,h2,…)
 Iter= Iter+1
 End

 hi Learn(L∪SL),i=1,2,...
 End
 If then for each instance in U,
 c=majority voting(h1,h2,…)
 End

ASSDE works as follows. Firstly ensemble classifiers are trained on the

initial training data set L. The trained ensemble classifiers are used to predict
the label of each instance in U. According to the labels predicted by the
ensemble classifiers, instances in U are partitioned into two sets, that is,
contention points set CP and consistent points set SP. CP contains the
instances whose labels predicted by the ensemble classifiers are inconsistent,
while SP consists of the instances which have consistent predicted labels.

Secondly, n most confident examples, say , are selected from SP and

labeled with their predicted labels. Then cpNum instances, say , from CP are
selected by a batch mode active learning algorithm for manually labeling. Due
to the small size of L, the generalization ability of the hypothesis learned by

ensemble learning may be poor. Consequently, may contain much noise
which will hurt the generalization ability of the final hypothesis with the
accumulation of such noise in the following self-training processes. Therefore,
we employ a data editing technique to identify and remove the noise. We use

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1519

the ensemble classifiers retrained on to predict the labels of self-labeled

instances in . For each instance in , if the newly predicted label is

inconsistent with its current label, then it will be removed from and thrown
into unlabeled data set U again. Now the training data set consists of instances
with ground-truth labels and self-labeled instances (denoted by SL).

ASSDE conducts in a self-training style process in which the steps of
self-labeling, active labeling and data editing are iterated alternatively. After the
completion of active learning, all the self-labeled instances labeled in former
iterations will be rechecked again. ASSDE iterates the self-training style
process until almost all the unlabeled instances are labeled with high
confidence. If there is any instance in U, we use the majority voting strategy to
label it.

3.3. Ensemble Strategy

Several useful ensemble techniques have been proposed, such as the
well-known training data resampling [25] and input feature resampling [26].
However, we only use a simple ensemble strategy (we construct the ensemble
classifiers using k-nearest neighbor (kNN) with different k parameter) in
ASSDE for two main reasons. One reason is that the well-known ensemble
techniques are either not suitable for sparsely labeled text classification or
incurring large computation/storage complexity. Intuition and empirical
experiments indicate that training data resampling technique is not suitable for
sparsely labeled case, since it may further aggravate the sparsity of training
data for each component classifier. Input feature resampling technique may be
helpful, but it can increase the computation and storage complexity because we
have to compute the nearest neighbors of an instance for each component
classifier and store the corresponding distance matrix. Furthermore, our
empirical experiments with FASBIR (Filtered Attribute Subspace based
Bagging with Injected Randomness) [27] also indicate that ensemble learning
itself can hardly address the sparsely labeled classification problem well.
Based on this fact, the aim of ensemble strategy in ASSDE is to make efficient
integration of active learning and the overall efficiency. This is the next reason
that we use a simple ensemble strategy in ASSDE.

From table 1 we can see that the efficiency of ASSDE is mainly determined
by the ensemble part. In order to improve the efficiency of ASSDE, we can
simplify the design of ensemble part while not greatly degrading the overall
accuracy. We use kNN as the base learner and construct the ensemble
classifiers using kNN with different k parameter. The component classifiers are
trained in parallel training style. Therefore it can generate the ensemble
predictions by only computing the maximal k nearest neighbors for an instance
and it only needs to store one distance/similarity matrix for all ensemble
classifiers. Our ensemble strategy only has the similar computation and
storage complexity with that of one kNN with the maximal k parameter in the
component classifiers. This is the main reason that we select kNN as the base
classifier and use the simple ensemble strategy. We can also compute the

Xue Zhang and Wangxin Xiao

1520 ComSIS Vol. 9, No. 4, Special Issue, December 2012

distance/similarity matrix beforehand to further make the online learning and
classifying procedures efficient, which make kNN an efficient base classifier for
algorithms conducted in iterated mode.

3.4. Batch Mode Active Learning

The key of batch mode active learning (BMAL) is to ensure the selected
instances of both informativeness and diversity. BMAL method [3] based on
farthest-first traversal (we call it BMAL_FFT) is based on the intuition that for
two examples, the larger the distance between them, the smaller redundancy
the information they provide.

BMAL_FFT works as follows. First, it selects an instance x from CP randomly
or according to its uncertainty for the learning model, and adds x to query set Q.
Then it selects the next instance xi according to equation (2) and adds xi to Q.
BMAL_FFT repeats the above selection procedure until the needed number of
instances has been selected.

 (1)

 (2)

BMAL_FFT is a global search method which may be not efficient for very
large-scale text classification problem. In this paper, BMAL_FFT selects
instances from CP set, which has a much smaller search space and whose
instances are more informative than the whole unlabeled data set U.

3.5. Data Editing Strategy

The sparsity of training data in sparsely labeled classification often makes the
generalization ability of the initial hypothesis very poor. There may contain
much noise in the self-labeled data set SL because the classifiers may
incorrectly assign labels to some unlabeled instances. Such noise may
accumulate in the following iterations which will hurt the generalization ability of
the final hypothesis. It is obvious that if the mislabeled instances in SL could be
identified and removed, especially in the early iterations, the learned
hypothesis is expected to be better. This is the basis that we introduce data
editing technique into the proposed framework to identify and remove the
mislabeled instances.

After each active learning process, the training data with ground-truth labels
increase. In general terms, the classifiers trained on the enlarged training data
set will generate more accurate hypothesis. It may be helpful using this
hypothesis to identify the noise contained in the self-labeled data set labeled by
former less accurate hypotheses. Our data editing strategy is based on this
intuition. It works as follows. After each active learning process, the ensemble

classifiers are retrained on the enlarged training data set . Then they are
used to predict the label of each instance in SL. If any inconsistency exists

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1521

between the newly predicted label and its current label for an instance, the
instance will be removed from SL and added to U again.

In ASSDE, the introduction of data editing technique provides many chances
for self-labeled instances to mend their ways, which is different from the
traditional semi-supervised learning. Furthermore, we carry out data editing
technique by fully utilizing the advantage of active learning, which incurs very
little computation complexity while improving the classification accuracy. This is
novel in active semi-supervised learning community, according to our
knowledge.

We think that data editing technique should be very useful especially in
sparsely labeled text classification since the extremely few labeled training data
make the mislabeling unavoidable. Data editing technique makes the mistakes
made in earlier stages not as severe as that in traditional semi-supervised
learning algorithms. Based on this fact, we can simplify the design of the
module that determines the algorithm’s overall efficiency, and use data editing
technique to make up for the deficiency. In ASSDE, we design the ensemble
strategy just based on this mind.

4. Experiments

4.1. Data Sets

For a consistent evaluation, we conduct our empirical experiments on three
benchmark data sets, 20NewsGroups, Reuters-21578 and email spam filtering
data set. The details of data sets are given in table 2.

20 Newsgroups is one famous Web-related data collection. From the original
20 Newsgroups data set, same-2, consisting of 2 very similar newsgroups
(comp.windows.x, comp.os.ms -windows), and diff-2, consisting of 2 very
different newsgroups(alt.atheism and comp.windows.x), are used to evaluate
the performance of the algorithms on data sets with different separability.
Same-2 and diff-2 both contain 2000 instances, 1000 for each class. We use
Rainbow software

1
 to preprocess the data (removing stop words and words

whose document frequency less than 3, stemming) and we get 7765 and 8599
unique terms for same-2 and diff-2, respectively. Then terms are weighted with
their TFIDF (Term Frequency-Inverse Document Frequency) values.

The Reuters-21578 corpus contains Reuters news articles from 1987. We
only show the experimental results of train1.svm in LWE

2
 (Locally Weighted

Ensemble framework) since the algorithms have the similar performance on
other Reuters data sets. Train1.svm contains 1239 documents(two class) and
6889 unique terms.

1
 http://www.cs.cmu.edu/~mccallum/bow/

2
 http://ews.uiuc.edu/~jinggao3/kdd08transfer

Xue Zhang and Wangxin Xiao

1522 ComSIS Vol. 9, No. 4, Special Issue, December 2012

The email spam data set, released by ECML/PKDD 2006 discovery
challenge, contains a training set of publicly available messages and three set
of email messages from individual users as test sets. The algorithms have
similar performance on different email spam data sets in LWE

2
, therefore we

only show the experimental results of test1.svm for the limited space. test1.svm
contains 2500 messages and 83636 unique terms.

Table 2.The details of data sets

Data sets #classes #total instances #features
#training instances

for each class

same-2 2 2000 7765 5

diff-2 2 2000 8599 5

Reuters 2 1239 6889 5

Spam 2 2500 83636 5

4.2. Performance Evaluation

Macro_F1 is used as the performance measurement. F1 metric is defined as
 where P and R are precision and recall for a particular
class. F1 metric takes into account both the precision and the recall, thus is a
more comprehensive metric than either precision or recall when separately
considered.

Macro_F1 is a measurement which evaluates the overall performance of the

classification model. Macro_F1 is defined in equ. (3), where
 is the F1 value

of class i.

 (3)

4.3. Experimental Results and Analysis

In ASSDE, one important parameter is n, which affects both the effectiveness
and efficiency of the proposed method. cpNum and MaxcpIter are pairwise
parameters which also affect the effectiveness and efficiency of the proposed
method. In the following, we mainly conduct experiments with respect to
parameters n, cpNum and MaxcpIter, to study their influence on the
performance of the proposed method. At the same time, we conduct
experiments with several degenerated variants of ASSDE to see the
contribution of each component technique. Furthermore, we compare our
method with those of several state-of-the-art algorithms both in effectiveness
and in efficiency.

In the following experiments, the ensemble size is 3 and we set k=1, 3, 5 for
the three component kNN classifiers in ASSDE and its degenerated variants.
We use random strategy to select the first instance in the batch mode active
learning. We conduct each experiment 40 runs and the average results are

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1523

given. In each run, the algorithms perform on the same randomly chosen
training data set which has 5 positive labeled instances and 5 negative labeled
instances. The runtime given below for all algorithms is the average online time.

Robustness with different parameter n. Since ASSDE integrates several
techniques, its two degenerated variants can be easily derived. First, if only
ensemble learning and self-training are employed, then EnST (ensemble style
self-training) algorithm is obtained. That is, EnST algorithm substitutes
ensemble classifiers for one base classifier in standard self-training. Second, if
EnST algorithm is augmented by active learning (BMAL_FFT), then AcEnST
algorithm is obtained. Note that, although ASSDE integrates ensemble
learning, active learning and data editing together, we can only obtain its two
degenerated variants, EnST and AcEnST. This is because of the dependent
relationships among the component techniques in ASSDE. From table 1 we
can find that active learning is based on the ensemble learning and data editing
is based on the active learning.

In this subsection, we conduct experiments for ASSDE and its degenerated
variants with different parameter n in order to see the contribution of each
component technique and the robustness of the algorithms with parameter n.
The standard self-training algorithm (ST) is taken as the baseline and it also
refers to kNN as its base classifier. Here we set cpNum=30, MaxcpIter=6 for
algorithms with batch mode active learning.

Figures 1, 2, 3, and 4 give the Macro_F1 performance with different
parameter n for all algorithms on four data sets. For the standard self-training
(ST) algorithm, we only give the performance with k=3 since it has similar
performance with k=3 and k=5, but it performs relatively worse with k=1.

Figure 1 presents the Macro_F1 performance of the algorithms with different
parameter n on same-2. It could be found that ASSDE significantly outperforms
the other three algorithms, which verify the usefulness of the fusion of active
semi-supervised learning with data editing technique. Furthermore, ASSDE is
more robust than the other three algorithms to parameter n. EnST outperforms
ST slightly with most parameter n, which accords with our former analysis that
the simple ensemble strategy in ASSDE is designed to make efficient
integration of active learning and to achieve overall efficiency while without
degrading the performance. AcEnST outperforms EnST with all parameter n,
which verify the usefulness of active learning. Note that, ASSDE performs
better with larger values of parameter n, which makes it very efficient since
larger n means lower computation complexity (less iterations).

Figure 1 also shows that the algorithms except ASSDE perform better with
the increase of parameter n first, then worse with the increase of parameter n.
We think this is due to the paradox that larger parameter n makes larger
training data set available for retraining the classifiers in next iteration which is
very useful for sparsely labeled classification especially in the earlier iterations,
but larger parameter n also means that more noise may be introduced into
training data set which will hurt the learning results in the following iterations.
Therefore there should be a balance point on which the classification model
achieves its best performance. Different algorithms achieve this balance point

Xue Zhang and Wangxin Xiao

1524 ComSIS Vol. 9, No. 4, Special Issue, December 2012

with different parameter n. For example, ST achieves its balance point with
about n=250, EnST and AcEnST with about n=150. It seems that data editing
technique could delay such balance point (with the increase of n) by identifying
and removing the noise contained in self-labeled training data.

Fig.1. Macro_F1 performance with different parameter n on same-2

Figure 2 presents the Macro_F1 performance of the algorithms with different
parameter n on diff-2. From figure 2 it could be found that ASSDE outperforms
the other three algorithms with all parameter n and it is very robust to parameter
n. EnST and ST perform similarly. AcEnST outperforms EnST and ST, and it
achieves the best performance with n=5. For ST and EnST, there also exists
the balance point phenomenon. ST achieves its best performance with about
n=80, EnST with about n=60. The results in figure 2 also accords with our
analysis in former sections.

Figure 3 gives the Macro_F1 performance of the algorithms with different
parameter n on Reuters. ASSDE outperforms the other three algorithms with all
parameter n and it is more robust to parameter n. EnST is outperformed by ST
with small n, but it outperforms ST when n>80. AcEnST outperforms ST and
EnST with all parameter n and its performance degrades with the increase of n
when n>30. ASSDE achieves its best performance with about n=80, ST with
about n=15, EnST with about n=10, and AcEnST with about n=20. From the
balance point of the four algorithms, we can see that ASSDE is most efficient
for its least iterations, which must benefit from data editing technique.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 40 60 80 100 150 200 250 300

M
ac

ro
_F

1

n

ST EnST AcEnST ASSDE

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1525

Fig.2. Macro_F1 performance with different parameter n on diff-2

Fig.3. Macro_F1 performance with different parameter n on Reuters

Figure 4 presents the Macro_F1 performance of the algorithms with different
parameter n on Spam data set. It could be found that ASSDE outperforms ST
and EnST with all parameter n, and outperforms AcEnST when n>60. ASSDE
ties with AcEnST when n<60, but it is more robust with parameter n than other

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

5 10 15 20 25 30 40 60 80 100 150 200 250 300

M
ac

ro
_F

1

n

ST EnST AcEnST ASSDE

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 40 60 80 100 150 200 250 300

M
ac

ro
_F

1

n

ST EnST AcEnST ASSDE

Xue Zhang and Wangxin Xiao

1526 ComSIS Vol. 9, No. 4, Special Issue, December 2012

three algorithms. EnST performs slightly better than ST with almost all
parameter n. AcEnST significantly outperforms ST and EnST with all parameter
n. It seems that active learning plays a leading role for performance
improvement in ASSDE on Spam data set. ASSDE achieves its best
performance with about n=200, AcEnST with about n=25 or n=40, EnST with
about n=80, and ST with about n=100.

In general, from figures 1 to 4, we can conclude that active learning in
ASSDE is always beneficial to improve the overall performance, and that data
editing technique plays a key role in the robustness and improving the
performance for ASSDE. Furthermore, data editing technique makes ASSDE
more efficient since it can make ASSDE achieve its best performance with
larger values of n (correspondingly less iterations). It seems that data editing
technique brings larger advantage for data set of lower separability (e.g.
same-2). This may be due to the fact that there should be more noise in
self-labeled instances for data set of lower separability. Thus data editing
technique can greatly improve the overall performance by identify and remove
such noise contained in self-labeled training data. This accords with our
intuition.

Fig.4. Macro_F1 performance with different parameter n on Spam

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

5 10 15 20 25 30 40 60 80 100 150 200 250 300

M
ac

ro
_F

1

n

ST EnST AcEnST ASSDE

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1527

Robustness with cpNum & MaxcpIter. Parameters of cpNum and
MaxcpIter determine the amount of manual effort involved. In general, for an
active learning algorithm, the more the manual effort involved, the better the
performance it achieves. The aim of active learning is to reduce the effort
involved without degrading the performance. In ASSDE, the performance will
be improved with the increase of the product of cpNum and MaxcpIter, which is
more intuitive. Therefore we only conduct experiments in the case of
cpNum*MaxcpIter=constant, while cpNum and MaxcpIter may take different
values.

The following experiments are also conducted on the basic training data set
which contains 5 training data for each class and is sampled at random in each
run. We test the performance of ASSDE with cpNum=10, 20, 30, 60 and 90,
correspondingly MaxcpIter=18, 9, 6, 3, and 2. Since the iterations of ASSDE
are determined by parameter n, the iterations may be less than MaxcpIter with
larger value of parameter n. That is, in the following experiments, ASSDE can
at most actively label 180 instances in each run. We set n=300.

Figure 5 shows the performance of ASSDE with cpNum on four data sets. In
the case of cpNum* MaxcpIter=constant, the performance declines slightly with
the increase of cpNum, and at the same time the runtime also declines (please
see figure 6). We think this is because that the redundancy among the actively
selected instances increases with the increase of cpNum. In general,
cpNum=30 (correspondingly MaxcpIter=6) is best for ASSDE when considering
both the effectiveness and the efficiency on the four data sets.

Fig.5. Performance with cpNum on four data sets

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60 70 80 90

M
ac

ro
_F

1

cpNum

same-2 diff-2

Reuters Spam

Xue Zhang and Wangxin Xiao

1528 ComSIS Vol. 9, No. 4, Special Issue, December 2012

Fig.6. Runtime with cpNum on four data sets

Performance Comparison. To evaluate the performance of ASSDE with
the increase of labeled training data, we conduct the following experiments to
compare the performance of ASSDE, Support Vector Machines (SVM, one of
the most successful supervised algorithm) and TSVM (one of the most
successful semi-supervised algorithm) with different labeling rate. We set
n=300, cpNum=30 and MaxcpIter=6 for ASSDE. Since the iterations of ASSDE
are determined by parameter n, in the following experiments, ASSDE can at
most actively label (selected by active learning and labeled manually by an
expert) 180 instances in each run.

For fair comparison between the active algorithm (e.g. ASSDE) and
non-active algorithm (e.g. SVM and TSVM), we conduct experiments with two
training data sets, that is, the basic training data set (5 training data for each
class) for all three algorithms and the extended training data set (basic training
data set extended with cpNum*MaxcpIter randomly selected training data) for
SVM (denoted as SVM*) and TSVM (denoted as TSVM*). The SVMlight
package

3
 is used in our experiments for the implementation of SVM and TSVM

using default configurations.
Since ASSDE performs very well on diff-2 and Spam (see figures 2 and 4),

there is very little room for it to improve performance with the increase of
training data size. Therefore, we only conduct the experiments on same-2 and
Reuters. For each figure, the x-axis represents the number of training data in
each class in basic training data set. Figures 7 and 8 give the performance
comparison results.

3
 http://svmlight.joachims.org/

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

ti
m

e
(s

)

cpNum

same-2

diff-2

Reuters

Spam

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1529

Fig.7. Performance comparison on same-2

From figure 7, we can see that ASSDE outperforms other algorithms when
training data are less than 40 (4%) on same-2. From figure 8, we can see that
ASSDE outperforms other algorithms with all training data size on Reuters.
Compared with other algorithms, ASSDE performs better and more robust for
sparsely labeled text classification.

Fig.8. Performance comparison on Reuters

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220

M
ac

ro
_F

1

Number of training data

SVM SVM* TSVM TSVM* ASSDE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220

M
ac

ro
_F

1

Number of training data

SVM SVM* TSVM

TSVM* ASSDE

Xue Zhang and Wangxin Xiao

1530 ComSIS Vol. 9, No. 4, Special Issue, December 2012

5. Conclusion

In this paper, an active semi-supervised framework with data editing is
proposed to improve the performance of sparsely labeled text classification.
The aim of data editing in ASSDE is to identify and remove the noise contained
in self-labeled training data and thus to improve the overall performance. Our
basic consideration is to implement data editing technique by fully utilizing the
advantage of active learning in order to incur less computation complexity while
improving the accuracy. At the same time, we expect to simplify the design of
key component which determines ASSDE’s efficiency and use data editing to
make up for the deficiency. Therefore we use a very simple but efficient
ensemble strategy in ASSDE. Extensive experiments on four text data sets
show that data editing is a very useful technique for improving the performance
of sparsely labeled text classification, and it makes the algorithm more efficient.
This accords with our expectation.

For future work, we will explore more suitable active learning and data editing
techniques which may further improve the performance of sparsely labeled text
classification. More efficient and effective ensemble strategy for sparsely
labeled text classification will be another research direction. Moreover, we will
further explore new techniques to cope with the training data sparsity and
training data bias for sparsely labeled text classification, e.g. semantic feature
extension and clustering aided techniques.

Acknowledgment. The authors would like to thank Dr. Xu Zhu and the anonymous
reviewers for their critical advice. This work is partially supported by the National Natural
Science Foundation of China (No.61127005, No.61133010, No.50708085, and
No.50978127), the special scientific research funding of Research Institute of Highway,
Ministry of Transport (No.1206030211003), and the Project of Education Department of
Jiangxi Province (No.GJJ08415).

References

1. Liere, R., Tadepalli, P.: Active learning with committees for text categorization. In
Proceedings 14th Conference of the American Association for Artificial Intelligence
(AAAI). MIT Press, Providence, Rhode Island, 591–596 (1997).

2. Steven, C. H. Hoi, Jin, R., Lyu, M. R.: Large-scale text categorization by batch mode
active learning. In Proceedings of the 15th international conference on World Wide
Web. Edinburgh, Scotland, May 23-26, 633-642 (2006).

3. Zhang, X., Zhao, D. Y., Chen, L.W., Min, W.H.: Batch Mode Active Learning based
Multi-View Text Classification. In Proceedings of the 6th International Conference
on Fuzzy Systems and Knowledge Discovery, Tianjin, China, Aug.14-16, 2009.

4. Joachims, T.: Transductive inference for text classification using support vector
machines. In Proceedings of the 16th international conference on machine learning
(ICML1999). Bled, Slovenia, June 27-30, 200-209 (1999).

5. Nigam, K., Mccallum, A. K., Thrun, S., Mitchell, T.: Text Classification from
Labeled and Unlabeled Documents using EM. Machine Learning, 39(2-3): 103-134,
2000.

Active Semi-supervised Framework with Data Editing

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1531

6. McCallum, A., Nigam, K.: Employing EM and pool-based Active Learning for text
classification. In Proceedings of the 15th International Conference on Machine
Learning. Madison, Wisconsin, USA, July 24-27, 350–358 (1998).

7. Gu, P., Zhu, Q. S., Zhang C.: A multi-view approach to semi-supervised document
classification with incremental naïve bayes. Computers and Mathematics with
Applications, 57(6):1030-1036, 2009.

8. Zhou, Z.H., Zhan, D.C., Yang, Q.: Semi-supervised learning with very few labeled
training examples. Association for the advancement of artificial intelligence, 2007.

9. Zhuang, D., Zhang, B.Y., Yang, Q., Yan, J., Chen, Z., Chen, Y.: Efficient text
classification by weighted proximal SVM. In Proceedings of the Fifth IEEE
International Conference on Data Mining. Houston, Texas, USA, November 27 - 30
538-545 (2005).

10. Liu, T., Chen, Z., Zhang, B.Y., Ma, W.Y., Wu, G.Y.: Improving text classification
using local latent semantic indexing. In Proceedings of the Fourth IEEE
International Conference on Data Mining. Brighton, UK, November 01–04, 162-169
(2004).

11. Yang, Y., Liu, X.: A re-examination of text categorization methods. In Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. University of California at Berkeley, USA,
August 15-19, 42-49 (1999).

12. Dai, W., Xue, G., Yang, Q., Yu, Y.: Transfering Naïve Bayes Classifiers for Text
Classification. Association for the Advancement of Artificial Intelligence, 2007,
540-545.

13. Banerjee, S.: Boosting Inductive Transfer for Text Classification Using Wikipedia. In
Proceedings of the sixth international conference on machine learning and
applications. Kingsgate Marriott, December 13-15, 148-153 (2007).

14. Wang, P., Domeniconi, C.: Building Semantic Kernels for Text Classification using
Wikipedia. In Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. Las Vegas, NV, USA, August 24-27,
713-721 (2008).

15. Zeng, H. J., Wang, X. H., Chen, Z., Ma, W. Y.: CBC: Clustering based text
classification requiring minimal labeled data. In Proceedings of the 3rd IEEE
International Conference on Data Mining. Melbourne, Florida, USA, November 19 –
22, 2003.

16. Raskutti, B., Ferrá, H., Kowalczyk, A.. Combining clustering and co-training to
enhance text classification using unlabelled data. In Proceedings of the 8th ACM
SIGKDD international conference on Knowledge discovery and data mining.
Edmonton, Alberta, Canada, July 23-26, 620-625 (2002).

17. Raskutti, B., Ferrá, H., Kowalczyk, A.: Using Unlabelled Data for Text Classification
through Addition of Cluster Parameters. In Proceedings of the Nineteenth
International Conference on Machine Learning. Sydney, Australia, July 8-12, 514 –
521 (2002).

18. Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data.
IEEE Transactions on Systems, Man, and Cybernetics, 2:408-420, 1972.

19. Li, M., Zhou, Z.H.: SETRED: Self-training with editing. In Proceedings of the 9th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'05),
Hanoi, Vietnam, May 18-20, 611-621 (2005).

20. Zhou, Z. H., Zhan, D. C., Yang, Q.: Semi-supervised learning with very few labeled
training examples. Association for the advancement of artificial intelligence, 2007.

21. Sun S. L.: Active learning with extremely sparse labeled examples. In Proceedings
of Neural Information Processing Systems Workshop on Learning from Multiple
Sources. Vancouver, British Columbia, Canada, December 8-11, 2008.

http://www.berkeley.edu/
http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/pakdd05a.pdf

Xue Zhang and Wangxin Xiao

1532 ComSIS Vol. 9, No. 4, Special Issue, December 2012

22. Phan, X. H., Nguyen, L. M., Horiguchi, S.: Learning to classify short and sparse text
& web with hidden topics from large-scale data collections. In Proceedings of
International World Wide Web Conference. Beijing, China, April 21 – 25, 91-100
(2008).

23. Cai, L., Hofmann, T.: Text categorization by boosting automatically extracted
concepts. Proc. ACM SIGIR, Toronto, Canada. July 28 - August 1, 2003.

24. Xu, Z., Jin, R., Huang, K., Lyu, M. R., King, I.: Semi-supervised text categorization by
active search. In Proceedings of ACM 17th Conference on Information and
Knowledge Management (CIKM 2008). Napa Valley, California, October 26-30,
1517-1518 (2008).

25. Breiman L.: Bagging predictors. Machine Learning, 24(2):123–140, 1996.
26. Bryll, R., Ricardo, G. O., Quek, F.: Attribute bagging: improving accuracy of classifier

ensembles by using random feature subsets. Pattern Recognition
36(2003):1291-1302.

27. Zhou, Z. H., Yu, Y.: Ensemble local learners through multimodal perturbation. IEEE
transactions on systems, man, and cybernetics-Part B: Cybernetics, 2005, 35(4):
725-735.

Xue Zhang, received the BS degree in electronic engineering from XiDian
University, Xian, China, in 1999. She received the MS degree in control theory
and control engineering from Southwest University of Science and Technology,
Mianyang, China, in 2003, and received the PhD degree in computer science
from Southeast University, Nanjing, China, in 2007. From 2008 to the present,
she is a postdoctoral fellow in Peking University. Her research interests include
data mining and machine learning, with emphasis on the applications to text
mining and bioinformatics.

Wangxin Xiao, received the PhD degree in traffic information and control
engineering from Southeast University, Nanjing, China, in 2004. From 2005 to
2007, he engaged in postdoctoral research in Wuhan University of Technology.
Since 2008 he has been an associate professor in Research Institute of
Highway Ministry of Transport. From 2009 to 2011, he was also a postdoctoral
fellow in Changsha University of Science and Technology. His research
interests include pattern recognition, Intelligent Transport Systems (ITS) and
data mining with applications to traffic data.

Received: February 02, 2012; Accepted: November 29, 2012.

