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Abstract. A program required to be tested in practice often has no avail-
able source code for some reason and how to adequately test such a
program is still an open problem. In this paper, we describe a formal
specification-based testing approach to tackle this challenge. The prin-
cipal idea is first to formalize the informal requirements into formal oper-
ation specifications that take the interface scenarios of the program into
account, and then utilize the specifications for test case generation and
test result analysis. An example and case study of applying the approach
to an IC card system is presented to illustrate its usage and analyze its
performance.
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1. Introduction

Programs required to be tested in practice often have no source code for some
reasons (e.g., confidentiality) but testing such programs is necessary and im-
portant for software quality assurance in industry. A traditional approach to deal-
ing with this problem is black-box testing (or functional testing) [1], but how to
carry out an adequate black-box testing in this situation still remains a chal-
lenge.

The central issue in tackling this problem is how to make the tester thor-
oughly understand the desired functionality of the program under testing. One
way is to discover it from the requirements that are usually written informally,
but due to the ambiguities of the requirements, this may not be easily achieved.
Another possibility is to use some test cases to run the program to detect the
input-output relations. Each input-output relation can be reflected by a program
interface trace, which we call an interface scenario. Each interface scenario in-
dicates the implementation of a functional scenario (a sequence of operations),
but it does not provide a complete definition of the functional scenario due to
the fact that the test cases do not cover all necessary input values for the im-
plementation of the functional scenario.
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In this paper, we describe an approach to using formalization to help the
tester understand the desired functionality of the program and build a firm foun-
dation for testing the program. Specifically, our approach suggests that the re-
quirements be formalized into a set of formal operation specifications whose
signatures are constructed based on the program interface scenarios. The for-
malization will force the tester to draw an accurate, complete, and precise pic-
ture about the desired behaviors of the program and to prepare a solid founda-
tion for testing. To make our approach work effectively, the formal specification
must be ensured to be internally consistent and valid with respect to the infor-
mal requirements. This task can be fulfilled by means of formal specification
inspection [2] and/or specification animation [3]. Since this issue is beyond the
scope of this paper, we omit further discussions. The reader can refer to the re-
lated work for details of the inspection and animation techniques. In this paper,
we focus on the descriptions of how the interface scenarios of a program are
derived, how the formal operation specifications are constructed based upon
the program interface scenarios, and how testing is carried out based upon the
formal specifications.

The remainder of the paper is organized as follows. Section 2 describes the
essential ideas of the testing approach and the process of testing. Section 3
discusses how to formalize the informal requirements based upon the program
interface scenarios. Section 4 focuses on the test case generation and test
result analysis. Section 5 presents an example to illustrate how our approach is
applied to test an IC Card software. Section 6 introduces the related work and
compares it with our approach. Finally, in Section 7 we conclude the paper and
point out future research directions.

2. Essential Ideas

The essential ideas of our approach is first to formalize the requirements and
then to carry out a testing. When formalizing the requirements, we abstract the
program under testing into a set of operations, each defining an independent
service, such as Withdraw or Deposit in an automated telling machine (ATM)
software. The goal of the formalization is therefore to write a formal specifica-
tion for each operation. To this end, we need to determine the signature of each
operation, including the input variables, output variables, and the related exter-
nal variables (or state variables). This signature is expected to be consistent
with the interface of the program in order to ensure that test cases generated
from the specification can be directly adopted for testing. Since there might be
a gap between the informal requirements and the interface of the program, it is
usually difficult to achieve the consistency without examining the program. How-
ever, since the source code of the program is assumed not to be available, it is
impossible to examine the implementation details. The only information about
the program we can grasp is its interface scenarios and its dynamic behaviors
when it is executed. For this reason, our approach suggests that the formation
of each operation’s signature takes the interface scenarios of the program into
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Fig. 1. The testing process using our approach

account. As far as defining the functionality of the operation is concerned, we
use pre- and post-conditions, the most commonly applied notation in the liter-
ature [4], to specify it, based on the informal requirements, as shown in an ex-
ample later. One may argue that writing such a formal specification may not be
a routine exercise in practice and therefore our proposed approach depending
on formal specifications may not be practical enough. While this might be true
for the current industry where formal methods are rarely used and software cri-
sis continues, the future software development would be significantly improved
when some of the activities, such as testing, are undertaken, with effective tool
support, by well trained practitioners or consultants in formal methods.

An interface scenario of the program is represented by a sequence of in-
puts and the corresponding output of the program. It can be identified by exe-
cuting the program using sample inputs, but the precise relation between the
sequence of inputs and the output is unknown. The goal of testing is to identify
whether such a relation is implemented correctly in the program with respect to
its definition in the specification. Assume that we have achieved formal spec-
ifications for the program under testing, what we need to do next is to gener-
ate test cases based upon the specifications to test the program. The whole
process of testing using our approach is illustrated in Figure 1.

3. Construction of Formal Specifications

The construction of a formal specification for the program under testing takes
the following three steps:
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A software system for a simplified Automated Teller Machine (ATM) needs to
provide two services for customers. The servicesinclude withdrawing money from
the customer’ s bank account and inquiry for the account balance. To withdraw
money, the customer’ s card and password as well as the requested amount are
required. The bank policy does not allow overdraft when the service for
withdrawal is used. For an inquiry about the customer” s account balance, the
system should provide the current balance of the customer’ s account.

Fig. 2. A description of informal requirements for the simplified ATM.

1. Find important functional scenarios described in the informal requirements,
where each functional scenario describes an independent, desired function
in terms of the input-output relation.

2. Form an operation to define all of the identified functional scenarios, but the
signature of the operation must be formed based on both the requirements
and the interface scenarios of the corresponding program.

3. Write the pre- and post-conditions for the operation using a formal specifi-
cation language.

Next, we discuss these three issues, respectively.

3.1. Finding functional scenarios

The first step is to find the functional scenarios important to the end user from
the requirements description. This can be done by reviewing and analyzing
the informal requirements specification. We define each identified functional
scenario as a single operation.

Let us consider a simplified ATM system as an example. Suppose the infor-
mal requirements for the system are given in Figure 2 and we want to find all
of the important functional scenarios. We analyze the document to identify the
relevant requirements and highlight the related text segments using the bold
italic font, as indicated in the figure. Through the analysis, we realize that this
functional scenario is concerned with withdrawing money from a bank account.
Therefore, we form an operation and name it Withdraw. Applying the same
principle, all of other functional scenarios can be identified and defined as ap-
propriate operations.

3.2. Identifying interface scenarios

The next step is to determine the signature of the operation. As discussed previ-
ously, this signature needs to be kept consistent with that of the program in order
to facilitate the direct adoption of test cases to be generated from the specifi-
cation. To this end, we need to identify the corresponding interface scenarios
when the program is executed. For this purpose, we can select test cases from
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Fig. 3. lllustration of an interface tree

relevant types randomly. During the execution of the program, we continue to
supply test cases if they are required by the program (e.g., via its GUI). Such an
activity continues until the final execution result is provided. Since this technique
is not aimed at really testing the program but at finding potential interface sce-
narios, the test cases needed should be as merely necessary as possible. This
can be interpreted differently in practice when practical constraints are taken
into account, but the following specific criterion can be considered as a prin-
ciple for striking a balance between finding interface scenarios and generating
test cases at this stage.

Let the first level (top level) interface of the program under testing, called
Inter facey, show n exclusive input patterns: I, I, ..., I,,, indicating n different
choices for the input of the program. For each selected pattern I; (i = 1...n)
, another lower level interface showing m input patterns Iy, T2, ..., 11, Will
be displayed. Applying this principle to all interface patterns at all levels, an
interface tree for the whole program could be built, as illustrated in Figure 3.
Then, a set of test cases need to be generated to cover every path from one
of the top nodes (denoting one possible input pattern on the top level interface)
to one of the bottom nodes (denoting one possible input pattern on the related
bottom level interface), such as path, = I, I11, I;11 and Iy, 112, I12;. Note
that there might be many functional scenarios (behaviors) under each interface
scenario (input). Creating test cases to cover all of such functional scenarios
would increase the cost while missing identifying any interface scenario would
jeopardize the functional coverage in formalizing the specification. In this sense,
the criterion for test case generation described above provides a good balance.

Assume that we have obtained all interface scenarios, the next issue is how
to represent them so that they will present a clear guideline for the formalization
of the corresponding functional requirements. We adopt the following finite state
machine (FSM) notation for this purpose.

Definition 1. A finite-state machine (FSM) is a quintuple (X, S, s0, 6, F'), where
X' is a non-empty set of input symbols, S is a finite, non-empty set of states,
s0 € S is an initial state, 6 is the state-transition function, and F' C S is the set
of final states.

In the FSM representing interface scenarios of a program, the five elements
are interpreted as follows. Each state S denotes one page of the GUI of the
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Fig. 4. An example of the finite state machine for a simplified ATM

program, where a page of GUI is an image with certain layout and contents
shown on the display of computer. Each input symbol in X’ denotes a set of input
items whose concrete values are necessary for executing the program. s0 € S
denotes the very top page of the GUI of the program.  defines transitions of
pages of the GUI based upon the input items. F' represents the set of final
pages showing the execution result of the program.

Figure 4 shows a simple example of FSM for a simplified Automated Teller
Machine (ATM) program. The state s0, marked with a black dot at the top, is
the initial state, representing the top page of the GUI of the ATM system, and
the states s4 and s5 are both final states which are deliberately drawn in broken
line circles. The FSM describes two interface scenarios. One is the scenario for
withdrawing money from the bank account, and another is to show the account
balance. The scenario for withdrawing money starts from the initial state s0.
When correct user’s card_id and password are provided, which is denoted by
symbol cp, the state will transfer to s1; otherwise, if any of them is incorrect,
denoted by symbol —cp, the state will transfer to state s2 and will return to state
s0. At state s1, if the input symbol is w (denoting the withdraw command), the
state will transfer to state s3; otherwise, the state will transfer to the final state
s4 denoting the final page of GUI in which the requested account balance is
shown. At state s3, if the requested amount smaller than the account balance is
provided, denoted by am, the state will transfer to the final state s5; otherwise,
if the amount is greater than the account balance, the state will transfer to state
s6, and then returns to state s3 for re-input of appropriate amount.

In the context of the FSM, an interface scenario is in fact defined as a set
of state transition sequences. Each sequence has the form: [s0, s1, s2, ..., sn],
where s0 must be the initial state of the FSM and sn must be a final state. For
example, the scenario for withdrawal discussed above is defined by the set of
state transition sequences:

Scenario; = {[s0, s1, 3, 5], [0, s1, 3, s6, s3, s5],
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[s0, s1, 83, s6, $3, $6, $3, s5], ...,
[s0, s1, $3, $6, $3, $6, ..., $3, 5] }.
Obviously, this interface scenario is infinite, but the input values associated with
the state transitions can be classified into a finite set based on which corre-
sponding input variables can be declared in the signature of the corresponding
operation. For example, three input variables for representing inputs card _id,
password, and withdrawal amount can be declared for the signature of the
withdraw operation. As a result, the operation has the following format:
process Withdraw(card_id : string,
password : nat0,
amount : nat0)
cash : nat | error_message : string

end_process
where the output variables cash and error_message are created for the need of
writing the formal specification.

The operation contains three input variables card_id, password, and amount.
The card_id is a string, and both password and amount are a natural number
(including zero). The output of the operation has two exclusive possibilities: ei-
ther cash or error_message. The pre- and post-conditions of the operation are
empty at the moment, but will be completed in the next step. The operation is
written in the SOFL formal specification language [5] for the sake of our exper-
tise. SOFL is an extension of VDM-SL [6] to have more capability for modelling
of practical systems. Note that in spite of using SOFL for discussion, our ap-
proach presented in this paper is independent of specification languages; it can
be applied to any formal notation using pre- and post-conditions.

3.3. Construction of Formal Specifications

Having understood all of the implemented interface scenarios, the next key is-
sue is how to formally define the identified functional scenarios as operation
specifications. As mentioned in Section 3.1, the potential behavior of each op-
eration can be derived from the informal requirements, but the understanding of
it may remain limited due to the ambiguities of the informal expressions. Writing
a formal specification for the operation can force the tester to consider every
possible aspect and to establish a firm foundation for testing. The key issue
in writing the formal specification is how to provide appropriate pre- and post-
conditions for the operation.

This can be done by analyzing the corresponding functional scenario. We
first target on the post-condition because it focuses on the function of the oper-
ation by defining the relation between input and output. During this process, we
may find that some state variables (or external variables as we call in both VDM
and SOFL) are necessary for expressing the post-condition. We then try to fig-
ure out the pre-condition to ensure that the post-condition defines a valid final
state when the pre-condition is satisfied by an initial state. Consider the oper-
ation Withdraw mentioned previously as an example. Applying this technique,
we provide the following specification:
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process Withdraw(card_id: string,
password: nat0,
amount: nat0)
cash: nat | error_message: string
ext wr accounts: set of Account
pre exists!|acc: accounts] |
acc.card_id = card_id and
acc.password = password
post let acc: accounts |
acc.card_id = card_id and
acc.password = password
n
amount < acc.balance and
cash = amount and
accounts =
union(
dif f(Taccounts, {acc}),
{modi fy(acc, balance —
acc.balance — amount)}
)
or
not (amount < acc.balance) and
bound(error_message) and
accounts = ~accounts

end_process
where the logical operator “and” is used for A and “or” for V.

In this specification, an external variable accounts is declared. This variable
is used to hold a set of customers’ bank accounts, each being a member of the
type Account that is declared as a composite type with three fields: card_id,
password, and balance. The pre-condition requires the existence of a unique
account in accounts such that its card_id and password are the same as the
input card_id and password, respectively. The post-condition defines two cases:
one is for a successful withdrawal and the other is a failed withdrawal. When
the requested amount is not greater than the balance, the withdrawal will be
successful and the requested amount will be delivered, which is denoted by the
variable cash. The balance will also be updated in the account to reflect the
reduction of the requested amount. On the other hand, when the withdrawal is
failed (i.e., the amount is greater than the account balance), an error message
denoted by the variable error_message is provided. For testing purpose, we
are not interested in the specific content of the error message implemented by
the program, therefore, we use the expression bound(error_message) in the
post-condition to mean that error_message is made available but its content is
yet to be determined by the programmer later.
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4. Test Case Generation and Result Analysis

The goal of testing is to check whether each specification scenario defined
in the specification is correctly implemented by the program. Theoretically, for
any specification scenario, there should be an implementation scenario in the
program to correctly implement it if the program refines the specification. A
natural strategy for test case generation is therefore to let the generated test
cases cover all the specification scenarios. To effectively apply this strategy, we
have worked out a decompositional approach to test set generation from a pre-
post style formal specification, which will be introduced later in this section. To
this end, we first need to precisely define the fundamental concepts known as
functional scenario form (FSF) and functional scenario (FS).

4.1. Functional scenarios

For simplicity, let S(S;v, Sov)[Spre, Spost] denote the specification of an operation
S, where S;, is the set of all input variables whose values are not changed by
the operation, S, is the set of all output variables whose values are produced or
updated by the operation, and S,,,. and S, are the pre- and post-conditions of
S, respectively. In S,,,.:, we use “z and z to represent the initial value before the
operation and the final value after the operation of external (or state) variable z,
respectively. Thus, “z serves as an actual input variable of the operation while
x is treated as an output variable; that is, "z € S;, and z € S,,. Of course,
Si» and S,, may contain other input parameter variables and output parameter
variables, respectively.

Definition 2. Let Syt = (C1 A D1) V (Ca A Dg) V- - -V (C,, A D,), where
each C; (i € {1,...,n}) is a predicate called a “guard condition” that contains
no output variable in Sy, and V; jci1,..ny i # J = Ci NCj = false; D; a
“defining condition” that contains at least one output variable in S,,,, but no guard
condition. Then, a (functional) scenario f; of S is a conjunction Sy,,.” AN C; A D;,
and the expression (Sp,.” ANC1AD1)V (Spre " AC2 AD2) V-V (Spre” ANC, ADy,)
is called a functional scenario form (FSF) of S.

The decorated pre-condition S,,,..~ = S,,.[ /o] denotes the predicate resulting
from substituting the initial state ~o for the final state ¢ in pre-condition S,,... We
treat a conjunction S,,..~ A C; A D; as a scenario because it defines an inde-
pendent behavior: when S,,..~ A C; is satisfied by the initial state (or intuitively
by the input variables), the final state (or the output variables) is defined by the
defining condition D;. To facilitate our discussion throughout this paper, we call
the conjunction S,,.~ A C; the test condition of the scenario Spy..” A C; A D;.
Note that simply treating a disjunctive clause in the disjunctive normal form
of the post-condition as a functional scenario is not necessarily correct in sup-
porting our method for checking the refinement relation between the specifica-
tion and the program. For example, letz > 0A (y =2z Vy=—z) Ve <0A
y = z+ 1 be the post-condition of an operation whose pre-condition is assumed
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to be true, where z is the input and y the output. It states that when = > 0, y is
defined either as x or as —z (the specifier does not care which definition will be
implemented). In this case, the programmer may refine it into the post-condition
x> 0Ay = vz < 0Ay = z+1 and then implement it, which will of course satisfy
the original specification. However, if we convert the original specification into
the disjunctive normal form x > 0Ay = zVx > 0Ay = —zVze < 0Ay = z+1, and
treat each of the two disjunctive clauses x > 0Ay =z andz > 0Ay = —x as
an individual functional scenario, respectively, and generate test cases to cover
each of these two scenarios, we may not find a satisfactory answer in the pro-
gram for the scenario z > 0 A y = —x because no program paths implementing
this scenario exist in the program. This may lead to a confusion in testing and
consequently increase the cost. Another concern is that a disjunctive clause in
a DNF may not properly reflect the client’s perception of a desired function. For
instance, neither of the two expressions x > 0Ay=zandx > 0Ay = —x is
appropriate to reflect the client’s desire individually, but the functional scenario
x>0A(y=xVy = —z) obtained by their combination does. For the above
reasons, our strategy of generating test cases based on functional scenarios is
adopted in this paper.

Any operation specification can be transformed to an equivalent FSF and
a proved algorithm for such a transformation is made available in our previous
publication [7]. Below we use the operation Swap_Increase_Maintain as an
example to explain the concepts of FSF and functional scenario. The example
may look a little artificial but it allows us to illustrate all the relevant aspects of
the concepts.

Swap_Increase_Maintain

{"=, "y} A{=,y})

[z >=0,

< yANy="2ANx="yAN <100V

< TyA(y> Tz Az >"y) ATz >=100 vV

Tr>="yA(y="yAx="x)V

r>="yAy+r=a+"y),
where Swap_Increase_Maintain;, = { "z, y}; Swap_Increase_M aintainy,
= {z,y}; x >= 0 is the pre-condition; the last predicate expression is the post-
condition; and all the variables involved are of the type real. The operation ex-
changes, increases or “sustains” the values of = and y, depending on certain
conditions satisfied by the input. An FSF of the specification is derived as fol-
lows:

(1) "z2>=0A"2< yA 2 <100 Ny="zAx="yV

(2) "z>=0A"2< YAz >=100A(y > "z Az > "y)V

(B) " z>=0AN"z>="yAly="yAx="zVy+ =0+ "Ty)
This FSF is derived from the DNF of the post-condition and includes the three
functional scenarios marked by (1), (2), and (3) (after removing the last operator
V in each case), respectively. In (1), "z >= 0 is the decorated pre-condition;
“x <= "y A"z < 100 is the guard condition; and y = “x Az = "y is the defining
condition. The other two scenarios can be interpreted similarly.
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Before describing the test strategy, we need to clarify the concepts of fest
case and test set precisely.

Definition 3. Let S;, = {x1, 22, ...,z } be the set of all input variables of oper-
ation S and Type(z;) denotes the type of z; (i = 1,...,r). Then, a test case for
S, denoted by T,, is a mapping from S;, to the set Values:

T.: S;, — Values

where Values = Type(x1) U Type(za) U - - - U Type(x,.).

A test case is usually expressed as a set of pairs of input variables and their
values, for example, {(z1,5), (22, 10), ..., (x,,20)}. A test set for operation S is
a set of test cases, and is usually expressed as a set of sets of pairs. With the
above preparation, we can now define precisely the test strategy.

Test Strategy: Let operation S have an FSF (S, A C1 A D1) V (Spre”™ A
CoyAND2)V---V (Spre” NCp AD,) where (n > 1). Let T be a test set for S. Then,
T must satisfy the condition (V;c(1,... ny3ter - Spre” (1) A Ci(t))

We call this strategy scenario-coverage strategy (SCS). The strategy states
that for each functional scenario there exist some test cases in test set 7' that
satisfy its test condition. If T meets this condition, it will ensure that every func-
tional scenario defined in the specification is tested (at least once), thus ensur-
ing that no specified functional behavior is missed in the test.

To ensure that the test strategy is fully applied, a decompositional test set
generation approach is proposed, which is described in detail next.

4.2. Decompositional Approach to Test Set Generation

Using the decompositional test set generation approach, the test set generated
from an operation specification is realized by generating test sets from all of
its functional scenarios. The production of test set from a functional scenario is
realized by generating them from its test condition, which can be divided further
into test set generations from every disjunctive clause of the test condition. To
clearly describe the proposed method, we first need to define a function, called
test case generator (TCG), that yields a test set for a given logical expression
such that every test case in the set plays an independent role while it satisfies
the expression (e.g., assuming the expression is a disjunction, each test case in
the set makes each disjunctive clause true). We use G to denote the TCG, which
is a function from the universal set of logical expressions L g to the universal set
of test sets T, formally,

g : LE — TS .

By logical expressions here we mean the first order logic expressions written
in SOFL. Let p be a logical expression in Lg. Then, G(p) represents the test set
generated, which is a member of Ts and satisfies p (i.e., every test case in the
test set satisfies p). The key issue now is how G is defined. We will define G to
ensure that our test strategy discussed previously is supported.

An FSF of operation specification S is a disjunction of all its functional sce-
narios, defining a set of independent behaviors, the test set generated from the
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FSF should therefore be the union of all the test sets generated from all of its
functional scenarios, as formalized in Criterion 1 below.

Criterion 1: Q((Sp,€~ ANC1 /\Dl) V (Sp7-€~ ANCo /\DQ) VeV (Sp7-6~ ANC,, /\Dn)) =
G(Spre " NC1 AD1)UG(Spre™ NCa AD2)U - - - UG(Spre” ANCp ADy,) .

Since the execution of a program only requires input values, test case gen-
eration from a functional scenario actually depends only on its test condition.
This idea is reflected in Criterion 2.

Criterion 2: Let S,..” A C; A D; (i = 1,...,n) be a functional scenario of
operation specification S. Then, G(Sy.e” A Ci A D;) = G(Spre” ACi) .

In general, pre-condition S,,..~ can be in any form of predicate expression.
To define G to deal with test case generation from the conjunction S,..” A C;, a
systematic way is first to translate the conjunction into an equivalent disjunctive
normal form (DNF) and then define G based on it, as reflected in Criterion 3.

Criterion 3: Let P, vV P,V - -- vV P, be a DNF of the test condition S,,,.~ A C;.
Then, we define G(Spe " ACy) =G(PLV P,V -V Py)=G(P)UG(P)U -+ - U
G(Pm) -

A P, (i = 1,...,m) is a conjunction of atomic predicate expressions, say
QI ANQ? A---A QF. An atomic predicate expression, in our context, is one
of the three kinds of predicate expressions: (1) a relation (e.g., z > y), (2) a
negation of a relation, and (3) a strict quantified predicate. A strict quantified
predicate is a quantified predicate whose body does not contain any atomic
predicate unrelated to its bound variables. For example, V,.cx -y > = is a strict
quantified predicate, while V.cx -y > x A ¢ > 0 is not, because it contains the
atomic predicate ¢ > 0 that is not related to the bound variable x. This criterion
indicates that generating test cases from a test condition can be achieved based
on its DNF. The focus now is on the issue of how to produce test cases from a
clause, such as P, = Q! A Q7 A ---A QY. To discuss the generation criterion,
we first need to define G to deal with atomic predicate expressions, which will
set up a basis for discussions on test case generation from the conjunction.

Criterion 4: Let S;, = {z1,22,...,z,} and Q(z1, x2, ..., z4) (¢ < r) be arela-
tion involving variables 1, za, ..., 7. Then, G(Q(z1, 2, ..., 2¢)) = {Te | (Vac{er,wa,aq}”
Q(Te(1), Te(w2), s Te(4))) AVae(Sio\{z1,29,....24 1) Te(®) = anyvalue)}, anyvalue
represents any value taken from the type of variable z.

For a relation involving a subset of the input variables of operation speci-
fication S, we generate a test case in which each involved variable is given a
specific value in its type and all the generated values satisfy the predicate ex-
pression Q(z1, 2, ..., x4), but the input variables of S that are not involved in
Q(z1,22,...,x4) are all assigned anyvalue from its type. For example, suppose
operation specification S has two input variables = and y denoting two integers,
then it is possible that G(z > 0) = {{(z,2), (v,8)}} (containing a single test
case) where 8 in the pair (y, 8) is anyvalue, but the values of variables = and y
in the test set G(x < y) = {{(=,2), (y,5)}} are not anyvalue but the values that
satisfy the relation =z < y.

Having the above preparation, we can now define the criterion for generating
a test set for a conjunction of atomic predicate.
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Criterion 5: Let Q! AQ?A---A Q¥ be a conjunction of w atomic predicates in a
test condition of a functional scenario of S. Then, we have G(QIAQ?A---AQY) =
GQRHNGQHN---NGQY).

Let us take the operation Withdraw as an example to show how the criteria
can be applied. The operation is converted into a disjunction of the following
two functional scenarios:

(1) (exists![acc: accounts] |

acc.card_id = card_id and
acc.password = password) and
acc inset accounts and
acc.card_id = card_id and
acc.password = password and
amount <= acc.balance) and
(cash = amount and
accounts = union(dif f("accounts, {acc}),
{modify(acc, balance— > acc.balance — amount)})
(2) (exists![acc: accounts] |
acc.card_id = card_id and
acc.password = password) and
acc inset accounts and
acc.card_id = card_id and
acc.password = password and
not (amount <= acc.balance)) and
(bound(error_message) and
accounts = ~accounts)
where the let expression is translated into the equivalent conjunction:

acc inset accounts and acc.card_id = card_id and

acc.password = password.

Following the test strategy SCS described above, we generate a test set as
shown in Figure 5 that cover the two functional scenarios. Each test case
consists of four values for the four input variables (i.e., the three parameters
card_id, password, amount, and one external variable accounts). The test case
on the first row allows us to test the situation where both the inputs card_id
and password are correct and the input amount is smaller than the customer’s
account balance. The test case on the second row checks the situation where
both the card_id and password are correct, but the amount exceeds the bal-
ance. The one on the third row tests the situation where the pre-condition of
the operation is not satisfied because of the inconsistency between the input
password and the registered password in the customer’s account. Since the
pre-condition is treated as an assumption for the operation, the last test case
will not necessarily help find errors, but it will allow the tester to understand how
the implementation deals with this situation and to provide a feedback to the
programmer for potential improvement.
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card_id password amount accounts

{(L4513, 3410, 1000000),
L4513 3410 50000

(A5910, 3102, 150000),

(X2034, 1291, 3400000)}

A5910 3102 250000 {(G8113, 3410, 5060000),
(A5910, 3102, 150000),

(T2014, 1291, 2900000)}

X2034 1091 10000 {(G8113, 3410, 300000),
(L0310, 3102, 35000),

(X2034,1291,3400000)}

Fig. 5. A test set for the operation Withdraw.

4.3. Test Result Analysis

One of the major advantages of formal specification-based testing is that a pre-
cise test oracle can be automatically derived from the specification and can be
used to determine, both automatically and manually, whether a test has found
an error or not.

Definition 4. Let f = S,,..” AC A D be a functional scenario of operation spec-
ification S and P be a program implementing S. Let t be a test case generated
based on f and r be the result of executing program P using t. Then, an error
in P is found using t if the following condition holds:

Spre” (t) NC(t) AN=D(t, 1)

This test oracle states that for a test case ¢ satisfying both the pre-condition
of S and the guard condition C of functional scenario f, if the execution result
r of P does not satisfy the defining condition D (together with ¢), we can assert
that an error in P is found by test case t.

In fact, this test oracle is derived from the refinement relation between S and
P, which is formally defined as follows:

VioeX Sye(To) = Spost(To,0),
where “o denotes the initial state before operation S and o (= P("¢)) denotes
the final state after operation S that is produced by executing the corresponding
program P. P is a correct refinement of specification S if and only if the final
state o produced by executing program P on the initial state ~¢ satisfying the
pre-condition meets the post-condition. In other words, if there exists any final
state that does not satisfies the post-condition after the execution of the program
with a satisfactory initial state, the program will not be a correct refinement of
the specification, implying that a bug exists in the program.

The test for the operation Withdraw shown in Figure 5 can help to explain
how the test oracle can be used. Assume that we obtain the actual execution
result R for the test case on the first row in Figure 5 denoted by 7.}, which
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consists of two values: updated accounts and cash. We substitute them for the
variables accounts and cash in the post-condition, respectively, and evaluate the
following implication:

Withdraw,,.(T}) = Withdrawps:(T}, R)
If the result is true, it means that no error is found by T!; otherwise, it indicates
the presence of some bugs in the program. Similarly, we can also perform the
test result analysis for the other two test cases, which we omit here for brevity.

5. An Example

We have applied our approach to test an /C Card software system developed by
a group of senior students at Hosei University. The system is intended to provide
three services: operations on ATM, purchase of railway tickets, and payment for
shopping. The operations on ATM includes withdraw, deposit, show balance,
transfer money, change password, and transactions record printing. For pur-
chasing railway tickets, the system provides the operations: purchase a ticket,
charge the card with cash, charge the card from the customer’s bank account,
show balance of the card (i.e., the amount of money available in the buffer of
the card), and use the card (for entering and existing a station). The payment for
shopping is a service that allows one to pay for the goods purchased at shops
using the card. It includes the following specific functions: check card validity,
check amount restrictions (e.g., a card cannot be used for shopping of more
than a fixed amount in Japanese yen per day at the same shop), authenticate
the card user, and pay for shopping.

Since the whole example is too large to be put in a paper gracefully, we
choose only the ATM sub-system as an example to show how our testing ap-
proach can be applied. As the ATM example in Section 3.3 is a simplified ver-
sion of the system we use in this section, the contents of this section would be
understood easily.

5.1. Application

Figure 6 shows a snapshot of the GUI scenario for an unsuccessful withdrawal
from a customer’s bank account. The first page of the GUI for the system
shows three choices: ATMSystem, ShoppingSystem, and TransportationSys-
tems. Clicking on the button named ATMSystem, the system transfers from the
first page to the ATM GUI page given at the upper-right of the figure. Clicking on
the button named Withdraw, the GUI changes to the page requesting a card_id
and a password, which is given at the bottom-right of the figure. When a wrong
password is input, the system moves to the page displaying an error message
and requesting the user to re-enter the password. Clicking on the “yes" button
(the left one), the system returns to the page requesting for a card_id and a
password.

Using random testing based on a programmer’s brief description of the in-
terface scenarios of the system, we built a set of FSMs for the ATM system
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Fig. 6. A snapshot of using ATM for an unsuccessful withdrawal from the bank account

for simplicity and readability, as shown in Figure 7, each describing a single
independent interface scenario, as indicated in the figure. Taking the same ap-
proach as we explained in Section 3, we construct an operation specification
in pre- and post-conditions for each functional scenario. For the sake of both
space and the similarity to the simplified ATM example, we omit the specifica-
tions here. We carried out testing of the program based upon the specifications
to verify whether the desired behaviors are implemented correctly. The details
of the testing is illustrated in Table 5.1.

Since this case study was mainly intended to test the usability of our approach
(i.e., how interface scenarios can be found, how formal specifications can be
constructed, and how test cases are generated) rather than conduct a rigorous

Features No. of test cases|No. of detected defects
withdraw

deposit

show balance
transfer money
change password
transactions record printing|7
Table 1. Approximate data of the testing

©| 0| O | 0o

IO NN O W
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experiment on its effectiveness, we only collected the data of defects found by
our test cases rather than measured its effectiveness in terms of defect detec-
tion rate or some coverage criterion. There were total 27 defects found as the
result, but the main defects that lead to major functional errors with respect to
the functional requirements in the specifications are three, which are illustrated
as follows:

— In the specification the cash card and password are required to provide be-
fore any service (e.g., balance inquiry, withdraw) starts, but the implemen-
tation in the program puts the selection of services before the input of card
id and password. The purpose of such a requirement is to prevent people
without cash card from trying to “play” with the ATM system.

— In the Withdraw service, if the requested amount is over the account bal-
ance, the customer should be given two choices: giving up the use of the
service or re-entering the amount for withdrawal, but the implementation in
the program insists only on re-entering the amount. The same error is also
found in the Transfer service: when the amount for transferring is over the
account balance, the program insists only on re-entering the amount rather
than offering the choices.

— In the Deposit service, the amount for depositing is required not to be over
1,000,000 Japanese yen, but the program does not implement this con-
straint, therefore allowing any amount to be deposited in one service.

In the three errors, we found that the first one was relatively easier to find, but
the second and the third ones took us more efforts to find out, because the miss-
ing functions did not cause fundamental problem in providing the services, and
therefore did not easily attract the tester’s attention. The tester’s attention was
actually raised by examining the corresponding defining condition in the post-
condition of the operations. This result shows that formal specification does
benefit testing in our approach.

5.2. Discussion

Our experience in the application has shown the usability and effectiveness of
our testing approach for programs with no source code available. In particu-
lar, formalization of the informal requirements based upon the interface sce-
narios derived from the program has been found effective in helping the tester
detect obscure errors and defects. Since all the potential interface scenarios
need to be identified based upon executions of the program for writing interface-
consistent formal specifications, a general technique called testing-and-correction
must be taken. The technique suggests the following activities:

No.1 Run the program using sample test cases (selected based upon the brief
description of the functions of the program provided by the programmer)
and record the interface scenarios experienced if the program terminates
normally.
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bi (balance
inquiry)

input_agai id pass stop

input_again

’
s4)
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(a) Balance inquiry (b) Withdraw

pc (password change)

input_again

re_enter

(e) Transfer (f) Print transactions on banknote

Fig.7. FSMs for ATM interface scenarios.
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No.2 If the program does not terminate normally due to some bugs, the pro-
grammer will be asked to eliminate the bugs before the next action in testing
is taken.

No.3 Repeat steps 1 and 2 until all interface scenarios are found.

The process of applying the testing-and-correction technique helps to detect
some obvious errors in the program, but it may not be effective in uncovering ob-
scure errors, especially those violating the requirements in an ambiguous man-
ner. Such obscure errors can be effectively revealed during the formalization of
requirements and the testing process based upon the formal specifications.

To effectively use our testing approach in practice, however, the following
challenges may need to be addressed.

— The program must always terminate normally or the programmer must al-
ways be available for removing bugs detected.

— The tester has sufficient ability and skill in formalizing the informal require-
ments into formal specifications. For this purpose, the requirements must
be complete or the client must be available for consultation whenever the
details of the requirements are inquired by the tester.

The first challenge is not exceptional for the application of other testing ap-
proaches, but the second one may be a major challenge in practice currently.
The reason is that most software testers are not necessarily trained in for-
mal methods and may not know how to use the technique, but this situation
is changing due to three factors. The first is that many evidences have demon-
strated the power of formal specification in enhancing software quality [8] and
more and more companies become interested in training their employees in for-
mal specification techniques (e.g., in Japan). The second factor is that a growing
number of practitioners have become using formal specification techniques in
practice, especially in the domain of dependable systems [4]; this demonstrates
the feasibility and effectiveness of formal specification techniques in industry.
The third is the progress made in supporting formal specification construction
by software tools based on formal specification patterns [9]. With such a tech-
nique, one does not need to directly write formal specifications; instead, one
only needs to express one’s ideas in a structured English and the supporting
tool will gradually automatically produce the formal specification. With the above
progresses, it is possible for high level testing consultants or company practi-
tioners to efficiently apply our method in practice.

6. Related Work

Our work falls into the category of model-based testing (MBT), but differs from
existing approaches in the way of deriving models. In this section, we briefly
overview the related work in this area and compared it to our approach.

There have been extensive research on and application of MBT over the last
three decades [10], and the work can be classified into four categories: general
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discussion of MBT, MBT based upon graphical models, MBT based on formal
specifications, and automation in MBT. El-Far and Whittaker give a general in-
troduction to model-based testing in [11], discussing its underlying principle,
process, and techniques. Apfelbaum and Doyle argue that a finite state ma-
chine MBT can reduce cost and time, and can increase software quality, but
pointed out that the technique also faces challenges in acceptance [12]. Offutt
et al describe an approach to generating test cases from UML Statecharts for
components testing [13]. Hartmann et al extend the approach for integration
testing and provide effective tool support for test automation [14]. Bernot et al
set up a theoretical foundation and a tool support for specification-based test-
ing, explaining how a formal specification can serve as a base for test case
generation and as an oracle for test result evaluation [15]. Dick and Faivre pro-
pose to transform pre-condition into a disjunctive normal form (DNF) and then
use it as the basis for test case generation [16]. Stocks and Carrington suggest
that test templates be defined as the base for test case generation and a large
test template is divided into smaller templates for generating more detailed test
cases [17]. In order to deal with the practical challenges MBT techniques have
encountered due to the inconsistency between the component interfaces in the
model and in the program, Blackburn et al present an interface-driven MBT
approach that combines requirement modeling and component interface analy-
sis to support automated test case and test driver generation [18]. In spite of
tremendous efforts by many researchers, MBT is still difficult to be used for
large scale systems because of its complexity and the potential inconsisten-
cies in both component interface and system architectures. It is also unsuitable
for testing programs, such as legacy code, which does not have source code
available. To tackle this problem, Bertolino et al describe an anti-model-based
testing approach in [19]. The essential idea of this approach shares with our
testing approach presented in this paper; it suggests to use some test cases
to execute the program under test and observe the traces of executions, and
then try to synthesize and abstract model of the system. Compared to our work
in this paper, Bertolino et al neither advocate the use of formalization for the
abstract model, nor discuss in detail about how all the necessary traces are
observed and represented and how the traces are synthesized into an abstract
model. Our novel contribution in this paper is to present a systematic method
for identifying all interface scenarios, formalizing requirements into formal op-
eration specifications whose interfaces are consistent with the corresponding
ones of the program, and for testing programs based upon the formal specifica-
tions.

7. Conclusion and Future Work

We present a systematic approach to testing programs with no available source
code. The approach includes three steps: (1) identifying important interface sce-
narios by executing the program with test cases, (2) formalizing the informal
requirements into formal specifications, and (3) generating test cases from the
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formal specifications to test the program. The benefit of our testing approach is
to allow the tester to thoroughly understand the desired behaviors of the system
and to provide a precise model for testing it. We have also applied our approach
to an IC Card system to gain experience and to learn potential challenges in
practice.

In the future, we will continue to work along the direction set in this paper to
make the testing approach more mature and effective. In particular, we will re-
fine and improve the techniques for discovering interface scenarios, formalizing
user requirements, and generating test cases. We also plan to conduct a rigor-
ous experiment on the effectiveness of our approach in industrial environment.
To enhance the efficiency of the testing activities, we will also work on the tool
support.
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