An Energy-Efficient Localization Strategy for Smartphones

Haifeng Liu, Feng Xia, Zhuo Yang, Yang Cao

In recent years, smartphones have become prevalent. Much attention is being paid to developing and making use of mobile applications that require position information. The Global Positioning System (GPS) is a very popular localization technique used by these applications because of its high accuracy. However, GPS incurs an unacceptable energy consumption, which severely limits the use of smartphones and reduces the battery lifetime. Then an urgent requirement for these applications is a localization strategy that not only provides enough accurate position information to meet users' need but also consumes less energy. In this paper, we present an energy-efficient localization strategy for smartphone applications. On one hand, it can dynamically estimate the next localization time point to avoid unnecessary localization operations. On the other hand, it can also automatically select the energy-optimal localization method. We evaluate the strategy through a series of simulations. Experimental results show that it can significantly reduce the localization energy consumption of smartphones while ensuring a good satisfaction degree.