
DOI:10.2298/CSIS091011009J

A Grammar-based model for the Semantic web

Hyosook Jung
1
 and Seongbin Park

1


1 Department of Computer Science Education,
Korea University, Seoul, Korea

{est0718, hyperspace}@korea.ac.kr

Abstract. The Semantic Web is an extension of the Web where
information is represented in a machine processable way. In this paper,
we present a two-level model for the Semantic Web from the
perspective of formal language theory. The model consists of two
grammars where the first level grammar is for creating ontologies and
the second level grammar is for creating ontological instances. Based
on the model, we implemented a system by which one can easily
construct a small-scale Semantic Web environment.

Keywords: Semantic web, ontology, grammar.

1. Introduction

The Semantic Web is a vision for the future of the Web in which information
is given explicit meaning, making it easier for machines to automatically
process and integrate information available on the Web [5].

In this paper, we present a grammar-based model for the Semantic Web.
As in [3], we view the Semantic Web as the set of ontologies and ontological
instances, where an ontology is a document or file that defines the relations
among concepts. The proposed model consists of two grammars. The first
level intends to represent an ontology about a domain of interests. Ontologies
are strings generated by the first level grammar. The second level intends to
represent ontological instances which are resources described using concepts
and relationships based on the ontology defined at the first level.

While there are approaches to model the Semantic Web [3,9,10], the
advantage of the proposed model is that users can easily create a small-
scale Semantic Web environment where various experimentations such as
whether a current Web browser needs a new functionality or not can be
done. To construct the environment, one can define a grammar for an
ontology and generate ontological instances.

Our system can serve as an education tool for teaching the Semantic web.
For example, non-experts learn about the conceptualization and formalization
of ontologies during lectures. Although there are different ontology language

 To whom correspondence should be addressed.

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 74

standards, in teaching level the general understanding about the ontology
language might be more important than the specific understanding about a
certain ontology language standards. Using our system, they can practice
how to create ontologies by defining their simple ontology languages. While
the languages that they define are not full-fledged ontology languages, they
can understand the roles of ontologies and how ontologies are used.

Our system is different from ontology development tools such as Protégé-
OWL editor [13], OntoEdit [15], OntoKick [16], WebODE [17] etc. in that it
allows non-expert users to generate ontologies by using simple languages
defined by themselves without the knowledge of OWL and RDF which are not
simple concepts to understand [14]. They can understand the essential
elements of ontologies and how they are used.

Figure 1 shows the idea behind our approach.

Fig. 1. A grammar-based model for the Semantic Web

This paper is structured as follows. Section 2 describes related works. In
section 3, a two-level model is explained. Illustrative examples are given in
section 4 and section 5 describes how a small-scale Semantic Web can be
constructed using the proposed model. Finally, section 6 concludes the
paper.

2. Related Works

The Semantic Web is an environment where Web contents are represented
in a form that is machine processable [4]. There are several languages to
represent machine interpretable content on the Web. XML offers a surface
syntax for structured documents and XML Schema is a language for
restricting the structure of XML documents. RDF is a data model for objects
and their relations and supports a simple semantics for the data model. RDF
Schema is a vocabulary for representing properties and classes of RDF
resources. OWL adds more vocabulary for describing properties and classes:

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 75

among others, relations between classes, cardinality, equality, richer typing of
properties, characteristics of properties, and enumerated classes [1].

OWL ontology represents a domain by defining classes and properties of
those classes and defines individuals and asserts properties about them.
Ontologies contain computer-usable definitions of basic concepts in the
domain and the relationships among them. They encode knowledge in a
domain and also knowledge that extends domains [6]. An OWL instance is a
description about a resource created by using properties and classes defined
in the OWL ontology [2,8].

In Ontobroker [7], ontologies are defined in a representation language
based on Frame-Logic which supports queries by using instances of an
ontology. The representation language used to define ontologies enables
elementary expressions such as classes, attributes, relationships, and
axioms. It also allows complex expressions such as facts, rules, double rules
and queries. The defined ontology is composed of concept hierarchy which
defines the subclass relationship between different classes, attribute
definitions given for classes and a set of rules which defines relationships
between different concepts and attributes.

The Semantic Web has been modeled in various ways. [9] describes a
Semantic Web space as two-tuple <O, R>, where O is a set of ontologies and
R is a set of resources such as web pages, databases, and sensors.

[10] describes the semantic web as a Notebook + Memex where, the
Memex emphasizes on engaging with information, developing it, and working
with it, the notebook focuses on both the more writerly and the more personal
side of engaging with information. It can perform the automatic and logical
processing of repetitive thought tasks and the creation of associative links
across different resources by connecting into either the similar tasks or
creative thought processes.

[3] describes a semantic network as a directed labeled graph. For the
Semantic Web, a semantic network substrate is represented by the
constraints of the RDF which describes a semantic network as a set of triples
where a subject resource points to an object resource according a predicate
resource. Subject and predicate resources are identified by URI (Uniform
Resource Identifier) and object resources are a literal or URI. The Semantic

Web can be defined as G  (U  U  (U  L)), where U is the set of all URIs
and L is the set of all literals.

Linked Data is about using the Web to create typed links between data
from different sources. It basically uses the RDF data model to publish
structured data on the Web and RDF links to interlink data from different data
sources [18]. It is associated with the semantic web because the semantic
Web isn't just about putting data on the web, but about making links, so that a
person or machine can explore the web of data [19]. Our tool lets people
represent data based on ontologies, which is a basic process to make
semantic links between data.

Cloud computing is a term to describe both a platform and a type of
application. A cloud is a pool of virtualized computer resources. A cloud
computing platform dynamically provisions, configures, reconfigures, and

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 76

deprovisions servers as needed. Cloud applications are extended
applications to be accessible through the Internet. These cloud applications
use large data centers and powerful servers that host Web applications and
Web services [20]. Although the cloud computing providers are publishing
various clouds over the Internet, there are no standard, open protocols and
discover mechanisms for different kinds of clouds [21]. So, the Cloud
Computing Interoperability Forum (CCIF) focus on being placed on the
creation of a common agreed upon framework or ontology that enables the
ability of two or more cloud platforms to exchange information [22]. A
common cloud ontology can support the expression of cloud computing and
its related parts by using a common data model. Our tool allows people to
define ontologies to represent data semantically. They can experience the
way of creating a data model for cloud computing.

Social semantic web is related to the creation of explicit and semantically
rich knowledge representations. It can be seen as a Web of collective
knowledge systems that which can provide useful information based on
human contributions and get better as more people participate. Instead of
relying entirely on automated semantics with formal ontology processing and
inferencing, humans are collaboratively building semantics aided by socio-
semantic information systems [23]. Our tool enables users to create
ontologies and represent data based on the ontology by using their own
description languages instead of RDF/OWL. The users can also create a
small-scale social semantic web that supports semantic browsing by using
user-defined ontologies.

A reasoner is a service that takes the statements encoded in an ontology
as input and infers new statements from them. In particular, OWL reasoners
such as FaCT++ and Pallet can be used to reveal subclass or superclass
relationships among classes, determine the most specific types of individuals,
and detect inconsistent class definitions [24]. Our tool checks whether the
ontology is defined without syntactic and semantic errors and whether the
instances are defined by using the classes and properties of the ontology.

Fig. 2. Related research areas to our work

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 77

Figure 2 shows how our research is related to Linked Data, Cloud
computing, Social Semantic Web, and Ontology reasoners.

3. A Grammar-based Model

In this section, we describe a grammar-based model for the Semantic Web.
The proposed model consists of two grammars. The first grammar is for
generating ontologies and the second grammar is for generating ontological
instances. More specifically, the first level grammar in our model is used to
generate ontologies that describe information about classes or properties. A
class has certain restrictions, where a restriction is a data type of a class or a
condition about data value. Datatype properties define relations between
instances of classes and RDF literals and XML Schema datatypes. Object
property defines relations between instances of two classes by connecting
instances in a domain class into instances in a range class. A data range is
used as the range of a data-valued property such as string, integer, Boolean,
and float.

The syntax of the first level grammar1 is as follows.

ontology ::= 'Ontology' ontologyID directive*;

directive ::= import | class | property;

import ::= ‘NS:’ namespaceID=referrenceID

class ::= 'Class' classID description*;

description ::= 'SubClassOf' classID | restriction*;

restriction ::= 'Restriction On

Property'(datatypePropertyID datatype |

objectPropertyID objecttype);

datatype ::= dataRange | cardinality;

objecttype ::= classID | cardinality;

cardinality ::= 'min' digit+ | 'max' digit+| 'equals'

digit+;

property ::= datatypeProperty | objectProperty;

datatypeProperty ::= 'DatatypeProperty'

datatypePropertyID

 ('domain' classID)* ('range' dataRange)*;

objectProperty ::= 'ObjectProperty' objectPropertyID

 ('domain' classID)* ('range' classID)*;

dataRange ::= 'string' | 'integer' | 'boolean' |

'float';

ontologyID ::= identifier;

1 Terminals are quoted (i.e., „Ontology‟) and non-terminals are not quoted (i.e.,

ontologyID). Alternatives are either separated by vertical bars(|) or are given in
different productions. Components that can occur at most once are followed by „+‟
and components that can occur any number of times including zero are followed by
„*‟.

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 78

Using this grammar, an ontology about a movie can be defined. For
example, a movie ontology can have Class Film and Genre, and property
genreOf which creates a relation between Film's and Genre's instances.
Class Film has at least one instance of Class Genre as the value of
ObjectProperty genreOf. Using the grammar, a Movie ontology can be
derived as follows.

'Ontology' ontologyID directive*

→'Ontology' Movie directive*

→'Ontology' Movie class directive*

→'Ontology' Movie 'Class' Film description* directive*

→'Ontology' Movie 'Class' Film restriction directive*

→'Ontology' Movie 'Class' Film 'Restriction On

Property' objectPropertyID objecttype directive*

→'Ontology' Movie 'Class' Film 'Restriction On

Property' genreOf cardinality directive*

→'Ontology' Movie Class Film 'Restriction On Property'

genreOf 'min' 1 directive*

→'Ontology' Movie 'Class' Film 'Restriction On

Property' genreOf 'min' 1 class directive*

→'Ontology' Movie 'Class' Film 'Restriction On

Property' genreOf 'min' 1 'Class' Genre directive*

→'Ontology' Movie 'Class' Film 'Restriction On

Property' genreOf 'min' 1 'Class' Genre property

→'Ontology' Movie 'Class' Film 'Restriction On

Property' genreOf 'min' 1 'Class' Genre objectProperty

→'Ontology' Movie 'Class' Film 'Restriction On

Property' genreOf 'min' 1 'Class' Genre

'ObjectProperty' objectPropertyID ('domain' classID)*

('range' classID)*

→'Ontology' Movie 'Class' Film 'Restriction On

Property' genreOf 'min' 1 'Class' Genre

'ObjectProperty' genreOf 'domain' Movie 'range' Genre

Now, this ontology serves as the second level grammar. According to the
Movie Ontology, Class Genre has Instance Fantasy and Adventure and Class
Film has Harry_Potter_and_the_Sorcerers_Stone whose genre is Fantasy
and Adventure. The classes and properties of the ontology become terminals
and strings are variables. An instance of the movie ontology can be derived
as follows.

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 79

('Genre' genreInstance)+ ('Film' filmInstance 'genreOf'

(genreInstance)+)+

→'Genre' Fantasy 'Genre' Adventure (Film filmInstance

('genreOf' genreInstance)+)+

→'Genre' Fantasy 'Genre' Adventure 'Film'

Harry_Potter_and_the_Sorcerers_Stone ('genreOf'

genreInstance)+

→'Genre' Fantasy 'Genre' Adventure 'Film'

Harry_Potter_and_the_Sorcerers_Stone 'genreOf' Fantasy

'genreOf' Adventure

Figure 3 shows Movie ontology and its instances.

Fig. 3. Movie ontology and its instances

4. Illustrative Examples

In this section, we show how the proposed model can be used to describe
various aspects of the Semantic Web environment.

4.1. Scenario 1

In the Semantic Web, an instance of an ontology can be semantically related
to an instance of another ontology. For example, figure 4 shows how two
domains (Movie and Travel) are connected.

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 80

Fig. 4. Movie, Travel, Movie_Travel ontology and their instances

This situation can be easily described using the proposed model. Movie
ontology has Film and Genre class, and genreOf property which creates a
relation between Film‟s and Genre‟s instances.

Ontology Movie

Class Genre

Class Film

 Restriction on Property genreOf equals 1

ObjectProperty genreOf domain Film range Genre

Based on Movie Ontology, Film class has Harry_Potter_and_the_
Sorcerers_Stone in-stance and Genre class has Fantasy.

Genre

 Fantasy

Film

 Harry_Potter_and_the_Sorcerers_Stone genreOf Fantasy

Travel Ontology has Location and Spot class, and locatedIn property which
creates a relation between Location's and Spot's instances.

Ontology Travel

Class Location

Class Place

 Restriction on Property locatedIn equals 1

ObjectProperty locatedIn domain Place range Location

Based on Travel Ontology, Location class has London instance and Place
class has Gloucester_Cathedral.

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 81

Location

 London

Place

 Gloucester_Cathedral locatedIn London

We create Movie_Travel ontology by importing Movie and Travel ontology.
It uses Film class of Movie ontology and Spot class of Travel ontology. It has
filmedIn property which creates a relation between Film's and Spot's
instances.

Ontology Movie_Travel

NS:M=Movie

NS:T=Travel

Class T:Place

Class M:Film

Restriction on Property filmedIn equals 1

ObjectProperty filmedIn domain M:Film range T:Place

Based on Movie_Travel Ontology, Film class has Har-
ry_Potter_and_the_Sorcerers_Stone instance and Place class has
Gloucester_Cathedral.

T: Place

 Gloucester_Cathedral

M: Film

 Harry_Potter_and_the_Sorcerers_Stone filmedIn

loucester_Cathedral

People can get information for traveling a place where a famous movie is
filmed by combining Film and Travel ontology.

4.2. Scenario 2

Historical study often focuses on events and developments that occur in
particular blocks of time. Therefore, the events and developments might be
organized based on historical periods such as Ancient history, Middle Ages,
Early modern period, Modern era and Post-Modern. Assume that there are
three types of ontologies which define different classes and properties as
follows.

Ontology Ancient_History

Class Nation

Class Machine

 Restriction on Property inventedBy equals 1

ObjectProperty inventedBy domain Machine range Nation

Ontology Middle_Ages

Class Area

Class Invention

 Restriction on Property introducedFrom equals 1

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 82

ObjectProperty introducedFrom domain Invention range

Area

Ontology Modern_Era

Class Country

Class Technology

 Restriction on Property developedIn equals 1

ObjectProperty developedIn domain Technology range

Country

Assume that a person wants to organize information on technology in
history by using an ontology, but historians already organized the information
on technology as well as war, religion, or science based on different
ontologies by the historical periods. The person tries to extract the classes or
properties related to science and technology from different ontologies and to
integrate them in an ontology. That can be done by importing the three
ontologies. So, the person can define the namespace for each ontology.

Ontology History_Of_Technology

NS:AH = Ancient_History

NS:MA = Middle_Ages

NS:ME = Modern_Era

AH:Nation

 Egypt

AH:Machine

 Ramp AH:inventedBy Egypt

 Lever AH:inventedBy Egypt

MA:Area

 East

MA:Invention

 Compass MA:introducedFrom East

 Gunpower MA:introducedFrom East

 Silk MA:introducedFrom East

 Astrolabe MA:introducedFrom East

ME:Country

 Britain

ME:Techology

 StreamEngine ME:developedIn Britain

Program Code

4.3. Scenario 3

People organize resources based on their interests or needs. One resource
can be classified differently because their interests or needs are different.
The proposed model allows users to create a specification file which contains
the lexical definitions and the grammar of their own ontology language and
define ontology which represents the meaning of terms and the relationships
between those terms by using the ontology language. If the web resources

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 83

are reorganized based on their own ontologies, the users can conveniently
navigate the web resources according to their interests or needs without
wasting a lot of time.

As an example, assume that a user wants to search web resources in an
Internet art museum. An Internet art museum has lots of art works and users
navigate them based on their interests. Some search the art works of the
artists who they like such as van Gogh, Picasso, Millet, etc. Others search
the art works according to the trend of art such as realism, impressionism,
cubism, etc. The others search the art works of art forms which they are
interested in such as drawing, painting, sculpture, etc. If the artworks re-
organized by their interests are displayed, the users navigate them
conveniently and find out desired resources easily.

If user A wants to browse the art works based on painting styles, the user
can use the following ontology.

Ontology Painting_Style

Class Work

 Restriction on Property belongTo equals 1

Class Art_Movement

ObjectProperty belongTo domain Work range Art_Movement

Art_Movement

 Realism

 Impressionism

 Cubism

Work

 Work_1 belongTo Realism

If user B wants to browse the art works based on artists, the user can use
the following ontology.

Ontology Painting_Artist

Class Work

 Restriction on Property belongTo equals 1

Class Artist

ObjectProperty paintedBy domain Work range Artist

Artist

 Picasso

 Van_Gogh

 Millet

Work

 Work_1 paintedBy Millet

If user C wants to browse the art works based on art forms, the user can
use the following ontology.

Ontology Painting_Medium

Class Work

 Restriction on Property madeOf equals 1

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 84

Class Medium

ObjectProperty madeOf domain Work range Medium

Medium

 Fresco

 Oil

 Watercolor

Work

 Work_1 madeOf Oil

Figure 5 shows how the resources can be organized according to users‟
interests. .

Fig. 5. Organization of resources based on users‟ interests

4.4. Scenario 4

The proposed model can be used to create Linked Data. Each user can build
an ontology about a certain domain by using our model and create instances
based on the ontology. Each instance can be regarded as the description
about a raw data that each user has and so they are similar to the
descriptions of data in Linked Data by using the standards like RDF.

Linked Data is an approach to expose, share, and connect pieces of data,
information, and knowledge on the Semantic Web using URIs and RDF. If
some users can define a common ontology together, create instances to
describe their raw data, and share the instances by using our model, it is
possible to construct Linked data. For example, there are people who are
interested in art. They open a community in a social network for sharing their
data. They first build a general ontology about art domain as follows;

Ontology Art

Class Painting

Class Artist

ObjectProperty artist domain Painting range Artist

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 85

DatatypeProperty title domain Painting range String

DatatypeProperty year domain Painting range String

 They also create the instances which describe their data based on the Art
ontology as follows;

Table 1. Instances created by each user

User A User B User C User D

Ontology ART
Artist Van_Gogh
Painting work_1
artist Van_Gogh
Painting work_1
title Sunflower
Painting work_1
year 1889

Ontology ART
Artist Van_Gogh
Painting work_2
artist Van_Gogh
Painting work_2
title Self_Portrait
Painting work_2
year 1886

Ontology ART
Artist Picasso
Painting work_3
artist Picasso
Painting work_3
title Guernica
Painting work_3
year 1937

Ontology ART
Artist Picasso
Painting work_4
artist Picasso
Painting work_4 title
Massacre_in_Korea
Painting work_4
year 1951

Then, they share the instances in their community. It is possible kind of

linked data services. For example, they can find all data linked to a certain
artist such as Van_Gogh or Picasso. Even though each user has small data,
they can get an amount of linked data and also create new information from
the linked data.

5. Constructing a small scale Semantic Web environment

In this section, we show how a user can construct a small-scale Semantic
Web environment using the system we implemented. In order to create a
small-scale Semantic Web environment, a user defines a grammar for the
ontology language and creates a parser by using SableCC [11] that is a
parser generator which creates object-oriented frameworks for building
compilers, interpreters, and other text parsers. For describing the ontology,
the user needs to create a SableCC specification file which contains the
lexical definitions and the grammar productions of an ontology language.

Figure 6 shows how a user can construct a small-scale Semantic Web
environment using the system. First, a user defines an ontology language
grammar. The grammar file is written in a SableCC specification file format.
Then, the user creates an ontology compiler by launching SableCC on the
grammar file. The user writes and compiles Java sources for an ontology
compiler that checks grammatical errors of the ontology defined by the
ontology language and is aware of its classes and their relationships. If there
are no errors, an ontology in XML format is written. The user writes and saves
the instances in a XML document if it is defined based on the classes and
properties of the defined ontology.

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 86

Fig. 6. Steps for constructing a small-scale Semantic Web environment.

Figure 7 shows the screenshot of the user interface captured when a user
creates an ontology.

Fig. 7. Art ontology and its instances

Figure 8 shows the situation used in the example that follows.

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 87

Fig. 8. Art ontology and its instances

We assume that the environment consists of an Art ontology and its
instances. More specifically, in the Art ontology, there are a Painting class
and an Artist class. The title datatype property defines the Painting class as
its domain and a string type as its range. An individual of the Painting class
has a title value. The workedBy object property defines the Painting class as
its domain and the Artist class as its range. An individual of the Painting class
has an individual of the Artist class as its workedBy value. Instances of of Art
ontology are created by creating two individuals and assigning their
properties. We define a Painting with an ID of work_1 and specify that it is
worked by (workedBy) Vincent_Van_Gogh and its title is Sunflower. We also
define a Painting is an ID of work_2 and specify that it is worked by
(workedBy) Pablo_Picasso and its title is Guernica.

The steps for constructing a small-scale Semantic Web environment are
as follows.
1. A user defines the grammar of an ontology language to be compiled and

saves it as a specification file. Figure 9 shows the screenshot of the the
specification file.

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 88

Fig. 9. Screenshot of the specification file

2. The user launches SableCC on the specification file by clicking [Build]-
[Launch] (Figure 10). It generates a framework which consists of four
packages such as lexer, parser, node and analysis.

Fig. 10. Launching SableCC on the specification file

3. The user creates working classes which inherit fields and methods from the
classes of the Java packages. The working classes contain the core
compiler functionalities. If an input is an ontology file, it finds classes and
properties of the ontology and saves them and their relationships as an
XML file. If an input is an instance file, it finds individuals, their properties
and values, and saves them as an XML file.

4. The user also creates a main compiler class which activates lexer, parser,
and working classes. The main class reads an ontology file which is

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 89

defined by the user. If an input is an ontology file, it checks whether the
ontology is defined according to the grammar of the ontology language. If
an input is an instance file, it checks whether the instances are defined
based on the vocabulary of the ontology.

5. Then, the user compiles the main compiler with a Java compiler and the
application generates an ontology language compiler. If the main compiler
has any error, the user can debug it. In this example, the user saves a
compiler program as "Main.java" and compiles it by clicking [Build]-
[Compile].

6. The user creates an ontology which contains classes and properties about
a domain according to the ontology language grammar and compiles it
with the ontology language compiler. The application generates an
ontology XML file. For example, the user defines an Art ontology and
saves it as "simple.ont". The ontology can be created if the user clicks
[Build]-[Make Ontology]. If there is no syntax and semantic error, the
system produces an ontology.

7. The user also creates its instances which are defined by the classes and
properties of the ontology and compiles it with the ontology language
compiler. The application generates an instance XML file. In this example,
the user defines instances based on Art ontology and saves it as
"simple.ins". The user creates instances based on the ontology by clicking
[Build]-[Make Instance]. If the instances are defined by using the classes
and properties of the ontology, the system produces an ontology(Figure
11).

Fig. 11. Creation of instances

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 90

6. Comparison with other ontology development tools

In this section, we compare the proposed system with two well-known
ontology development tools, Protégé [13] and Apollo [27]. Specifically, we
show how the scenario given in section 5 can be realized using Protégé and
Apollo in section 6.1 and 6.2, respectively. In addition, we show parts of an
ontology and an instance from three systems to illustrate the differences in
section 6.3. The following table summarizes briefly the differences.

Table 2. Comparison between Protégé-OWL, Apollo, and our system

Protégé-OWL and Apollo are developed for implementing metadata of

ontology using the languages used to encode the ontology. They generally
require users to be trained for the languages, knowledge representation, and
predicate logic. For example, Protégé-OWL supports the Web Ontology
Language (OWL) and exports ontologies to OWL/RDF (Resource Description
Framework). It requires users understand the vocabularies of RDF(S) and
OWL and their functions. Apollo is a knowledge modeling application based
on the internal model of the OKBC (Open Knowledge Base Connectivity)
protocol and export ontologies to CLOS (Common LISP Object System) and
OCML (Options Configuration Modeling Language). It also requires users
understand the meaning of each concept, the operations, and the naming and
argument conventions provided in OKBC specifications. Our system allows
users to use languages that they define. It requires the users to have a basic
understanding of formal languages and parsing which undergraduate
students generally learn from a compiler course.

Protégé-OWL and Apollo are developed for all stages of the ontology
lifecycle such as creation, population, validation, deployment, maintenance
and evolution. However, our system is developed for undergraduate students
to construct an environment that is structurally similar to the Semantic web
which consists of ontologies and their instances so that they can understand
the structural properties of the Semantic Web while studying the Semantic
Web. The combination of theory and practice can help them understand the
Semantic Web clearly. On top of this, they can also conduct

System Language Prerequisite Usage

Protégé-
OWL

OWL/RDF Understanding
OWL/RDF(S)
vocabularies

Building
general ontologies &
their instances

Apollo OKBC model Understanding
OKBC Knowledge
Model

Building
general ontologies &
their instances

Our system User-defined
language

Understanding
formal languages
& parsing

Constructing
a semantic web
environment easily

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 91

experimentations on Semantic Web applications that run in the environment
so constructed.

The ontologies in Protégé-OWL or Apollo are represented by using general
languages or knowledge representation such as RDF(S), OWL, OKBC model,
etc. They can be reused and shared with other applications using the same
language. However, users should understand the technical terminologies of
the language or its specification and it can be difficult [28,29]. In our system,
users can simply build ontologies and their instances which do not use
technical terminologies and logic. Even though the ontologies are not
represented by the general ontology language, the system can be helpful for
the undergraduate students who have basic knowledge about computer
science to understand the Semantic web. In addition, although our system
now represents the ontology by XML, it can be easily extensible to represent
the ontology by OWL/RDF(S).

6.1. Protégé-OWL

The steps to create an Art ontology given in section 5 are as follows.
1. We start Protégé-OWL and create a new OWL project by clicking “Create

New Project”. When “Create New Project” wizard appears, we select a
project type, “OWL/RDF Files” and specify a unique URI that will become
the identifier for the ontology. Then, we select an OWL/RDF dialect such
as OWL DL.

2. We create classes for concepts in the ontology. We select the “OWL
Classes” tab. It shows the hierarchy of classes. All the classes will be
created subordinate to owl:Thing. We click the Create subclass button. A
class is created with a generic name such as “Class_1”. We rename the
class using the “class name widget” to “Artist”.

Fig. 12. Creation of classes

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 92

We repeat the previous step to add the class “Painting” (Figure 12).

Fig. 13. Creation of an Object property

3. We create properties of these classes, for example, the title of the painting
and the artist that painted it. We switch to the “Properties” tab. We click the
“Create Object Property” button to create a new Object property. An Object
property is created with a generic name. We rename the property to
“workedBy”. Then, we specify a domain and a range of the Object
property. We press the “Add named class” button on the “Domain Widget”
and select the class “Painting”. We also press the “Add named class”
button on the “Range Widget” and select the class “Artist” (Figure 13).

Fig. 14. Creation of a Datatype property

4. We click the “Create Datatype Property” button to create a new Datatype
property. A Dataproperty is created with a generic name. We rename the

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 93

property to “title”. Then, we specify a domain and a range of the Datatype
property. We press the “Add named class” button on the “Domain Widget”
and select the class “Painting”. We select the item “string” on the “Range
Widget” (Figure 14).

Fig. 15. Creation of instances of the class Artist

5. We create some instances of the classes. We switch to the “Individuals”
tab. We select the class “Artist”. We press the “Create Instance” button. An
instance is created with a generic name. We rename the instance to
Vincent_Van_Gogh. We also create another instance called
“Pablo_Picasso” (Figure 15).

Fig. 16. Creation of instances of the class Painting

6. We select the class “Painting” and press the “Create Instance” button. An
instance is created with a generic name. We rename the instance to
“work_1”. We press the “Add new value” button in the Datatype property

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 94

“title” and type “Sunflower” as its value. We also press the “Add new value”
button in the Object property “workedBy” and select the instance
“Vincent_Van_Gogh” as its value.

7. We repeat step 6 to create another instance called “work_2”. We press the
“Add new value” button in the Datatype property “title” and type “Guernica”
as its value. We also press the “Add new value” button in the Object
property “workedBy” and select the instance “Pablo_Picasso” as its value
(Figure 16).

6.2. Apollo

The steps to create an Art ontology given in section 5 are as follows.
1. We start Apollo and a new project. We click “Create New Project” and

open the “Create new ontology” dialog and enter its name, “Art”.
2. We create classes for concepts in the ontology. We open the “New class”

dialog in the focused ontology and type the class name “Artist”. We repeat
the previous step to add the class “Painting” (Figure 17).

Fig. 17. Creation of classes

3. We create property slots of the classes. A slot contains a number of facets
such as value, value type, and value class, etc. We open the “New slot”
dialog in the class “Artist”. We type its name “workedBy” and set its value
type “instance” and its value class “Painting”. We also open the “New slot”
dialog in the class “Painting”. We type its name “title” and set its type
“string” (Figure 18).

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 95

Fig. 18. Creation of property slots

4. We create some instances of the classes. We select the class “Artist” and
open the “New instance” dialog. We type the instance name
“Vincent_Van_Gogh” and its type “Artist”. We also open the “New instance”
dialog again. We type the instance name “Pablo_Picasso” and set its type
“Artist” (Figure 19).

Fig. 19. Creation of instances of the class Artists

5. Similarly, we select the class “Painting” and open the “New instance”
dialog. We type the instance name “work_1” and set its type “Painting”. We
also open the “New instance” dialog again. We type the instance name
“work_2” and set its type “Painting”.

6. We specify the facets of the instances of the class “Artist”. We select the
class “Artist” and the instance “Vincent_Van_Gogh” in sub-classes panel.

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 96

We double-click the value of the slot “workedBy” and select the instance
“work_1”. We select the instance “Pablo_Picasso” in sub-classes panel.
We double-click the value of the slot “workedBy” and select the instance
“work_2” (Figure 20).

Fig. 20. Specifying the facets of the instances of the class Artist

7. Similarly, we specify the facets of the instances of the class “Painting”. We
select the class “Painting” and the instance “work_1” in sub-classes panel.
We edit the string value of the slot “title” to “Sunflower”. We select the
instance “work_2” in sub-classes panel. We edit the string value of the slot
“title” to “Guernica”.

6.3. Comparison of the results

Fig. 21. Two classes and instances

To illustrate the differences and similarities among our system, Apollo, and
Protégé-OWL, we extract parts of the documents where they save the
ontology and its instances. Protégé-OWL saves them in OWL format, and
Apollo and our system do in XML format. There are two classes “Artist” and
“Painting” and the property “workedBy”. There are also instances “work_1”

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 97

and “Vicent_Van_Gogh” which are connected with the property “workedBy”
(Figure 21).

The following table shows the ontology generated from the three systems.

Table 3. Ontologies generated by Protégé-OWL, Apollo, and our system

The ontological instances generated from the systems are as follows.

Table 4. Ontologial instances generated by Protégé-OWL, Apollo, and our system

Task Apollo (XML) Protégé-OWL
(OWL)

Our system
(XML)

Creating
Ontology

<classes>
<class name=”Artist”/>
<class name=”Painting”/>
<slots>
<slot name=”workedBy”>
<type value=”instance”/>
<is_own value=”false”/>
<value_class
value=”Artist”/>
<value_type
value=”instance”/>
</slot>
</slots>
<classes>

<owl:Class
rdf:ID=”Painting”/
>
<owl:Class
rdf:ID=”Artist”/>
<owl:ObjectProp
erty
rdf:ID=”workedBy
”>
<rdfs:range
rdf:resource=”#Ar
tist”/>
<rdfs:domain
rdf:resource=”#P
ainting”/>
</owl:ObjectProp
erty>

<CLASS name=
„Painting‟/>
<CLASS
name=„Artist‟/>
<OBJECTPROP
ERTY
Name=‟workedBy
‟>
<DOMAIN
name=‟Painting‟/
>
<RANGE name=
„Artist‟/>
</OBJECTPROP
ERTY>

Task Apollo (XML) Protégé-OWL
(OWL)

Our system
(XML)

Creating
Instance

<instance name =
“Vincent_Van_Gogh”Class
=”Artist”/>
<instance name =“work_1”
class=“Painting”>
 <slots>
 <slot name=”title”>
 <value value=
“Sunflower”/>
 </slot>
 <slot name=
“workedBy”>
 <value value=”Artist:
Vincent_Van_Gogh”/>
 </slot>
 </slots>
</instance>

<Painting rdf:ID=
 “work_1”>
<workedBy>
 <Artist
rdf:ID=”Vincent_V
an_Gogh”/>
</workedBy>
</Painting>

<Artist name=
‟Vincent_Van_Go
gh>
<Painting name=
„work_1‟>
<workedBy value
=

‟Vincent_Van_Go
gh‟>
</workedBy>
</Painting>

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 98

7. Conclusions and Future Works

In this paper, we presented a two-level model for the Semantic Web. The
model consists of two grammars, where one grammar is used to model
ontologies and the other grammar is used to model ontological instances. We
implemented a system by which a user can easily construct a small-scale
Semantic Web environement.

Our model can be utilized as follows.
First, a personalized semantic web can be easily constructed. The

Semantic Web is a linked information space where data is being enriched
and added based on the standards to formalize the syntactic and semantics
of web contents. It encourages users to create, share, and reuse resources
related to their needs and interests. Especially, the rapid increase of
communities promotes the interaction with each other and development of a
shared repository of resources. However, it is not easy for average users to
handle the languages to construct the semantic web such as RDF or OWL.
Our model enables the users to design an ontology language for a domain of
their interests and represent web contents by using the language. The users
can represent their own contents and connect to others in a shared domain of
interests easily because they use languages that are easier than RDF or
OWL. They can construct their personalized semantic webs.

Second, constructing knowledge is easily done. People construct their
knowledge by connecting existing knowledge into new knowledge, but their
knowledge construction is different each other. Although they are given the
same resources, they organize them in different ways because they have
various views about the resources. The proposed model enables users to
define and utilize resources according to their views easily. They define
ontologies and describe resources based on the ontologies to organize the
resources. They can reuse resources made by others in new and exciting
contexts as well. It can help them build knowledge.

Third, a semantic social network can be easily created. In the Semantic
Web, users create online communities where they can create, collect and
share resources. Especially, a social network is a community where members
with a shared interests interact and develop shared contents. If they can
construct a small semantic web suited to their own community, they can
represent resources semantically and share meaningful information. The
proposed model enables them to construct a semantic social network
according to their interests and needs.

We are currently investigating ways by which a logical inference
mechanism can be supported in the proposed model. We are also working
on a tool that that can exploit the structural properties of the Semantic Web
such as Magpie [25], Piggy Bank [12], Potluck [26], etc. using a structurally
similar environment to the Semantic Web created by our system.

A Grammar-based model for the Semantic web

ComSIS Vol. 8, No. 1, January 2011 99

References

1. McGuinness, D. L. and van Harmelen, F.: OWL Web Ontology Language
Overview, W3C Recommendation, http://www.w3.org/TR/owl-features. (2004)

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L.,
Patel-Schneider, P. F. and Stein, L. A.: OWL Web Ontology Language
Reference, W3C Recommendation, http://www.w3.org/TR/owl-ref. (2004)

3. Rodriguez, M. A. and Bollen, J.: Modeling Computations in a Semantic Network,
Computing Research Repository (CoRR), ACM, abs/0706.0022. (2007)

4. Antoniou, G., and van Harmelen, F.: A Semantic Web Primer, The MIT Press
(2004)

5. Berners-Lee, T., Hendler, J., and Lassila, O.: The Semantic Web, Scientific
American Special online Issue. (2001)

6. Heflin, J., Volz, R. and Dale, J.: Web Ontology Requirements, Proposed W3C
Working Draft, http://km.aifb.uni-karlsruhe.de/projects/owl/index.html. (2002)

7. Decker, S., Erdmann, M., Fensel, D. and Studer, R.: Ontobroker: Ontology
Based Access to Distributed and Semi-Structured Information, Kluwer Academic
Publishers. (1998)

8. Patel-Schneider, P. F., Hayes, P. and Horrocks, I.: OWL Web Ontology
Language Semantics and Abstract Syntax, W3C Recommendation,
http://www.w3.org/TR/owl-semantics. (2004)

9. Pan, Z., Qasem, A. and Heflin, J.: An Investigation into the Feasibility of the
Semantic Web, In Proceedings of the Twenty First National Conference on
Artificial Intelligence (AAAI 2006). (2006)

10. Schraefel, M. C.: What is an analogue for the semantic web and why is having
one important?, In Proceedings of the eighteenth conference on Hypertext and
hypermedia, 123-132. (2007)

11. Gagnon, E. M. and Hendren, L. J.: SableCC, an Object-Oriented Compiler
Framework, In Proceedings of the Technology of Object-Oriented Languages and
Systems, IEEE Computer Society. (1998)

12. Huynh, D., Mazzocchi, S., and Karger, D.: Piggy Bank: Experience the Semantic
Web Inside Your Web Browser, International Semantic Web Conference. (2005)

13. http://protege.stanford.edu
14. Martin, B., Mitrovic, A., Suraweera, P.: ITS Domain Modelling with Ontology.

Journal of Universal Computer Science, Vol. 14, No. 17, 2758-2776. (2008)
15. Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit:

Collaborative Ontology Development for the Semantic Web. Proceedings of
ISWC 2002, Springer, LNCS 2342, 221-235. (2002)

16. Mizoguchi, R.: Tutorial on ontological engineering - Part 2: Ontology
development, tools and languages, New Generation Computing,
OhmSha&Springer, Vol.22, No.1, 61-96. (2004)

17. Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A., Vicente, O.: WebODE: An
Integrated Workbench for Ontology Representation, Reasoning and Exchange,
Proceedings of EKAW2002, Springer, LNAI 2473, 138-153. (2002)

18. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web.
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial. (2007)

19. Berners-Lee, T.: Linked Data. http://www.w3.org/DesignIssues/LinkedData.html.
(2009)

20. Boss, G., Malladi, P., Quan, D., Legregni, L., Hall, H.:Cloud Computing. IBM
Corporation (2007)

Hyosook Jung and Seongbin Park

ComSIS Vol. 8, No. 1, January 2011 100

21. SHEU, P. C-Y, Wang, S., Wang, Q., Hao, K., Paul, R.: Semantic Computing,
Cloud Computing, and Semantic Search Engine. IEEE International Conference
on Semantic Computing, 654-657. (2009)

22. http://www.cloudforum.org
23. http://en.wikipedia.org/wiki/Social_Semantic_Web
24. http://syntheticbiology.org/Semantic_web_ontology/Software.html
25. http://projects.kmi.open.ac.uk/magpie/main.html
26. http://simile.mit.edu/potluck
27. http://apollo.open.ac.uk
28. Wang, H., Horridge, M., Rector, A.: Debugging OWL-DL Ontologies: A Heuristic

Approach, Proceedings of ISWC 2005, LNCS 3729 (2005)
29. Chung, M., Oh, S., Kim, K., Cho, H., Cho, H.: Visualizing and Authoring OWL in

ezOWL, International Conference on Advanced Communication Technology,
528-531. (2005)

Hyosook Jung received bachelor's degree in the department of elementary
education from Seoul National University of Education in Seoul, Korea,
master's degree in the department of elementary computer education from
Seoul National University Graduate School of Education in Seoul, Korea and
doctoral degree in the department of computer science education from Korea
University in Seoul, Korea. Her research interests include Semantic Web,
adaptive hypermedia and computer science education.

Seongbin Park received bachelor's degree in the Department of Computer
Science from Korea university in Seoul, Korea, and both master's degree
and doctoral degree in the department of computer science from the
University of Southern California. He is currently an associate professor at
the department of computer science education of Korea University in Seoul,
Korea. His research interests include Semantic Web, adaptive hypermedia
and computer science education.

Received: October 11, 2009; Accepted: February 23, 2010.

