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Abstract. In this paper, we propose a novel hybrid variable 
neighborhood search algorithm combining with the genetic algorithm 
(VNS+GA) for solving the multi-objective flexible job shop scheduling 
problems (FJSPs) to minimize the makespan, the total workload of all 
machines, and the workload of the busiest machine. Firstly, a mix of two 
machine assignment rules and two operation sequencing rules are 
developed to create high quality initial solutions. Secondly, two adaptive 
mutation rules are used in the hybrid algorithm to produce effective 
perturbations in machine assignment component. Thirdly, a speed-up 
local search method based on public critical blocks theory is proposed to 
produce perturbation in operation sequencing component. Simulation 
results based on the well-known benchmarks and statistical performance 
comparisons are provided. It is concluded that the proposed VNS+GA 
algorithm is superior to the three existing algorithms, i.e., AL+CGA 
algorithm, PSO+SA algorithm and PSO+TS algorithm, in terms of 
searching quality and efficiency. 

Keywords: Flexible Job Shop Scheduling Problem; Multi-objective; 
Genetic Algorithm; Variable Neighborhood Search. 

1. Introduction 

The job-shop scheduling problem (JSP) is one of the most popular scheduling 
models existing in practice, which has been proven to be among the hardest 
combinatorial optimization problems [1, 2] and has got more and more 
research focus in recent years. The Flexible job-shop problem (FJSP), an 
extension of the classical JSP, is harder than the latter because the addition of 
assignment of a suitable machine from a set of candidate machines for each 
operation.  

The FJSP recently has captured the interests of many researchers. The first 
paper about solving the FJSP was proposed by Brucker and Schlie (Brucker & 
Schlie, 1990) [3], which gives a simple FJSP model with only two jobs and 
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each operation performed on each machine with the same processing time. 
The first author with the hierarchical idea to solve the FJSPs was Brandimarte 
(Brandimarte, 1993) [4], who solved the first stage with some existing 
dispatching rules and the second stage with tabu search heuristic algorithms. 
Kacem (Kacem, Hammadi & Borne, 2002) [5] solved the two stage problems 
with the genetic algorithm (GA). Gao (Gao & Gen et al., 2006) [6] used 
bottleneck shifting method in genetic algorithm for solving the FJSP. 
Saidi-mehrabad (Saidi-mehrabad, 2007) [7] gave a detailed solution with tabu 
search method. Li et al. (2009) [8] presented a hybrid particle swarm 
optimization (PSO) combining with a fast neighborhood structure algorithm for 
the problem. 

The research on the multi-objective FJSP is much less than the 
mono-objective FJSP. Kacem et al. (2002a, 2002b) [5, 9] developed an 
effective evolutionary algorithm controlled by an assigned model based on the 
approach of localization (AL). Xia and Wu (2005) [10] presented a practical 
hierarchical solution approach by making use of PSO to assign operations on 
machines and simulated annealing (SA) algorithm to schedule operations on 
each machine. Zhang et al. (2009) [11] developed a hybrid algorithm 
combining PSO with tabu search (TS) algorithm. Most of the above algorithms 
solved the multi-objective FJSP problem by transforming it to a mono-objective 
one through giving each objective a different weight.  

In this paper, we propose a novel hybrid variable neighborhood search 
algorithm combining with the genetic algorithm (VNS+GA) for solving the 
multi-objective FJSP problems to minimize the makespan, total workload of all 
machines, and workload of the busiest machine. In the hybrid algorithm, the 
three objectives are also combined into a single objective by assigning each 
objective a different weight. GA is used to produce a swarm of candidate 
solutions, whereas VNS is introduced to obtained more optimal solutions 
around the given candidate solutions. A mix of two machine assignment rules 
and two operation sequencing rules are developed to create high quality initial 
solutions. To produce effective perturbations in the machine assignment 
module, two adaptive mutation rules are used in the hybrid algorithm. A 
speed-up local search method based on public critical blocks theory is 
proposed to produce perturbation in operation sequencing component. 

The rest of this paper is organized as follows: In section 2, we briefly 
describe the problem formulation. Then, the framework of our hybrid algorithm 
is presented in Section 3. The GA for perturbation in machine assignment 
component is introduced in Section 4. Section 5 illustrates the VNS approach 
for local searching in operation sequencing component. Section 6 shows the 
experimental results compared with other algorithms. Finally, Section 7 gives 
the conclusion of our works. 
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2. Problem formulation 

FJSP is an extension of the classical JSP; therefore, we can formulate the 

FJSP based on the JSP. Consider a set of n jobs, denoted as },....,{ 21 nJJJJ  , 

each job )1( niJi   in J has a pre-defined number of operations, and 

should be operated on a selected machine from a machine set 

named },....,{ 21 mMMMM  . The main different between FJSP and JSP lies in 

two aspects: first, in the classical JSP problem, with n jobs and m machines, 
there are mn operations, whereas in FJSP, given n jobs and m machines, 

the number of operations may large or small than mn ; second, in the 

classical JSP, an operation should be operated on a pre-defined machine, 
whereas in FJSP, an operation can be operated by a set of machines. 
Therefore, FJSP is harder than JSP. There are two kinds of FJSP problems, 
i.e., T-FJSP (Total Flexible Job-shop Scheduling Problem) and P-FJSP 
(Partial Flexible Job-shop Scheduling Problem) [8, 9]. For the T-FJSP, each 
job can be operated on every machine from the set M, whereas for the P-FJSP, 
there is an additional problem constraint, that is, one operation of a job can be 

processed by a sub set of machines MM ' .  
In this paper, the following objectives are to be minimized: 

(1) Mc . Maximal completion time of all machines, i.e., the makespan; 

(2) Tw . Total workload of all machines; 

(3) Mw . Workload of the critical machine or the busiest machine. 

The weighted sum of the above three objective values is taken as the 
objective function in this study: 

F(c) = 1w × Mc  + 2w × Tw + 3w × Mw  

Where, 1w , 2w , 3w represent the weight assigned to the objective 

Mc , Tw and Mw , respectively. 

The following assumptions are given in this study [8-11]: 
(1) Each machine can perform at most one operation at any time and can not 

be interrupted during its work.  
(2) Each operation can not be interrupted during its performance. 
(3) Setting up time of machines and move time between operations are 

negligible. 
(4) Jobs are independent from each other. 
(5) Machines are independent from each other. 
 
Some useful notations are given as follows: 

 Let J = niiJ 1}{ , indexed i, be as set of n jobs to be scheduled. 

 Let mkkMM  1}{ , indexed k, be a set of m machines. 

 Each job iJ  can be operated on a given set of machines iM . 

 The jiO , represents the jth operation of iJ . 
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 The set of candidate machines waiting for processing 
jiO ,
is denoted 

as MM k  .   

 kjip ,,  represents the processing time of jiO , operated on the kth 

machine. 
 Two sub-problems of the FJSP: T-FJSP and P-FJSP. 
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The formulation of the multi-objective FJSP in this study is then given in 
Fig.1. 
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Fig. 1. Problem formulation of the multi-objective FJSP 

Equation (4) ensures the operation precedence constraints. Equation (5) 
guarantees that for each operation one and only one machine must be 
selected from the set of available machines. Inequity (6) indicates that the set 
of available machines for each operation come from the given machine set M . 
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3. Framework of the Hybrid Algorithm 

In this study, we propose a hybrid variable neighborhood search algorithm 
combining with the genetic algorithm (VNS+GA) for solving the multi-objective 
FJSPs. The detail steps of the VNS+GA algorithm are listed as follows. 

 
Step1. Initialization 

Step1.1: Set up parameters. 

Step1.2: Produce machine assignment component for each chromosome 

in the population Cpop. 

Step1.3: Produce operation sequencing component for each chromosome 

in the population Cpop. 

Step1.4: Evaluate each chromosome, and then obtain the best solution 

bestC . 

Step1.5: if stop criteria is satisfied, then go to Step 4; otherwise, go to Step 

2. 

Step2: Perturbation in machine assignment component 

Step2.1: Produce sizeP  child chromosomes by applying crossover 

operation. 

   For i=0 to sizeP  

     (1) Generate a random number r, if selectpr  , then randomly select 

one parent chromosome in the population Cpop denoted as P1, and 

select the current best solution bestC as P2. Otherwise, select two 

parent chromosomes in the population Cpop at random denoted as 

P1 and P2, respectively. 

     (2) Produce two child chromosomes denoted as C1 and C2 by 

applying crossover function with probability cp on the two parent 

chromosomes P1 and P2. 

     (3) Evaluate the two child chromosomes; if one chromosome from 

the two child chromosomes denoted as beC which is better 

than bestC , then replace bestC by beC . 

(4) Select the best solution from the four chromosomes (i.e., P1, P2, 

C1 and C2), and then insert it into a temp population Tpop. 

    End for 

Step2.2: Produce sizeP  child chromosomes by applying mutation 

operation. 

   For i=0 to sizeP  

     (1) Select the ith chromosome in population Tpop as the parent 

chromosome PP1. 

     (2) Produce a child chromosome denoted as CC1 by applying 

mutation operation with probability c
mp  on the selected parent 
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chromosomes PP1. 

     (3) Evaluate the child chromosome CC1; if CC1 is better than bestC , 

and then replace bestC by CC1. 

(4) Insert the best solution among CC1 and PP1 into Tpop. 

End for 

  Step2.3: Select sizeP better chromosomes in Tpop 

(1) Sequence all sizeP2 chromosomes from population Tpop in 

descending order on chromosome fitness, that is, the 

chromosome with optimal fitness value will appear at the relative 

top position. 

(2) Select the top sizeP chromosomes as the current population Cpop 

for next generation. 

Step3: Perturbation in operation sequencing component 

   For the current best solution bestC , operate the following steps: 

Step3.1: Get all critical operations.  

Step3.2: Get all public critical operations. 

Step3.3: Get all public critical blocks. 
Step3.4: Use the function effectiveNeighbor() to search the best neighbor 

solution of the current best solution. If the former is more optimal 

than the latter, then replace the current best solution bestC by the 

new neighbor solution. Then go to step 1.5. 

Step4: Output the current best solution bestC and stop. 

4. Machine assignment algorithm: the genetic algorithm 

4.1. Genetic Algorithm 

Genetic Algorithm (GA), proposed by J. Holland in 1975 [12, 13], has been 
used to solve optimization problems in recent years [13]. The GA is based on 
the genetic process of biological organisms. Several key factors including 
populations, crossover functions, mutation functions, evolution approaches 
and stop criterion are important for the efficiency of the GA. The main steps for 
the process of GA can be described as follows [13]. 

 
Step1: Let k=0. Randomly produce N chromosomes as the initial 

population )(kp . 

Step2: Evaluate each chromosome in the population and get the fitness value 
of every solution. 

Step3: If stop criterion is satisfied, then output the best solution; otherwise 
operate steps 4-8. 
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Step4: Let m=0.  

Step5: Then, select two chromosomes in the population )(kp  using certain 

selection rules, which are named 1p  and 2p , respectively. 

Step6: Randomly produce a real number ]1,0[ , if cp , where cp is 

crossover probability, then apply given crossover function on the two 
selected parent chromosomes. The resulted two chromosomes are 

selected as two temp chromosomes, namely 1t and 2t , respectively. 

Otherwise, the two parent chromosomes will be selected as the two 

temp chromosomes 1t and 2t , respectively. 

Step7: Randomly produce a real number ]1,0[ , if mp , where mp is 

mutation probability, then apply given mutation function on 1t and 2t  

respectively. The two resulted chromosomes will be inserted into the 

new population )1( kp .  

Step8: Let m=m+2. If m<N, then go back to step 5. Otherwise, let k=k+1, and 
then go back to step 2. 

4.2. Encoding  

The FJSP problems involve two decision stages, i.e., machine assignment 
stage and operation sequencing stage. Therefore, a solution consists of two 

parts of vectors, )}(),....,2(),1({ 1111 AAAA   (machine assignment vector) and 

operation sequencing vector )}(),....,2(),1({ 2222 AAAA  , where   equals to 

the operation number.  iiA 1),(1  represents the corresponding selected 

machine for each operation. Fig. 2 shows an example of a machine 
assignment vector. For example, it can be seen from Fig. 2 that the operation 
O11 is performed on machine M4, O12 is performed on machine M3, and so on. 
An operation sequencing vector is shown in Fig. 3, which tells us the operation 
sequence as follows. 

3213231222311121 OOOOOOOO   

 
position 1 2 3 4 5 6 7 8 

operation O1

1 
O1

2 
O1

3 
O2

1 
O2

2 
O2

3 
O3

1 
O3

2 

machine 4 3 2 1 2 1 2 3 

Fig. 2. Machine assignment vector example 

position 1 2 3 4 5 6 7 8 

operation 2 1 3 2 1 2 1 3 

Fig. 3. Operation sequencing vector example 
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4.3. Initialization of Machine assignment component 

Following are two approaches for the initialization of machine assignment 
component: 

 Random rule, denoted as MSa. For each operation iJ , a random 

selected machine from a set of candidate machines, denoted as Mi, will be 
placed in position i in the machine assignment component.  
 Local minimum processing time rule, denoted as MSb. Table 1 gives an 

example about the steps of this rule, the example data come from [14]. For 
operations of the same job, finding the minimum processing time, fixing the 
assignment, and then adding this processing time to every other entry in the 
same column.  

4.4. Crossover operation 

Given two parent chromosomes 1p and 2p  in Fig. 4. The steps of the 

crossover operator are as follows. 
 

Step1: Generate two random numbers 1r and 2r , )1(,2 21  rr , where   

equals the number of operations. 

Step2: Select the subsection between 1r and 2r of one parent chromosome 

such as 2p .  

Step3: Produce a temporary vector named 1c  by copying the selected 

subsection into the corresponding position. 

Step4: Copy the corresponding operation from 1p into the unfixed position.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Crossover operator 

4 24 4321p1

4 24 2132p2 3

1

4 2134 1 2 1c1

r1 r2
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4.5. Mutation operation 

Mutation operation is very important in GA with aim to produce population 
diversity. In order to obtain population diversity as well as population 
convergence, two mutation-operation rules are proposed as follows. 

 

 Random rule denoted as 1 . (1) randomly select an operation with 

more than two candidate machines, denoted Os; (2) randomly select a 
machine from Machines(Os) different with the current machine; (3) 
replace the current machine by the selected machine at the position 
Os. 

 Last Processing rule denoted as 2 . (1) record the last release time for 

each machine; (2) create a vector Mlp including all machines with last 
release time equals the current makespan; (3) get all public critical 
operations; (4) for each machine Mold in Mlp, firstly, find a public critical 
operation Os which is processed on Mold, secondly, select a candidate 
machine for processing Os which is not in Mlp, denoted Ms; (5) replace 
the current machine Mold by the selected machine Ms at position Os. 

5. Operation sequencing algorithm: variable neighborhood 
search algorithm 

5.1. Initialization of the operation sequencing component 

Once the machine assignment component is fixed, we should consider how to 
sequence the operations on each machine, i.e., to determine the start time of 
every operation. In this section, we should consider two issues: the operation 
precedence constraint of the same job and the objective of the problem. In our 
hybrid algorithm, the operation sequence is obtained through a mix of following 
two different approaches: 
 Random rule, denoted as OSa. OSa is the naive and direct approach for 

sequencing operations. The advantage of this approach is its simplicity. 
The disadvantage is also obvious too, that is, it can easily produce idle 
time interval and make the finding solution process more time 
consuming.  

 Most Work Remaining (MWR) denoted as OSb. This approach selects 
the operation with the most remaining work for each machine. The 
operation precedence constraint of the same job must be considered at 
the same time. 
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5.2. Public critical block theory 

The critical problem of local searching is how to design an effective 
neighborhood around a given solution. The promising neighborhood is based 
on the concept of critical path, which was firstly proposed by Adams [15] in 
solving JSP problems. 

The feasible schedules of FJSP problems can be represented with a 
disjunctive graph G= (N, A, E), where N is the node set, A is the conjunctive 
arc set, and E is the disjunctive arc set. The number aside the node indicates 
the processing time of this operation on the assigned machine. Each arc in A 
represents the operation precedence constraint. The dashed arcs (E) 
correspond to pairs of operations to be performed on the same machine. For 
example, given a chromosome {1,2,2,3,2,3,3,1 | 1,1,4,2,3,3,2,4}, Fig. 5 shows 
the disjunctive graph for a feasible solution of the example chromosome.  

If G has more than one critical path, noted ,1, nciCPi   where nc 

represents the number of critical path. Those critical operations belonging to all 
nc critical paths are called public critical operations. A public critical block is a 
maximal sequence of adjacent public critical operations processed on the 
same machine. Fig. 6 shows the Gantt chart for the feasible solution of the 
above chromosome example. In the example solution, there are six public 

operations, i.e. },,,,,{ 223231211211 OOOOOO , whereas there are three public 

critical blocks, i.e. },{},,,{},{ 223231211211 OOOOOO . 

 

6

43

6

4

5

44

O11

S T

O12

O42

O21
O22

O41

O31
O32

 

Fig. 5. The disjunctive graph for the example chromosome 
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M1

M3

M2

O11

O21

O41

O31

O22O32

t
O42

O12

public critical operations

 

Fig. 6. The Gantt chart for the example chromosome 

To develop neighborhood structure based on the public critical block theory, 
we give some notations as follows. 
 JPi, JSi, MPi, MSi indicates the immediate job predecessor, job successor, 

machine predecessor and machine successor of the operation iJ , 

repectively. 
 λu: the critical path with operation u in it. 
 Oλu: those operations in the same critical path λ which has operation u in 

it. 

 
uOPR


: those operations belonging to the operation set Oλu and be 

operated before operation u. 

 ),( vuL : the length of the longest path from the operation u to v. 

Next, we give three theorems about the neighborhood structure based on 
public critical path theory. 

Theorem 1. If G has more than one critical path, and two operations u and v 
are critical operations but not public critical operations, then moving u or v 
cannot yield a better solution. 

Proof. First, if there exists a public critical operation in
uOPR


, denoted as kO . 

The path subsection from kO to u is called sub( u ). Because the operationu is 

not a public critical operation, there exists an operation 'u  with the processing 

time interval crossover with the processing time interval of u . Therefore, 'u  is 

in another critical path but not a public critical operation either. The path 

subsection from kO  to 'u  is called sub( 'u ). The movement in sub( u ) does 

not affect the length of sub( 'u ). So, the start time of kO will not change and the 

makespan of the solution will not be improved. Second, if there does not exist 

any operation in 
uOPR


, which means that the public critical operations are all 

operated after u . The first public critical operation after u  denoted as kO . 

There exists another critical operation 'u  which is before kO  and with the 

processing time crossed over with u . We name the critical path subsection 
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from u  to kO  sub( u ), and the critical path subsection from 'u  to kO  

sub( 'u ). The movement in sub( u ) also cannot affect the length of the sub( 'u ), 

and useless for improvement of the makespan.  
Theorem 2. If two public critical operations u and v to be performed on the 

same machine, v is the block rear and ),(),( TJSLTvL u , then inserting u right 

after v yields an acyclic complete selection. 
This theorem derives the idea that if two following conditions are satisfied: 

(1) there is no directed path from JSu to v in G; (2) the complete time of v is not 
after the complete time of the immediate job successor of u. Then, inserting u 
right after v can produce a feasible solution as shown in Fig 7. The proof is 
analogous to the proof of the theorem 1 in [16].  

Theorem 3. If two public critical operations u and v to be performed on the 

same machine, u is the block head and
vJPvu pJPLpuL  ),0(),0( , then 

inserting v right before u yields an acyclic complete selection. 
This theorem derives the idea that if two following conditions are satisfied: 

(1) there is no directed path from JPv to u in G; (2) the complete time of u is not 
before the complete time of the immediate job predecessor of v. Then, 
inserting v right before u can produce a feasible solution as shown in Fig 8. 
The proof is analogous to the proof of the theorem 2 in [16]. 

u v

JSu

inserting u just after v

uv

JSu

 

Fig. 7. A chart for inserting the inner operations just after the block rear  

u v

JPv

inserting v just before u

uv

JPv

 

Fig. 8. A chart for inserting the inner operations just before the block head 
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5.3. Effective neighborhood structure 

The makespan of a solution equals the length of its critical path, in other words, 
the makespan cannot be reduced while maintaining the current critical paths. 
The right direction of the local search is to identify and break the entire existent 
critical paths one by one in order to get a better solution. 

The first successful critical path neighborhood structure for the classical JSP 
was introduced by Van Laarhoven et al [17], and is often denoted by N1. The 
N1 neighborhood is generated by swapping any adjacent pair of critical 
operations on the same machine. Dell Amico and Trubian [18], Nowicki & 
Smutnicki [19] and Balas & Vazacopoulos [20] proposed N4, N5 and N6 
respectively. The N4 neighborhood is developed by moving an internal 
operation to the very beginning of its block or the very end of its block. The N5 
neighborhood is created by swapping the first two or the last two operations in 
a block. The N6 neighborhood is produced by moving an operation to the 
beginning of the block or to the end of the block. In this study, we extend the 
critical path neighborhood structure for solving the FJSP, and propose some 
novel neighborhood structures based on the public critical blocks theory. 

For discuss conveniently, we give two neighborhood categories as follows: 
Definition 1: Insert neighborhood  
First, randomly select two different positions i and 'i in a feasible schedule 

chromosome, and then delete the ith operation and insert it before or after 
position 'i . 

Definition 2: Swap neighborhood 
First, randomly select two different positions i and 'i in a feasible schedule 

chromosome, and then swap the two operations at the selected position. 
Based on the public critical block theory and the block structure listed above, 

we give an effective local search operator as shown in Fig. 9. 
 

Procedure effectiveNeighbor() 
Input:  a set named pb including all public critical blocks 
Output: an optimal neighbor solution 
 
for i=0 to pb.size() 

][ipbpbt   

if tpb  contains more than two public critical operations, then 

   k← the number of public critical operations in tpb  

   u← ]0[tpb      //block head 

   v← ]1[ kpbt   //block rear 

Step1: Insert structures 
   for j=0 to k-1 

        q← ][ jpbt  

  Step1.1: if ( JPvvq pJPLpqL  ),0(),0( ) then 

           Insert v right before q 
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        ][ipbpbt   

        q← ][ jpbt  

  Step1.2: if ( ),(),( TJSLTvL q ) then 

           Insert q right after v 

        ][ipbpbt   

        q← ][ jpbt  

  Step1.3: if ( JPqqu pJPLpuL  ),0(),0( ) then 

           Insert q right before u 

        ][ipbpbt   

        q← ][ jpbt  

  Step1.4: if ( ),(),( TJSLTqL u ) then 

           Insert u right after q 

        ][ipbpbt   

     end for 
Step2: Swap structures 

Step2.1: Swap ]0[tpb  with ]1[tpb  

       ][ipbpbt   

Step2.2: Swap ]2[ kpbt  with ]1[ kpbt  

  end for 
  Evaluate each neighbor solution produced by the above two steps. 
  If the new solution is better than the current solution, then replace 

the current solution with the new one. 
  Output the current optimal solution. 

Fig. 9. Pseudo-code of effectiveNeighbor() 

6. Experimental results 

This section describes the computational experiments to evaluate the 
performance of the proposed algorithm. For this purpose, we made a detail 
comparison with three existing algorithms, i.e., AL+CGA algorithm [9], 
PSO+SA algorithm [10] and PSO+TS algorithm [11]. The test samples come 
from [5]. The dimensions of the problems range from 4 jobs 5 machines to 15 
jobs 10 machines. The current instantiation was implemented in C++ on a 
Pentium IV 1.8GHz with 512M memory.  

6.1. Setting parameters 

Each instance can be characterized by the following parameters: number of 
jobs (n), number of machines (m), and the number of operations ( numop _ ). 
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Followings are the detail parameters value: 
 Population size Psize: 1000; 

 Maximum number of generations maxgen : mn ;  

 Maximum number of iteration with no improvement of the best solution 

during the local search maxiter : 2/_ numop ;  

 Crossover probability for the machine assignment component: 45%; 

 Minima mutation probability min
mp : 40%; 

 Maxima mutation probability max
mp : 95%; 

 Current mutation probability at t generation c
mp :  

)()( minmax

max

min
mmm

c
m pp

gen

t
pp    

 Probability for selection between the best chromosome and a random 

one as a parent chromosome for crossover selectp :  

)2.08.0()(8.0
max


gen

t
pselect  

 Rate of initial assignments with MSa: 20%; 
 Rate of initial assignments with MSb: 80%; 
 Rate of initial assignments with OSa: 20%; 
 Rate of initial assignments with OSb: 80%; 

 Rate of initial assignments with 1 : 50%; 

 Rate of initial assignments with 2 : 50%; 

6.2. Results of the Kacem instances 

The test instances come from the five Kacem instances [5] (i.e. problem 

54 , 88 , 710 , 1010  and 101 5 ). The five tables from Table 2 to 

Table 5 show the comparison results for the five problems. Some notations are 
given as follows: The column labeled ‘AL + CGA’ refers to Kacem’s method [9] 
and the column labeled ‘PSO + SA’ refers to the algorithm proposed by Xia 
and Wu [10]. The column labeled ‘PSO+TS’ shows the results from the hybrid 
algorithm developed by Zhang et al. [11]. Figs 10 to 14 show the optimal 
solutions obtained by our approach in the form of Gantt chart. The pair of 
number (in the form of [job, operation]) inside the blocks is the operation to be 
processed on the corresponding machine. The two numbers just below the 
block represent the start time and end time of the operation, respectively.  

Problem 54   
 
This is an instance of total flexibility, in which 4 jobs with 12 operations are to 
be performed on 5 machines. The obtained solutions by our hybrid algorithm 
are characterized by the following values: 
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Solution 1:  Mc =12, Tw =32, Mw =8 

Solution 2:  Mc =11, Tw =32, Mw =10 

Solution 3:  Mc =11, Tw =34, Mw =9 

0 2 4 6 8 10 12

M1

M2

M3

M4

M5

(2,1)

0 2

(4,1)

2 3

(2,3)

7 11

(1,2)

1 5

(1,3)

5 10

(3,1)

0 6

(3,2)

6 8

(1,1)

0 1

(4,2)

3 4

(3,3)

8 10

(3,4)

10 11

(2,2)

2 7

 

Fig. 10. The obtained optimal solution of instance 1 (4 jobs 12 operations 5 machines: 
F1(c) =11, F2(c) =34 F3(c) =9) 

Table 2. Comparison of results on problem 4 5 with 12 operations 

 AL+CGA PSO+TS VNS+GA 

Mc  16 11 11 11 12 

Tw  34 32 32 34 32 

Mw  10 10 10 9 8 

 
It can be seen from Table 2 that the VNS+GA algorithm dominate the 

AL+CGA algorithm in solving the problem 54 . Our approach can obtain 

richer optimal solutions than the PSO+TS algorithm. Fig. 10 shows the 
obtained Solution 3 in the form of Gantt chart. 
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Problem 88  

 
This is an instance of partial flexibility, in which 8 jobs with 27 operations are to 
be performed on 8 machines. The obtained solutions by our hybrid algorithm 
are characterized by the following values: 

Solution 1:  Mc =14, Tw =77, Mw =12 

Solution 2:  Mc =15, Tw =75, Mw =12 

Solution 3:  Mc =16, Tw =73, Mw =13 

0 5 10 15
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0 1

(7,1)

1 3
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(1,3)

6 8
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9 11

(3,1)
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3 9

(2,3)

9 10

(5,4)
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(7,2)

5 10
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10 11

 

Fig. 11. The obtained optimal solution of instance 2 (8 jobs/27 operations /8 machines: 
F1(c) =14, F2(c) =77 F3(c) =12) 

Table 3. Comparison of results on problem 8 8 with 27 operations 

 AL+CGA PSO+SA PSO+TS HTSA 

Mc  15 16 15 16 14 15 
1

4 

1

6 

1

5 

Tw  79 75 75 73 77 75 
7

7 

7

3 

7

5 

Mw  13 13 12 13 12 12 
1

2 

1

3 

1

2 
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It can be seen from Table 3 that the VNS+GA algorithm dominate the 
AL+CGA algorithm. The hybrid algorithm can obtain richer optimal solutions 
than both the PSO+TS algorithm and the PSO+SA algorithm. Fig. 11 shows 
the obtained Solution 1 in the form of Gantt chart. 

Problem 710  

 
This is an instance of total flexibility, in which 10 jobs with 29 operations are to 
be performed on 7 machines. The obtained solutions by our hybrid algorithm 
are characterized by the following values: 

Solution 1:  Mc =11, Tw =62, Mw =10 

Solution 2:  Mc =11, Tw =61, Mw =11 

Fig. 12 shows the obtained Solution 2 in the form of Gantt chart. 
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Fig. 12. The obtained optimal solution of instance 3 (10 jobs/29 operations /7 
machines: F1(c) =11, F2(c) =61 F3(c) =11) 

Problem 1010  

 
This is an instance of total flexibility, in which 10 jobs with 30 operations are to 
be performed on 10 machines. The obtained solutions by our hybrid algorithm 
are characterized by the following values: 

Solution 1:  Mc =7, Tw =43, Mw =5 

Solution 2:  Mc =7, Tw =42, Mw =6 
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Solution 3:  Mc =8, Tw =42, Mw =5 

It can be seen from Table 4 that the VNS+GA algorithm dominate the above 
three algorithms and can also obtain richer optimal solutions. Fig. 13 shows 
the obtained Solution 2 in the form of Gantt chart. 
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Fig. 13. The obtained optimal solution of instance 4 (10 jobs/30 operations/10 
machines: F1(c) =7, F2(c) =42 F3(c) =6) 

Table 4. Comparison of results on problem 10 10 with 30 operations  

 AL+CGA PSO+SA PSO+TS HTSA 

Mc  7 7 7 7 8 7 

Tw  
45 44 

43 
42 42 4

3 

Mw  5 6 6 6 5 5 

Problem 1015  

 
This is an instance of total flexibility, in which 15 jobs with 56 operations are to 
be performed on 10 machines. The obtained solutions by our hybrid algorithm 



Jun-qing Li, Quan-ke Pan, and Sheng-xian Xie 

ComSIS Vol. 7, No. 4, December 2010 926 

are characterized by the following values: 

Solution 1:  Mc =11, Tw =92, Mw =11 

Solution 2:  Mc =12, Tw =91, Mw =11 

It can be seen from Table 5 that the VNS+GA algorithm dominate both the 
AL+CGA and the PSO+TS algorithms and can also obtain richer optimal 
solutions than the PSO+SA algorithm. Fig. 14 shows the obtained Solution 2 in 
the form of Gantt chart. 

Table 5. Comparison of results on problem 15 10 with 56 operations 

 AL+CGA PSO+SA PSO+TS HTSA 

Mc  23 24 12 11 11 12 

Tw  95 91 91 93 92 91 

Mw  11 11 11 11 11 11 
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Fig. 14. The obtained optimal solution of instance 5 (15 jobs/56 operations/10 
machines: F1(c) =12, F2(c) =91 F3(c) =11) 

From the above comparison with other three existing algorithm for solving 

the five Kacem instances, we can conclude that our algorithm either obtain 
superior solutions or can obtain richer non-dominate solutions than the other 
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approaches, especially for solving large scale instances. 

7. Conclusions 

Flexible job shop scheduling problem is very important in both fields of 
combinatorial optimization and engineering management. Most literature focus 
on proposing hybrid algorithms for solving mono-objective FJSPs. The 
research on the multi-objective FJSP is much less than the mono-objective 
FJSP. Kacem proposed a hybrid algorithm named AL+CGA combining GA 
and approach of localization. Xia and Wu presented a hybrid algorithm named 
PSO+SA which making use of PSO for solving the assignment sub problem 
and SA for solving the routing sub problem. Zhang et al. developed a hybrid 
algorithm named PSO+TS for the multi-objective FJSPs with the same three 
objectives. In this paper, we introduce a novel algorithm named VNS+GA 
combining VNS and GA for solving the multi-objective FJSPs to minimize the 
makespan, the total workload, and the workload of the busiest machine. There 
are mainly three contributions in the hybrid algorithm. Firstly, a mix of two 
machine assignment rules and two operation sequencing rules are developed 
in the initialization stage to produce enough high quality initial solutions. 
Secondly, an adaptive mutation rules are introduced for considering both 
population diversity and convergence speed in perturbation in the machine 
assignment component. Thirdly, a speed-up variable neighbor search operator 
based on public critical block theory was investigated. The new local searching 
approach makes the search space dwindled deeply and produces high quality 
neighbor solutions in very short time. Experimental results compared with the 
three existing algorithms (i.e., AL+CGA algorithm, PSO+SA algorithm and 
PSO+TS algorithm) show that our hybrid algorithm can either obtain superior 
solutions or obtain richer non-dominated solutions than the other algorithms, 
especially for larger scale instances. 

The future work is to extend the initial solution rules and the public critical 
block method for solving other combinatorial problems. In addition, we will 
develop other heuristic algorithms with the public critical block neighborhood 
structure for solving the multi-objective FJSPs.  
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Table 1 Local minimum processing time rule (MSb) 

 
 


