
Bulletin T. CLVII de l’Académie serbe des sciences et des arts − 2024
Classe des Sciences mathématiques et naturelles

Sciences mathématiques, No 49

DISTRIBUTED NON-AXIOMATIC REASONING SYSTEM

DEJAN MITROVIĆ∗, MIRJANA IVANOVIĆ, PEI WANG

Dedicated to the 100th anniversary of the birth of Academician Bogoljub Stanković

(Accepted at the 9th Meeting, held on December 20, 2024)

A b s t r a c t. This paper presents an architecture and one concrete realization of a

novel reasoning system named Distributed Non-Axiomating Reasoning System. The system

uses the so-called Non-Axiomatic Logic, a formalism in the domain of artificial general

intelligence designed for practical realizations of systems that work under the assumption of

insufficient knowledge and resources. The main novelty of the proposed architecture is in the

layered and distributed organization of its backend knowledge base. That is, the knowledge

base is designed with scalability and fault-tolerance in mind. It allows the system to reason

over very large knowledge bases with real-time responsiveness, while serving high numbers

of concurrent users. Finally, one concrete practical application of the developed system is

presented as well.

AMS Mathematics Subject Classification (2020): 03B42, 03B60, 68M14, 68T42
Key Words: reasoning architecture, non-axiomatic logic, artificial general intelligence,

big data.

∗This author defended his PhD at the University of Novi Sad (2015), under supervision of the
second author.

72 D. Mitrović, M. Ivanović, P. Wang

1. Introduction

The term Big Data is used to describe large quantities of highly diverse infor-
mation, often collected at high frequencies, which traditional approaches cannot
efficiently process and analyze [1]. In recent years, the need for Big Data analyt-
ics has found its place in a wide range of industrial applications (e.g. [2]), and is
often seen as a crucial asset in the world that produces an ever increasing amounts
of information. This need has, in turn, resulted in a number of concrete, practi-
cal technologies, including NoSQL and graph databases (e.g. [3]), the MapReduce
programming model [4], etc.

For an artificial intelligence system, the ability to efficiently process large amounts
of knowledge is one of the key requirements [5]. This paper presents a novel
general-purpose reasoning architecture named Distributed Non-Axiomatic Reason-
ing System (DNARS) which fullfills this requirement by relying on a number of Big
Data concepts.

For example, DNARS includes a distributed, highly-scalable backend knowl-
edge base, which also features fault-tolerance through data replication. Thus, the
main advantage of DNARS, when compared to all other existing reasoning and
cognitive architectures, is that it leverages state-of-the-art techniques for large-scale
distributed data management and processing. This approach allows our system to
operate on top of very large knowledge bases, while serving large numbers of exter-
nal clients with real-time responsiveness.

The overall architecture of DNARS consists of two main components. Its back-
end knowledge base is used to store the system’s knowledge and experience on a
large scale. In order to work with these kinds of knowledge bases, DNARS includes
a set of efficient algorithms in form of inference engines. As the endresult, for ex-
ample, DNARS can provide thousands of answers per second from a knowledge
base of over 75 million statements.

For its reasoning capabilities, DNARS relies on the Non-Axiomatic Logic (NAL).
NAL represents a formalism for reasoning systems in the domain of Artificial Gen-
eral Intelligence (AGI) [6, 7]. NAL is used as the underlying formalism in DNARS
because its “philosophy” fits nicely into the DNARS’ overall goals. That is, the
term non-axiomatic in NAL indicates that the logic is constructed around the notion
of insufficient knowledge and resources [6]. In fact, this notion is one of defining
characteristics of NAL, and it encompasses several important concepts.

First of all, knowledge is uncertain, and not necessarily consistent. New evi-
dence can be accepted at any time, it can include any content, and can affect the
truth-value of any existing statement. But, a truth-value is not expected to converge
to any limit. At the same time, the system usually does not have enough resources,
in terms of space and time, to consult its entire knowledge base when solving a

Distributed non-axiomatic reasoning system 73

problem. It cannot apply the full set of inference rules, nor follow a predefined al-
gorithm. Finally, the problem-solving process is localized, in the sense that only a
fraction of statements is used to reach the conclusion.

NAL includes built-in mechanisms for dealing with the aforementioned issues.
It can efficiently manage uncertainty and statement inconsistencies, and summarize
existing knowledge in order to reduce the sheer amount of statements. Besides
providing sound theoretical basis for logical reasoning, NAL is, therefore, highly
practical, and can be efficiently realized using the present-day technology.

The rest of the paper is organized as follows. Section 2 provides a brief in-
troduction into NAL, necessary for a better understanding of DNARS. Section 3
presents a detailed overview of the overall architecture of DNARS and its concrete
realization. Section 4 presents DNARS performance evaluation in order to validate
the statements about its runtime efficiency. One concrete practical application of the
proposed system is given in Section 5. Section 6 discusses the related work, while
Section 7 discusses the overall conclusions and possible future research directions.

2. Non-axiomatic logic

Non-Axiomatic Logic (NAL) includes a symbolic grammar, a set of inference
rules, and a semantic theory. However, it is different from many other formalisms
used to define reasoning in intelligent systems, in the sense that it is a term logic [6,
7]. NAL sentences are given in the form of subject-copula-predicate, where subject
and predicate are terms.

The basic and most common type of a statement is inheritance in the form of
S → P , where S and P are terms denoting the subject and object, respectively, and
→ denotes the inheritance copula. The inheritance statement S → P can be read
as S is a type of P , for example: cat is a type of animal. Subject and predicate are
atomic or compound terms1. An atomic term is a word consisting of characters from
a finite alphabet. Compound terms are build by connecting atomic or compound
terms.

NAL has an experience-grounded semantic [8], which is based on the concepts
of specializations and generalizations. In an inheritance statement S → P , S is
said to be the specialization of P , while P is said to be the generalization of S [6].

Let VK be the set of all terms appearing in system’s experience K, which is a
set of inheritance statements. The extension TE and intension T I of a term T ∈ VK

can be defined using specializations and generalizations as follows [9, 6]:

TE =
!
x | (x ∈ VK) ∧ (x → T)

"
, (1)

1In higher NAL layers, subject and object themselves can also be statements.

74 D. Mitrović, M. Ivanović, P. Wang

T I =
!
x | (T ∈ VK) ∧ (T → x)

"
(2)

The evidence for a term T (or, its meaning) consists of both TE and T I . That
is, the meaning of a term is defined through its relations with other terms. The term
has a meaning for the system only if it appears in its experience; otherwise, it is
meaningless and has no interpretation.

For a statement S → P , positive and negative evidence, denoted as E+ and
E−, respectively, are defined as follows [9, 6]:

E+ =
!
SE ∩ PE

"
∪

!
P I ∩ SI

"
, (3)

E− =
!
SE \ PE

"
∪

!
P I \ SI

"
. (4)

The amount of positive evidence w+ represents the cardinality of E+, while the
amount of negative evidence w− represents the cardinality of E−. The amount of
total evidence w is calculated as w+ + w−.

Positive and negative evidence is used to determine the truth-value of a NAL
statement. The truth-value of a NAL statement is represented by a pair of real num-
bers in [0, 1], named frequency (f) and confidence (c) [6]. Frequency is the ratio
of positive and total evidence, while confidence describes how stable this frequency
will be when the system gains new evidence [6]:

f =
w+

w
, (5)

c =
w

w + k
. (6)

Here, k is the evidential horizon, a constant used to prevent the system from
comparing possibly infinite future to the relatively short past.

The formal reasoning in NAL is based on inference rules that are used to derive
new knowledge, to provide answers to questions, or to deal with statement incon-
sistencies, referred to as forward, backward, and local, respectively [6]. Most of the
rules take the syllogistic form. A syllogistic inference rule takes two premises that
share a term, and then derives a conclusion consisting of the other two terms [6].
Depending on the copulas and positions of the shared term in premises, different
inference rules can be applied.

NAL itself is organized into 9 layers. Each layer builds on top of the previous
one, by introducing new concepts, grammar, and/or inference rules. For the pur-
pose of this paper and the realization of DNARS, the first four layers are of special
importance. NAL-1 introduces inference rules on inheritance statements. Among
others, there are deduction, induction, and abduction [6].

Distributed non-axiomatic reasoning system 75

NAL-2 extends the grammar with the similarity copula, defined as a symmetric
inheritance: (S ↔ P) ⇔ (S → P) ∧ (P → S). This new copula results
in three new forward inference rules: comparison, analogy, and resemblance [6, 7,
10].

Compound terms are added in NAL-3. Their general form is as follows2:

{T1 con T2 con . . . con Tn}.

Here, con is the connector and T1, . . . , Tn are terms, n ≥ 1 [6, 7]. Four connec-
tor types are recognized: extensional intersection (∩), intensional intersection (∪),
extensional difference (−), and intensional difference (⊖). Finally, composition is
introduced to exploit these four connectors. The rule is used to build new compound
terms, and, by doing so, to summarize the system’s experience.

Finally, NAL-4 introduces arbitrary relations among terms. An additional con-
nector, product (×), is first introduced. It defines inheritance among individual
components of a compound term [6, 7]:

((S1 × · · ·× Sn) → (P1 × · · ·× Pn)) ⇔ ((S1 → P1) ∧ · · · ∧ (Sn → Pn)).

A relational term R is defined as a term related to a product term by inheritance:
(T1 × T2) → R or R → (T1 × T2) [6, 7].

As noted earlier, this section presents a very brief overview of NAL; only the
basic theory necessary for understanding DNARS is given. More information is
available in the references used throught this section.

3. DNARS

The general architecture of DNARS is outlined in Fig. 1. The main components
of the system are:

• Resolution engine: answers client’s questions.

• Forward inference engine: derives new knowledge.

• Short-term memory: contains statements relevant to the active processing cy-
cles, and problems that need to be solved.

• Knowledge domain: a sub-set of the overall knowledge base, containing mu-
tually dependent or related statements.

• Backend knowledge base: the system’s overall knowledge base, representing
its entire experience.

• Event manager: a handler for events generated by changes in (parts of) the
knowledge base.

2Infix notation can be used as well: {con T1 T2 . . . Tn}.

76 D. Mitrović, M. Ivanović, P. Wang

These components are broadly organized into two categories. Resolution and
Forward inference engines are referred to as DNARS Inference engines, while the
remaining components are described as the Backend knowledge base. Each external
client is associated with one set of inference engines, but there is only a single Back-
end knowledge base for all of them. However, the knowledge base is designed to be
highly scalable, and can be partitioned to support multiple isolated and cooperating
clients.

3.1. DNARS inference engines

Resolution and Forward inference engines are used to, respectively, answer
questions and derive new knowledge. Therefore, they represent the core of DNARS’
inference capabilities. Two types of questions are supported:

• Questions containing “?”, i.e., “S copula ?” or “? copula P ”. In this case, the
Resolution engine inspects the system’s knowledge base and finds the best
substitute for “?”.

• Questions in the form of “S copula P”. The answer to this question is a state-
ment “S copula P 〈f, c〉”. If the answer is not directly available in the sys-
tem’s knowledge base, the engine will try to derive it using backward infer-
ence rules.

In general, the Resolution engine should provide answers in real time for the
first type of questions. For the second type, the answer is given in real time only if
it is directly available in the system’s knowledge base. Otherwise, the backward in-
ference process is started in the background and the client is notified of the solution
later on.

The Forward inference engine provides direct implementation of forward infer-
ence rules defined by NAL. It operates in inference cycles, as follows. The execution
of each cycle is triggered either by an external client or by an internal process. In
case of the former, input statements provided by an external client are used to load
all relevant statements from the system’s knowledge base. Relevant statements for
the input S copula P 〈f, c〉 are statements that have S or P as subject or predicate.
The unified set of input and relevant statements serves as a starting point for forward
inference rules, which may produce another set of conclusions. As the final step of
the inference cycle, input, relevant statement and conclusions are merged together,
any inconsistencies are resolved, and the final output is stored back in the system’s
knowledge base.

However, the Forward inference engine can also operate on its own. When
idle and not receiving any new input from external clients, the engine will select
a (random) statement from the knowledge base and use it as the input. As noted

Distributed non-axiomatic reasoning system 77

by [6], this continuous internally-triggered inference is one of the main differences
between inference engines and advanced knowledge retrieval systems.

Figure 1: The general architecture of the proposed Distributed Non-Axiomatic Rea-
soning System and the organization of knowledge

3.2. Backend knowledge base overview

One of the main design goals for DNARS is to develop a system that can effi-
ciently handle large quantities of knowledge3. Therefore, the Backend knowledge
base of DNARS is designed as a distributed, scalable architecture that consists of
three layers. At the bottom-most layer, the entire knowledge base is physically par-
titioned and distributed across a number of machines. It uses horizontal scaling:
as the amount of data increases, the runtime performance is maintained by simply
adding more processing nodes to the underlying cluster [11]. This design approach
has two main benefits:

3In today’s terms, large quantities of knowledge refer to zettabytes, yottabytes, . . ., even quet-
tabytes of data.

78 D. Mitrović, M. Ivanović, P. Wang

• It enables the backend storage to manage large amounts of data. By intro-
ducing proper data distribution rules, faster lookups and retrievals of relevant
statements can be achieved.

• It provides fault-tolerant features, as the data is replicated across cluster nodes.
There is no single point of failure, and the knowledge base can remain intact
in case of hardware and software failures.

On top of this layer, the entire knowledge base is organized into one or more
Knowledge domains. Domains partition the system’s knowledge base into distinct
categories. This enables the system to work with and focus on a subset of its knowl-
edge. At runtime, one or more domains can be consulted. This organization also
supports the multi-client nature of DNARS. The knowledge belonging to one exter-
nal client can be stored in a separate domain. However, many clients can also work
with same domains (one or more), and, by doing so, exhibit cooperated behavior
through knowledge and experience sharing. As shown in Fig. 1, the content of one
domain can be physically distributed across many machines of the bottom layer, and
can be intermingled with the content of other domains. The task of properly storing
and retrieving the domain data is delegated to the bottom layer.

Finally, the Short-term memory (STM) module is placed at the top layer. This is
the knowledge base directly available to DNARS inference engines, and represents
the basis for their inference cycles. The main purpose of STM is to serve as the
optimization module. Its content should entirely fit in the runtime memory of the
host machine, acting as a fast in-memory storage. Once a set of related inference
cycles is completed, the STM content is merged back into the corresponding (again,
one or more) domains.

It is important for clients, especially in cooperative domain sharing mode, to
learn about changes in the knowledge base. For example, the client may wish to
perform certain actions in response to newly derived conclusions. To support this
feature, DNARS incorporates the Event manager module. A change in a knowledge
domain will generate one or more events, which will be collected by the manager
and delivered to clients connected to the domain.

Knowledge bases containing NAL statements can be represented by property
graphs. A property graph is a directed, multi-relational graph with any number of
properties attached to vertices and edges [12, 3]. That is, it is a graph which can in-
clude different types of edges (e.g. for representing inheritance and similarity), and
in which each vertex or an edge can have any number of key → value pairs attached
to it. Fig. 2 shows an example of a set of NAL statements and the corresponding
property graph.

In relatively recent times, large-scale analysis and processing of (property) graphs

Distributed non-axiomatic reasoning system 79

Figure 2: A set of arbitrary NAL statements and the corresponding property graph.
Note that edges representing similarities are bidirectional, expressing the symmetric
nature of the copula.

has become especially important, due to increasing demands of modern web appli-
cations such as social networks. Therefore, there exists a range of algorithms and
technologies for efficient graph analytics. These solutions provide a strong basis
for an efficient realization of the proposed DNARS architecture. One notable open-
source implementation is Aurelius Titan4.

Titan stores each vertex of a graph as a separate row in the database. Vertex
identifier (i.e. a hash) represents the row-key, while individual columns hold vertex
properties and edges (along with their properties). This means that the edge is stored
twice in the database – once for each vertex. However, this approach increases the
system’s runtime performance. During the process of loading relevant statements
into the Short-Term Memory (STM), DNARS selects vertices representing subjects
and/or predicates of input statements and loads them along with their correspond-
ing adjacency lists. Therefore, the actual STM content is graph vertices and their
adjacency lists.

Titan actually represents a layer on top of “regular” non-graph-oriented databases,
both relational and NoSQL. One such database is Apache Cassandra5. When under
heavy loads, Cassandra will sacrifice data consistency in order to provide high-
availability and partition-tolerance [13]. This possible lack of consistency in Cas-
sandra is more in line with the NAL’s assumption of insufficient knowledge and
resources. In addition, Cassandra provides lower latency in random read operations
[14], which is essential for real-time responsiveness of the Resolution engine. Due

4https://github.com/thinkaurelius/titan, retrieved on December 15, 2024.
5http://cassandra.apache.org/, retrieved on December 15, 2024.

80 D. Mitrović, M. Ivanović, P. Wang

to these reasons, DNARS Backend knowledge base is based on Titan over Cassan-
dra.

Once the correct backend system has been chosen and configured, very little
needs to be done in order to satisfy functional requirements of the Backend knowl-
edge base. All functionalities and possible issues are efficiently handled by the
Titan-Cassandra combination, allowing the development focus to be placed on real-
izing the remaining parts of DNARS.

3.3. Forward inference engine

The Forward inference engine in DNARS implements a subset of forward infer-
ence rules of the first four NAL layers. This approach is suffcient for developing a
first version of the system with practical reasoning abilities (demonstrated in Sec-
tion 5).

Table 1 summarizes the syllogistic forward inference rules from the first four
layers that are directly supported in DNARS. All supported rules are organized into
groups and each group is realized as a separate function. For example, in one group,
the first premise is Prem1 : P → M〈f1, c1〉, while the second premise is either
Prem2 : S → M〈f2, c2〉 or Prem3 : S ↔ M〈f2, c2〉. In this case, abduction,
comparison and analogy can be applied as follows:

!
Prem1, P rem2

"
⊢

!
S → P 〈Fabd〉, S ↔ P 〈Fcmp〉

"
(7)

!
Prem1, P rem3

"
⊢ P → S〈Fana〉. (8)

Table 1: Summary of syllogistic forward inference rules currently supported in DNARS.
Each rule accepts two premises and derives a conclusion: {P1hf1, c1i, P2hf2, c2i} `
Chf, ci. The top-most row contains P2 statements, while the left-most column contains
P1 statements [6, 7].

S ! Mhf2, c2i S $ Mhf2, c2i M ! Shf2, c2i
M ! P hf1, c1i S ! P hFdedi S ! P hFanai S ! P hFindi

S $ P hFcmpi
M $ P hf1, c1i S ! P hFana0i S $ P hFresi P ! ShFana0i
P ! Mhf1, c1i S ! P hFabdi

S $ P hFcmpi
P ! ShFanai

In the given table 〈Fana〉 denotes a function for calculating the truth-value of the
conclusion derived using the analogy rule [6, 7]. The use of ’ in 〈Fana′〉 indicates
that the truth-values of the premises have been switched [10]. The same can be done
for other inference rules, e.g. {P → M,M → S} ⊢ P → S〈Fded′〉 [6] but this
feature is currently unsupported in DNARS for practical reasons.

Distributed non-axiomatic reasoning system 81

Listing 1 shows how these three forward inference rules have been realized in
the graph-based implementation of DNARS. The execution sequence of this func-
tion can be summarized as follows:

• The expression graph.getV(judgment.pred) selects the vertex that
corresponds to the input judgment’s predicate (denoted here as m), since this
is the shared term in the given three syllogistic rules.

• The expression m.inE(Inherit) loads all incoming edges for the shared
term. Each edge, along with its source and target vertices, represents the
existing statement to be used as the first premise. Therefore, a helper function
inferForEdge is called for each edge.

• The helper function first retrieves the source vertex for the given edge (de-
noted here as p). That is, in the function inferForEdge the entire first
premise P → M〈f1, c1〉 is retrieved.

• Finally, based on the input judgment’s copula, the new conclusions are de-
rived through abduction and comparison, or through analogy. To avoid gen-
erating grammatically incorrect statements, the validity of each conclusion is
also checked.

Listing 1: A function that accepts either S ! Mhf2, c2i or S $ Mhf2, c2i as the second
premise (judgment), uses an existing statement P ! Mhf1, c1i as the first premise, and
produces conclusions shown in Eq. 7 and Eq 8.

def abductionComparisonAnalogy(judgment: Statement): List[Statement] =

graph.getV(judgment.pred) match {

case Some(m) => // m is the shared term

val incomingEdges = m.inE(Inherit).toList

incomingEdges.flatMap { e: Edge => inferForEdge(judgment, e) }

case None =>

List()

}

def inferForEdge(judgment: Statement, e: Edge): List[Statement] = {

val p = e.getVertex(Direction.OUT).term

if (judgment.subj == p) {

List() // avoid tautologies

} else if (judgment.copula == Inherit) {

abduction(p, judgment, e) ::: comparison(p, judgment, e)

} else {

analogy(p, judgment, e)

}

}

82 D. Mitrović, M. Ivanović, P. Wang

def abduction(p: Term, judg: Statement, e: Edge): List[Statement] = {

val truth = e.truth.abduction(judg.truth)

val derived = Statement(judg.subj, Inherit, p, truth)

keepIfValid(derived)

} // ... simlarly for comparison and analogy

All remaining forward inference rules are realized in a similar pattern. As
a concrete example of the forward inference process, Listing 2 shows a starting
knowledge base comprised of three inheritance and two similarity statements.
The graph representation of this knowledge base is shown in Fig. 3(a).

Listing 2: Starting knowledge base of the forward inference example.

tiger $ cat h0.9, 0.5i
tiger ! animal h0.7, 0.7i
cat ! animal h1.0, 0.9i
cat $ feline h0.8, 0.7i
lion ! feline h0.4, 0.8i

The forward inference process starts as the system receives a new input judg-
ment, cat ! mammalh1.0, 0.9i and adds it to the knowledge base (Fig. 3(b)).
In this scenario, three forward inference rules are applicable: induction, exten-
sional comparison, and analogy. They are defined respectively as follows [6, 7]:

{M ! P hf1, c1i,M ! Shf2, c2i} ` S ! P hf, ci (9)

{M ! P hf1, c1i,M ! Shf2, c2i} ` S $ P hf, ci (10)

{M $ P hf1, c1i,M ! Shf2, c2i} ` P ! Shf 0, c0i (11)

Since induction and extensional comparison take very similar premises and pro-
duce similar conclusions, they belong the same group and are applied in parallel.
When applying forward inference rules, DNARS always takes the first premise
from the knowledge base, while the new input represents the second premise. In
case of induction and extensional comparison, the first execution step determines
that the shared term m is cat. In the second step, the system selects cat’s outgoing
edges, along with their respective incoming vertices; more concretely, it determines
that statements 3 and 4 in Listing 2 should be used in place of the first premise.
The two inference rules can now be applied, deriving that mammal is a type of an-
imal (mammal → animal 〈1.00, 0.45〉) and that mammal is animal (mammal ↔
animal〈1.00, 0.45〉). The new knowledge base, i.e., with two new conclusions, is
shown in Fig. 3(c).

In case of analogy, the shared term m is also cat. The two existing similarity
statements that include this term are tiger ↔ cat〈0.9, 0.5〉 and cat ↔ feline〈0.8, 0.7〉.
Although the rule in Eq. 11 is directly applicable only to the second premise, DNARS
uses the fact that similarity is by definition symmetric [6, 7]. Therefore, it automat-
ically transforms the first statement into cat ↔ tiger〈0.9, 0.5〉 and derives two new

Distributed non-axiomatic reasoning system 83

conclusions: tiger → mammal〈0.90, 0.41〉, and feline → mammal 〈0.80, 0.50〉. The
final knowledge base is shown in Fig. 3(d).

(a) (b)

(c) (d)

Figure 3: An example of a forward inference process in DNARS, from the initial
knowledge base (a), after the addition of a new judgment cat → mammal〈1.0, 0.9〉
(b), after applying induction and extensional comparison (c), and finally, after ap-
plying analogy (d). Unidirectional arrows represent inheritance, while bidirectional
arrows represent similarity.

3.4. Resolution engine

The Resolution engine is in charge of answering questions in form of S →? and
? → P . It also needs to perform this task as fast as possible. To accommodate this
requirement the knowledge base in DNARS includes edge indexes.

In NAL, if there are multiple answers to a question, the choice rule is used to
select the answer with the higher expectation of frequency, e = (f−1/2)c+1/2 [6,
7]. If two terms have the same expectation, the rule considers syntactic simplicity of
terms, s = 1/nr, where n is syntactic complexity of the term, and r > 0 is a system
parameter. The syntactic complexity is further defined to be 1 for atomic terms or
1 plus complexities of compound term’s components. If two answers have similar
expectations, the simpler one is chosen [6, 7].

DNARS encodes these expressions into a numeric value that represents the edge
index. More concretely, an edge between vertices S and P has two indexes: one

84 D. Mitrović, M. Ivanović, P. Wang

including the expectation of the statement and the simplicity of S, and one including
the expectation of the statement and the simplicity of P . When posed a question, for
example S →?, the Resolution engine sorts all candidate answers C by the indexes
of edges that come out of S and into C, and then returns the best one (or n best
ones).

The use of indexes speeds up the Resolution engine’s execution significantly. It,
however, may slow down the forward inference, the indexes need to be updated as
edges are added or as the truth-value of an existing edge is changed. However, there
are no strict time constraints for the forward inference [7] and it is usually executed
in the background, so this is a suitable trade-off.

The question answering process of the DNARS’ Resolution engine is shown in
Listing 3. The main function (answer) accepts the question and the desired number
of answers and returns a list of terms that fit the missing element. It relies on two
helper functions, bestSubjects for ? → P and bestPredicates for S →?.

Listing 3: The question answering process performed by the DNARS’ Resolution engine.

def answer(question: Statement, limit: Int = 1): List[Term] = {

if (question.subj == Question) {

bestSubjects(question.pred, question.copula, limit)

} else if (question.pred == Question) {

bestPredicates(question.subj, question.copula, limit)

} else {

throw new IllegalArgumentException("Invalid question format.")

}

}

def bestPredicates(subj: Term, copula: String, limit: Int): List[Term] =

getV(subj) match {

case Some(v) =>

v.asInstanceOf[TitanVertex].query()

.labels(copula)

.direction(Direction.OUT)

.orderBy("predExp", Order.DESC)

.limit(limit)

.vertices()

case None =>

List()

}

The execution sequence of the helper function bestPredicates can be sum-
marized as follows. First, the expression getV(subj) returns the vertex cor-
responding to the question’s known term S. If this vertex does not exist in the
knowledge base, there are no possible answers. Otherwise:

Distributed non-axiomatic reasoning system 85

• Keep only the edges that match the question’s copula;

• Out of those, keep only the edges that come out of the known term;

• Sort them in a descending order by the value that encodes the expectation of
frequency and the syntactic simplicity of the missing predicate term;

• Keep only the first limit edges and get their target vertices.

Figure 4: For the question cat → ?, the best answer is feline. Knowledge base ini-
tially includes three cat-related statements (a), which are sorted during the question
answering process, and according the coresponding edges’ indexes (b).

As a concrete example, Listing 4 shows a knowledge base of five statements
describing a cat. Fig. 4(a) shows how these statements are stored in the graph.
When the system receives the question cat → ?, the Resolution engine will:

• Exclude tiger, as it is related to cat through similarity;

• Exclude fluffy, as in this relation cat represents the target vertex;

• Sort the remaining edges as described previously. The resulting graph is
shown in Fig. 4(b); and

• Keep only the first edge, and return feline as the best possible answer.

86 D. Mitrović, M. Ivanović, P. Wang

Listing 4: Initial knowledge base of five statements describing a cat.

fluffy ! cat h1.0, 0.9i
cat $ tiger h1.0, 0.9i
cat ! mammal h0.6, 0.3i
cat ! feline h1.0, 0.9i
cat ! animal h0.6, 0.4i

The Resolution engine is also in charge of performing backward inference.
The Resolution engine is also in charge of performing backward inference. In

this case, it accepts a question in form of S → P . If the answer is not directly
available in the system’s knowledge base, it will try to derive it using the backward
inference process [6, 7]. Since this process can take longer time to complete, it will
be performed asynchronously, and the client will be notified of the result through
the Event stack, described next.

3.5. Event manager

Event manager in DNARS is designed using the well-known Observer design
pattern. In this pattern, the subject maintains a list of observers, and notifies them of
state changes. The Observer pattern is most commonly used in event notifications;
for example, in the Java Swing GUI library, observers are built by implementing
corresponding listener interfaces.

The internal functioning of the Event manager is shown in Fig. 5. Each Knowl-
edge domain has a single Event manager associated with it, and the domain pub-
lishes descriptions of changes to the manager. At the same time, interested clients
are registered to receive notifications from the manager.

The Event manager holds two lists: the list of pending events, and the list of
observers. Both lists are directly controlled by internal Event Dispatch Threads
(EDTs). An EDT polls pending events and notifies all registered observers. It uses
simple synchronization primitives in order to prevent data corruption (e.g., missed
events). The actual event dispatching is designed to be extensible and can therefore
support a variety of external observers.

4. Speed evaluation

As discussed in the previous section, the Resolution engine of DNARS is re-
sponsible for answering questions. For questions containing “?” (i.e., S copula ?
or ? copula P), the engine returns the best possible candidate for the missing term.

Distributed non-axiomatic reasoning system 87

For questions in the form of “S copula P ” it checks whether the corresponding
statement exists in the knowledge base, or whether it can be derived using NAL’s
inference rules.

The backward inference engine can take an undetermined amount of time to
execute [6]. On the other hand, one of the functional requirements of DNARS is to
answer the first type of questions as quickly as possible, in real-time. The following
case study has been designed to evaluate this capability of the Resolution engine.

The large knowledge base needed for this evaluation has been extracted from
the DBpedia datasets [15], which are briefly discussed next.

4.1. DBpedia

DBpedia is a community-driven project aimed at organizing and structuring the
information extracted from the free Wikipedia encyclopedia6. The project’s goal is
to “... make it easier for the huge amount of information in Wikipedia to be used
in some new interesting ways. Furthermore, it might inspire new mechanisms for
navigating, linking, and improving the encyclopedia itself.”7

Figure 5: Internal organization of the Event manager.

DBpedia information is available in form of Resource Description Framework
(RDF) statements. Each DBpedia entity is identified using an International Re-

6http://www.wikipedia.org/, retrieved on December 15, 2024.
7http://dbpedia.org, retrieved on December 15, 2024.

88 D. Mitrović, M. Ivanović, P. Wang

source Identifier (IRI), which is derived from the corresponding Wikipedia entry.
The data is organized into a number of datasets8.

The DBpedia dataset used in this case study is named Mapping-based Proper-
ties (Cleaned). It includes information extracted from Wikipedia infoboxes. Here,
the infobox is a summary of the entire article, and contains important facts and
statistics. It is usually present in form of a table on the right side of the article. The
dataset is cleaned and improved through the use of heuristic inference [16].

In essence, each DBpedia dataset contains different information (or different
form of information) about a particular entity. As an example, Listing 5 shows how
Albert Einstein is described in the dataset.form	of	information)	about	a	particular	entity.	As	an	example,	Listing	5	shows	how	
Albert	Einstein	is	described	in	the	aforementioned	dataset.	

Listing	 5:	 Descriptions	 of	 Albert	 Einstein	 in	 the	 Mapping-based	 Properties	
(Cleaned)	DBpedia	dataset.	
<h#p://dbpedia.org/resource/Albert_Einstein>

<h#p://xmlns.com/foaf/0.1/name> "Albert
Einstein"@en .	

<h#p://dbpedia.org/resource/Albert_Einstein>	
<h#p://dbpedia.org/ontology/birthDate>	
"1879-03-14"^^<h#p://www.w3.org/2001/XMLSchema#date> .	

<h#p://dbpedia.org/resource/Albert_Einstein>	
<h#p://dbpedia.org/ontology/birthPlace>	
<h#p://dbpedia.org/resource/German_Empire> .	

<h#p://dbpedia.org/resource/Albert_Einstein>	
<h#p://dbpedia.org/ontology/residence>	
<h#p://dbpedia.org/resource/Switzerland> .	
<h#p://dbpedia.org/resource/Albert_Einstein>	
<h#p://dbpedia.org/ontology/residence> <h#p://dbpedia.org/resource/United_States> .	
<h#p://dbpedia.org/resource/Albert_Einstein>	
<h#p://dbpedia.org/ontology/spouse> <h#p://dbpedia.org/resource/Mileva_Mari%C4%87>
.	
<h#p://dbpedia.org/resource/Albert_Einstein>	
<h#p://dbpedia.org/ontology/field> <h#p://dbpedia.org/resource/Physics> .	

DBpedia	 is	being	actively	developed	and	improved,	and	has	 inspired	several	
interesting	 projects.	 For	 example,	 the	 research	 presented	 in	 [17]	 shows	 how	
DBpedia is being actively developed and improved, and has inspired several in-

teresting projects. For example, the research presented in [17] shows how DBpedia
datasets can be used to improve natural language processing. Similarly, the DBpe-
dia Spotlight project [18] can be used to identify DBpedia resources in unstructured
texts.

8https://www.dbpedia.org/resources/databus/, retrieved on December 15, 2024.

Distributed non-axiomatic reasoning system 89

4.2. Representing DBpedia statements

4.2. Representing DBpedia statements

The RDF-based statements from the DBpedia dataset have been imported
into the DNARS Backend knowledge base by using arbitrary relations of NAL-
4 [6, 7]. For example, the following RDF statement describes one property of
Albert Einstein:

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/field>

<http://dbpedia.org/resource/Physics> .

In the given statement, the first line represents the subject (Albert Einstein),
the second line represents the predicate (his field of study), while the third line
represents the object (physics). The field of study is the arbitrary relation, so
the corresponding NAL-4 statement is written as follows:

(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/field>) !
<http://dbpedia.org/resource/Physics>

In order to more easily apply inference rules, the NAL-4 statement can be
structurally transformed into so-called extensional and intensional images [6, 7].
These images are just di↵erent forms of the same statement; they show how
individual atomic terms from the original statement link to the remaining parts
of the statement. For the statement given above, the two extensional images
are written as follows:

<http://dbpedia.org/resource/Albert_Einstein> !
(/ <http://dbpedia.org/ontology/field> ⇧
<http://dbpedia.org/resource/Physics>)

<http://dbpedia.org/resource/Physics> !
(/ http://dbpedia.org/ontology/field>

<http://dbpedia.org/resource/Albert_Einstein> ⇧)

Instead of creating images at runtime, DNARS stores three NAL statements per
one RDF statement. This design approach was made in order to improve the run-
time efficiency of the Resolution engine. It represents a standard practice – systems
that work with NoSQL databases often repeat the stored information in order to im-
prove their runtime efficiency [19]. As noted earlier, NAL-based knowledge bases
are actually property graphs: directed multi-relational graphs with any number of
properties attached to vertices and edges [12, 3]. Once the entire Mapping-based
Properties (Cleaned) dataset was imported into DNARS, the resulting graph con-
sisted of approximately 60 million vertices and 77 million edges. According to
today’s standards, the graph can be called large (e.g. [20]).

90 D. Mitrović, M. Ivanović, P. Wang

4.3. Speed benchmarks

The experiments were performed in clusters provided by the Microsoft Azure
cloud computing platform9. Two types of machines were used (both using an SSD
storage):

• D3 : 4 virtual CPUs, 14 GB of RAM.
• D4 : 8 virtual CPUs, 28 GB of RAM.

In order to simulate large numbers of concurrent users, the Yahoo! Cloud Serv-
ing Benchmark (YCSB) was used [21]. YCSB is an open-source tool10 designed for
load-testing of (primarily) NoSQL databases. It can be configured through a range
of parameters, most important of which is the desired number of operations per sec-
ond (throughput), but also the number of concurrent threads, maximum execution
time, etc.

Two types of scenarios were examined: read-only and read-write. In the read-
only scenario, clients only ask questions and no writing to the DNARS knowledge
base is performed. The read-write scenario, on the other hand, is more realistic (and
computationally more demanding), since some clients ask questions, while others
add new knowledge to the system.

Within each scenario, DNARS was deployed on three different hardware con-
figurations. The goal was to determine how the underlying hardware affects the
system’s performance.

YCSB client was executed on a separate D4 machine, and was configured to use
100 threads. The CPU utilization on the client machine was never over 20%, so it
did not represent the bottleneck.

The YCSB client executed a number of test-cases, each lasting for 1 hour. The
desired throughput (i.e., the number of questions per second) was increased for each
test-case, until the system could not reach it anymore. The efficiency of DNARS is
expressed in terms of average, 95th percentile and 99th percentile latencies. The
later two values indicate the maximum latencies exhibited by, respectively, 95%
and 99% of clients [21].

Finally, DNARS was restarted before each test-case. Questions were constructed
by selecting random statements from the dataset. Approximately 80% of questions
that were asked were new, while the remaining 20% were repeated questions. This
put an additional strain on the system, as it could not fully benefit from answer
caching.

The question answering capabilities of DNARS in the read-only scenario are
shown in Fig. 6. More specifically, Fig. 6(a) shows the performance of DNARS

9http://azure.microsoft.com/en-us/, retrieved on December 26, 2024.
10https://github.com/brianfrankcooper/YCSB/, retrieved on December 26, 2024.

Distributed non-axiomatic reasoning system 91

on a single D3 node, Fig. 6(b) shows its performance on a single D4 node, while
Fig. 6(c) shows how the system performs when it’s distributed over two D3 nodes.

Throughput (questions per second)

12,000

(a)

Throughput (questions per second)

12,000

(b)

Throughput (questions per second)

12,000

(c)

Figure 6: Runtime performance of DNARS in the read-only scenario, on (a) a single
D3 node, (b) a single D4 node, and (c) two D3 nodes.

The obvious conclusion for all three configurations is that DNARS performs
exceptionally well. On the lowest hardware configuration (Fig. 6(a)), the sys-
tem is capable of answering almost 5800 questions per second, with the 99th per-
centile latency being 100 milliseconds. Once the number of virtual CPUs is doubled
(Fig. 6(b)), the maximum number of answers per second jumps to over 9200, with
99% clients having to wait no more than 30 milliseconds. In the final hardware
configuration (Fig. 6(c), two D3 machines), DNARS can provide answers to ap-
proximately 8300 questions per second, in which case the 99th percentile latency is
just over 50 milliseconds.

The underlying Apache Cassandra database was obviously an excellent choice
for the backend storage, as it can efficiently use all the available hardware resources.
Vertical scaling (i.e., adding more virtual CPUs) yields better performance than
horizontal scaling (i.e., adding more machines). However, in addition to practical

92 D. Mitrović, M. Ivanović, P. Wang

limitations of vertical scaling, horizontal scaling has one major advantage – it can
provide fault-tolerance through data replication.

For the second, read-write scenario, an additional YCSB client was launched on
a separate machine. Its task was to add 100 statements per second to the DNARS
knowledge base, throughout the duration of the experiment. Moreover, it added
only statements that already existed in the knowledge base. This is because adding
an existing statement is slower than adding a new statement. In the first case, the
system needs to read the existing truth-value from the hard- disk, perform revision,
and write the new value back (which will also update the database indexes).

Throughput (questions per second)

12,000

(a)

Throughput (questions per second)

12,000

(b)

Throughput (questions per second)

12,000

(c)

Figure 7: Runtime performance of DNARS in the read-write scenario, on (a) a
single D3 node, (b) a single D4 node, and (c) two D3 nodes.

Again, three different hardware configurations were deployed – one D3, one D4,
and two D3 machines – and the results are shown in Fig. 7. Obviously, simultaneous
writing to the database incurs some runtime penalty, and the latencies are generally
higher than in the read-only scenario. Nonetheless, the results can still be considered
excellent.

The most affected configuration is the single D3 node (Fig. 7(a)), but it can
still deliver 4400 answers per second, with 99% clients having to wait up to 100
milliseconds. The simultaneous writing to the database did not affect the D4 node as

Distributed non-axiomatic reasoning system 93

much, since it was still capable of answering over 8800 questions per second, while
keeping the 99th percentile latency at 30 milliseconds. Finally, when distributed
over two D3 nodes, in the read-write scenario DNARS can answer 7700 questions
per second with the 99th percentile latency at 60 milliseconds. These experiments

Figure 8: Execution flow of the case study for deriving new structured knowledge.

confirm that the functional requirement imposed on the Resolution engine in Section
3 has been fulfilled. That is, the engine is capable of supporting a large knowledge
base and providing real-time responses to high numbers of external clients.

5. Practical application

One final question still remains – can the current implementation of DNARS
solve a concrete practical problem? The case study presented in this section pro-
vides an affirmative answer and validates the overall work of the paper.

The main goal of this case study is to derive new structured knowledge base
for DBpedia using information available in unstructured texts. More concretely,
the case study derives new knowledge for the Mapping-based Properties (Cleaned),
using information in Short Abstracts and Mapping-based Types. The Short Ab-
stracts dataset contains short abstracts of Wikipedia articles. The same version of
the Mapping-based Types dataset describes types/classes of approximately 28 mil-
lion entities.

The case study is shown graphically in Fig. 8. It uses a number of intelligent
agents to fulfill the design goal. The overall execution sequence can be described in
5 distinctive steps.

Step 1. The case study is started by an end-user, who asks a question about a
specific resource. The question ends up in the Resolver agent, which returns all the
information available in Short Abstracts and Mapping-based Properties (Cleaned).
The agent relies on the Resolution engine to find the required answers.

94 D. Mitrović, M. Ivanović, P. Wang

Step 2. Once the answers are returned the Resolver activates the Annotator
agent. This new agent annotates the unstructured text obtained from Short Abstracts,
by invoking the DBpedia Spotlight RESTful web service. In response, the agent
receives a list of DBpedia resources found in the text. Now, the system needs to
determine the exact relations between the properties of the initial resource and the
received annotated resources.

Step 3. For each annotated resource, the Annotator creates an instance of the
Learner agent. The Learner agent first retrieves all statements relevant to its re-
source. Relevant statements are answers to questions R →? and ? → R, where R
denotes the agent’s resource. The answers are retrieved from the Mapping-based
Properties (Cleaned) dataset.

Step 4. Now, the Learner agent employs the Forward inference engine to de-
rive intermediary conclusions. Known properties of the initial resource are used as
the knowledge base, while the relevant statements represent new judgments. Inter-
mediary conclusions derived in this step serve as initial links between prop- erties
of the initial resource and properties of annotated resources.

Step 5. Finally, intermediary conclusions obtained in the previous step are again
matched against properties of the initial resource, to derive the set of conclusions.
This set is first filtered, merging duplicate statements using the revision rule [6, 7],
and resulting in the final, new structured knowledge about the initial resource.

5.1. A concrete execution example

In this sub-section, we will illustrate the above steps on a concrete example. Let
the end-user ask: Albert Einstein → ? (“Who was Albert Einstein?”). In Step 1,
the Resolver uses the Resolution engine to retrieve the short abstract and the list
of existing properties from the knowledge base. In Step 2, the Annotator sends the
short abstract to the DBpedia Spotlight web service and receives the four DBpedia
resources shown in Listing 611.

Listing 6: Annotated resources detected in the short abstract for
http://dbpedia.org/resource/Albert Einstein.

<http://dbpedia.org/resource/General_relativity>

<http://dbpedia.org/resource/Max_Born>

<http://dbpedia.org/resource/Quantum_mechanics>

<http://dbpedia.org/resource/Theoretical_physics>

11Only resources available in the Mapping-based Properties (Cleaned) dataset are shown.

Distributed non-axiomatic reasoning system 95

At this point the system knows that these resources are somehow related
to Albert Einstein. Now it needs to determine the exact relations. This is
initiated in Step 3. A new Learner agent is created for each annotated resource
in Listing 6. The agent first retrieves statements relevant to its resource. Then,
in Step 4, it uses forward inference with known properties of Albert Einstein
as the knowledge base, and the relevant statements as new input judgments.
This step derives a set of intermediary conclusions (the total of 249 for all
Learners). For example, intermediary conclusions include 13 statements stating
that general relativity is similar to physics, that is:

<http://dbpedia.org/resource/General_relativity> $
<http://dbpedia.org/resource/Physics> h1.00, 0.45i

In the final step (Step 5) each Learner again applies the forward inference
using known properties of Albert Einstein as the knowledge base and interme-
diary conclusions now as new input judgments. Conclusions derived in this step
are first filtered to merge duplicate statements and to exclude already known
properties.

The end-result – the newly derived structured knowledge about Albert Ein-
stein – is shown in Listing 7. Only statements with the confidence level of
0.9 or higher are taken into account as this is the value assigned to existing
statements [6].

Listing 7: The newly derived structured knowledge about Albert Einstein.

(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/General_relativity>) !
<http://dbpedia.org/ontology/field> h1.00, 0.90i

(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Quantum_mechanics>) !
<http://dbpedia.org/ontology/field> h1.00, 0.92i

(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Theoretical_physics>) !
<http://dbpedia.org/ontology/field> h1.00, 0.99i

Manual inspection of these results confirms that they are correct. General rela-
tivity, quantum mechanics, and theoretical physics were indeed Einstein’s fields12.
This information is present in the Short Abstracts but not in the Mapping-based
Properties (Cleaned) dataset (Listing 5) and represents new structured knowledge.

The fourth annotated resource denoting the physicist Max Born could not be
linked to Einstein in a confident manner. The Mapping-based Properties (Cleaned)

12However, he was displeased with the principles of quantum mechanics and was trying to disprove
the theory [22].

96 D. Mitrović, M. Ivanović, P. Wang

dataset includes statements about Albert Einstein. These statements use the follow-
ing set of relations: doctoral advisor, academic advisor, name, birth place, birth
date, death place, death date, residence, spouse, and field. Since at the current level
DNARS cannot derive new relations, it has incorrectly concluded that Born was
Einstein’s doctoral advisor13. Although incorrect, it would have been much worse
if the systemhad derived:

(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Max_Born>) !
<http://dbpedia.org/ontology/birthPlace> h1.00, 0.90i

Therefore, DNARS has still selected the arguably best possible relation
among the available ones. It is also worth noting that this conclusion had a
lower confidence value then the required 0.9.

5.2. Analysis of the reasoning process

Let us now analyze how the first conclusion in Listing 7 was derived. At
some point during the reasoning process, the Forward inference engine takes
the two premises shown in Listing 8.

Listing 8: The initial premises that will lead to the conclusion that General relativity was
Einstein’s research field.

(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Physics>) !
<http://dbpedia.org/ontology/field>

(⇥ <http://dbpedia.org/resource/Charles_W._Misner>

<http://dbpedia.org/resource/General_relativity>) !
<http://dbpedia.org/ontology/field>

In this case, the system can use intensional comparison to derive a similarity

In this case, the system can use intensional comparison to derive a similarity be-
tween two compound terms. Intensional comparison takes two inheritance premises
and derives a similarity statement as follows [6, 7]:

!
M → P 〈f1, c1〉

"
, M → S〈f2, c2〉

"
⊢ S ↔ P 〈f, c〉 (12)

The result is shown as the first statement in Listing 9. Since the relation be-
tween compound terms defines relations between their respective components, this
statement can be transformed into the latter two intermediary conclusions in List-
ing 9. The Mapping-based Types dataset is employed during this transformation

13The two famous physicist were, however, colleagues and friends [22].

Distributed non-axiomatic reasoning system 97

step. The transformation will be applied only if the related components belong the
same type, preventing the system to conclude that, for example, a person is similar
to a geographic location.

This process of deriving and transforming intermediary conclusions is re-
peated for many other physicists in the Mapping-based Properties (Cleaned)
dataset, and the revision rule steadily increases the system’s confidence about
the fact that General relativity is similar to Physics. On the other hand, the
similarity between Charles W. Misner and Albert Einstein is derived only once,
retaining a relatively low confidence (although the two are similar to some re-
spect).

Listing 9: The first statement represents an intermediary conclusion derived by applying
intensional comparison to the premises from Listing 8, while the latter two statements are
obtained by transforming the first one.

(⇥ <http://dbpedia.org/resource/Charles_W._Misner>

<http://dbpedia.org/resource/General_relativity>) $
(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Physics>)

<http://dbpedia.org/resource/Charles_W._Misner> $
<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/General_relativity> $
<http://dbpedia.org/resource/Physics>

In the final inference step the system uses the analogy rule [6, 7, 10]:

{M ! P hf1, c1i, S $ Mhf2, c2i} ` S ! P hf, ci (13)

The first premise in the rule is the following known statement:

(⇥ <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Physics>) !
<http://dbpedia.org/ontology/field>

or, more concretely, its extensional image:

<http://dbpedia.org/resource/Physics> !
(/ <http://dbpedia.org/ontology/field>

<http://dbpedia.org/resource/Albert_Einstein> ⇧)

The second premise is the following intermediary conclusion:

<http://dbpedia.org/resource/General_relativity> $
<http://dbpedia.org/resource/Physics>

98 D. Mitrović, M. Ivanović, P. Wang

At the end, the rule derives the final, highly-confident conclusion that General
relativity was an additional research field of Albert Einstein.

6. Related work

Non-axiomatic logic (NAL) is different from many other logics used by the
artificial (general) intelligence researchers. Its differences stem from the fact that
NAL is a term logic with syllogistic inference rules and the experiencegrounded
semantics. Comparisons of NAL and other formalisms can be found in e.g. [9, 6, 7,
23] and related research papers.

Throughout the literature, concrete system architectures developed as part of the
AGI research are referred to as cognitive or reasoning. Although the two terms de-
note similar things, there are some differences. As discussed in [6, 7], reasoning is
performed at a higher-level of abstraction and includes one or more cognitive func-
tions, such as decision making and learning. It is not concerned with lower-level
details, such as perceptual and motor skills, often found in cognitive architectures.
However, NAL can be directly applied to lower-level cognitive functions, like per-
ception and motion, as soon as the terms involved directly represent percepts and
actions14.

Cognitive architectures can generally be organized into three categories: sym-
bolic, emergent or connectionist, and hybrid [24, 25]. Symbolic architectures ma-
nipulate symbols at a higher level of abstraction, whereas the emergent architectures
incorporate individual units for processing lower-level signals that flow through the
network. Hybrid architectures represent combinations of the earlier two.

Because of its semantics, DNARS is not a traditional symbolic architecture, but
has many connectionist features, through it is not a hybrid [26]. This section first
analyzes a number of well-established symbolic and hybrid reasoning and cognitive
architectures. For additional information on these and other systems, see e.g. [24,
27, 25].

Intelligent agents represent one of the most-thriving fields of artificial intelli-
gence with numerous practical applications [28, 29]). One of the main intended
purposes of DNARS is to serve as an underlying reasoning engine in our multiagent
environment named Siebog [30, 31]. This is a major departure from the Belief-
Desire-Intention (BDI) model commonly used by the agent technology researchers
and practitioners [32]. Therefore, the second part of this section discusses several
influental BDI implementations.

14https://github.com/opennars/opennars/wiki/Perception-In-NARS,
retrieved on December 15, 2024.

Distributed non-axiomatic reasoning system 99

6.1. Symbolic and hybrid architectures

ACT-R is a hybrid cognitive architecture, based on the so-called Unified The-
ories of Cognition [33], as well as cognitive neuroscience research [24, 34, 35].
For example, the ACT-R operation is based to a certain extent on the experimental
data obtained from neuroimaging, such as Functional Magnetic Reasoning Imaging
(fMRI) and by observing how different parts of the brain interact during the reason-
ing process. As such, ACT-R can also be used as a framework for emulating human
reasoning.

The most important components of the ACT-R architecture include the perceptual-
motor sub-system, for obtaining visual information about the world and perform-
ing physical actions, the goal module, which manages the system’s intentions, and
the declarative module, which holds the system’s overall knowledge [35]. A lim-
ited amount of the information from each component is stored into corresponding
buffers, to be used by the central production system for component coordination.
Symbolic pieces of information (chunks in declarative, or productions in procedural
knowledge) are also described by numerical parameters, allowing the construction
of an associative memory/network [24, 34].

ICARUS is a symbolic cognitive architecture with several types of memories
[24]. Its perceptual memory includes descriptions of observed objects, the belief
memory describes relations among objects, while the conceptual memory holds
general knowledge. In each inference cycle, the system observes its environment
and creates a set of percepts. The percepts are then matched against the conceptual
knowledge to deduce new beliefs. Additional two memories are introduced to guide
and control the system’s behavior. Goal memory includes the system’s actively
managed goals, while the skill memory describes complex, hierarchical activities
that the system can perform. It is worth noting that, among the cognitive archi-
tectures described in this sub-section, the architecture of ICARUS bears the closes
resemblance to the BDI agent architecture.

OpenNARS is a reference open-source implementation15 of non-axiomatic rea-
soning [6, 7]. The latest version implements the logic of all 9 layers of NAL as
defined in [6]. Its architecture consists of the memory module, the inference engine,
and a control mechanism, which handles the system’s reasoning cycles [7].

Soar is one of the earliest, and a well-known symbolic cognitive architecture
[39, 24]. As ACT-R, it represents a concrete realization of the Unified Theories
of Cognition. Soar programs are specified in the form of if-then production rules,
which, in turn, are used to select and apply operators and execute actions. The
system’s knowledge is divided into the long-term and working memory. The long-

15https://github.com/opennars/opennars, retrieved on December 15, 2024.

100 D. Mitrović, M. Ivanović, P. Wang

term memory can be procedural, containing the knowledge on how to do things,
semantic, containing declarative knowledge about the world, and episodic, which
summarizes the previous experience.

The working memory of Soar contains knowledge that is relevant to the current
situation, and is directly tied to the perception, action, and decision making mod-
ules. Several extensions of the core Soar architecture have been proposed as well,
including the use of Reinforcement learning in operator selection, visual imagery
modules, semantic and episodic learning, etc. [24].

OpenNARS and DNARS represent concrete realization of non-axiomatic rea-
soning. Their differences from other cognitive and reasoning architectures stem
from the use of NAL as the underlying formalism. For example, no other system
deals with the issue of insufficient knowledge and resources to the degree done in
NAL. In addition, unlike many systems described here, OpenNARS and DNARS
are more focused on emulating the human thought processes at a higher level of
abstraction, rather than trying to accurately model the human brain [7]. However,
it remains to be seen which approach works the best, as all the systems are yet far
from reaching the goal of building a “thinking machine.”

DNARS is built by combining NAL and the Big Data paradigm, because the
two try to solve a similar issue: how to handle and process large amounts of infor-
mation with limited time and resources. NAL, for example, includes inference rules
that deal with knowledge inconsistencies only when necessary, e.g., when there are
different answers to the same question. It also includes constructs for combining
individual pieces of information and reducing the amount of raw information. Sim-
ilarly, the NoSQL database used in DNARS includes a number of techniques for
dealing with large amount of information and strict time constraints, and temporar-
ily sacrifice information consistency if needed. Therefore, in DNARS we combine
the “best of both worlds” in an efficient manner.

There are some important differences between OpenNARS and DNARS. Open-
NARS has been developed for a significantly longer period of time, and is a more
mature product. In the latest version, OpenNARS implements all layers of NAL,
and includes more advanced control mechanisms. The main advantage of DNARS,
however, is in the organization of its backend knowledge base. That is, DNARS is
currently capable of reasoning over much larger knowledge bases than OpenNARS.
By utilizing modern approaches to large-scale data processing, DNARS can easily
be used to, for example, realize the case study presented in Section 5.

6.2. Concrete BDI implementations

As noted, BDI is the most popular model for developing intelligent agents. Over
time, several interesting concrete realization of the model has been proposed [40–44].

Distributed non-axiomatic reasoning system 101

BDI4JADE extends JADE with the support for BDI agents [40]. Its authors ar-
gue that, although sometimes convenient, agent-oriented programming languages
usually represent a barrier that limits the wider adoption of the BDI model. There-
fore, the BDI4JADE framework is based on pure Java.

BDI4JADE agents are defined through their capabilities, which include plans
and relevant beliefs along with public interfaces. Additional essential components
include desires, intentions and goals, with their usual meanings, events that signal
changes in the goal and belief bases, as well as strategies for customizing the rea-
soning cycles. A reasoning cycle includes a number of steps [40], which can be
summarized as follows. The agent first revises its belief base, removes completed
goals, and then proceeds to choosing a set of applicable goals (i.e., desires). A sub-
set of desires is selected for achievement becoming the agent’s intentions. Finally,
active intentions are associated with plans that can fulfil them.

Procedural Reasoning System (PRS) is one of the earliest agent architectures
based on the BDI model [41]. It includes four databases, containing agent’s beliefs,
goals, declarative procedures (i.e., plans), and intentions (i.e., active plans). These
databases are managed the interpreter, which operates in reasoning cycles. In each
cycle it selects applicable plans, whose pre-conditions match the current beliefs and
goals. One applicable plan is then selected, placed on the intention stack, and then
executed. During the execution, new beliefs and/or goals may be generated, which
will create new intentions. Finally, it is worth noting that multiple PRS interpreters
can operate in parallel and communicate with each other.

GOAL is a practical agent-oriented programming language [45, 42]. The mental
state of a GOAL agent is defined through a static knowledge base, a dynamic belief
base, as well as different types of goals. Active goals are removed from the agent’s
mental state using the blind commitment strategy, which means that only success-
fully achieved goals are dropped [45, 42]. The action execution strategy is guided
by so-called action rules. They are specified in the form of IF mental state THEN
action. If the given mental state is true, the action is said to be applicable. An action
that is both applicable and enabled is called an option. Action rules can be checked
in several way (e.g. in the order they are written, randomly, etc.), and the first action
that becomes an option is executed.

Jadex follows the object-oriented model for representing beliefs and goals, in-
stead of the more common approach based on logical formulae [43]. The Jadex
infrastructure consist of the agent platform (e.g. standalone or JADE), active com-
ponents, and kernels. Active components, broadly speaking, represent the merger of
agents and service-oriented systems, while kernels define internal workings of ac-
tive components. Here, the most important is the BDI agent kernel [43]. It is based
on the PRS described earlier, with the addition of the goal deliberation technique
for maintaining a consistent set of goals.

Jason is a popular interpreter for an agent-oriented programming language AgentS-

102 D. Mitrović, M. Ivanović, P. Wang

peak and a reasoning engine for BDI agents [44]. Agents are defined in terms of
beliefs, goals, and plans. The interpreter operates in reasoning cycles, divided into
10 individual steps. First, the agent perceives its environment (generating a percep-
tual information), processes a single message received from another agent, while
filtering-out “socially unacceptable” messages, and updates its belief base accord-
ingly. The remaining six steps represent the core of agent’s reasoning and acting:

• A single event is selected to be processed. An event represents a change in
the agent’s mental state (e.g. a new belief has been added).

• A set of relevant plans, i.e., plans corresponding to the selected event, is con-
structed.

• Of those, a set of applicable plans (also called options) is determined.

• An applicable plan is put on a stack to become an intention. This is the plan
to which the agent will commit.

• An intention is selected from the stack.

• A single step of the selected intention is executed.

Jason is designed as a highly-customizable architecture, and has been integrated
with a number of other agent-based systems.

NAL provides a number of advantages over the traditional BDI model. First
and foremost, NAL statements are associated with truth-values. In concrete BDI
implementations discussed earlier, there is no way of expressing the agent’s confi-
dence in a belief; it is left to the agent developer to somehow handle the notion that
a belief might not be true. NAL statements, on the other hand, are beliefs in their
true definition.

Additionally, unlike the BDI model, inconsistency resolutions (through back-
ward inference), learning (through forward inference), and working under the as-
sumption of insufficient knowledge and resources (e.g. compound terms [6, 7]),
represent inherent features of NAL-based agents.

These are the main advantages of DNARS over the presented BDI systems. Fi-
nally, as in OpenNARS-DNARS comparison, DNARS offers the possibility of rea-
soning over much larger knowledge bases than any existing BDI system. This opens
up DNARS to a wider range of possible practical applications, as demonstrated by
the case study in Section 5.

Distributed non-axiomatic reasoning system 103

7. Conclusions and future work

This paper has presented a new general-purpose reasoning architecture named
Distributed Non-Axiomatic Reasoning System (DNARS). DNARS uses the NonAx-
iomatic Logic (NAL) as its formal reasoning framework. NAL provides a well-
defined syntax, experience-grounded semantics, and a set of inference rules, while
working under the assumption of insufficient knowledge and resources [6]. The
main novelty of DNARS, when compared to other similar systems, is its ability to
efficiently handle large quantities of knowledge, while providing service to high
numbers of external clients. This ability was achieved by a uniquely designed back-
end knowledge base, and a set of algorithms that adequately realize NAL inference
rules in these distributed, highly-scalable settings.

This runtime performance of DNARS has been demonstrated in practice through
the speed evaluation case-study presented in Section 4. A large knowledge base
of DBpedia statements has been built, and then a number of both read-only and
read-write scenarios have been executed. In all settings, DNARS has performed
exceptionally well and has fulfilled its design goal.

Finally, one practical application of DNARS has been presented in Section 5. It
has been shown how the Forward inference engine in DNARS [46, 47] can be used
to derive new structured knowledge from unstructured texts, and integrate it with
existing known facts about a topic.

In the future, obviously, the remaining layers of NAL need to be added to
DNARS. Although the first four layers currently implemented in DNARS are suffi-
cient for simple reasoning tasks, the remaining layers would provide it with higher-
level reasoning capabilities. In particular [6]:

• Starting from layer NAL-5, statements can be used as terms, and new copulas
(such as implication and equivalence) are supported.

• NAL-6 adds support for variables, and would enable DNARS to work with
more general rules.

• NAL-7 introduces the concepts of time and events, as well as temporal
connectors (e.g. sequential and parallel) and relations (e.g., before and
when).

• Procedural knowledge, in form of operations and goals, is added in NAL-8.

• Finally, NAL-9 would add the capability of processing emotions, and exhibit-
ing self-monitoring and self-control.

104 D. Mitrović, M. Ivanović, P. Wang

Inspired by DNARS, a new high level programming language ALAS has been
developed [48]. This agent-oriented domain-specific language supports Distributed
Non-Axiomatic Reasoning for simpler development of intelligent distributed multi
agent systems. ALAS allows programmers to develop intelligent agents easier by
using domain specific constructs. Further improvement of ALAS and its applica-
tions offer new research challenges.

Acknowledgement. This work was partially supported by Ministry of Science,
Technological Development and Innovation of the Republic of Serbia (Grants No.
451-03-66/2024-03/200125 & 451-03-65/2024-03/200125).

REFERENCES

[1] B. Baesens, Analytics in a Big Data World: The Essential Guide to Data Science and

its Applications, Wiley and SAS Business Series, 2014.

[2] L. Taerim, L. Hyejoo, R. Kyung-Hyune, S. U. Sang, The efficient implementation

of distributed indexing with hadoop for digital investigations on big data, Computer
Science and Information Systems 11 (3) (2014), 1037–1054.

[3] I. Robinson, J. Webber, E. Eifrem, Graph Databases, O’Reilly Media, Inc., 2013.

[4] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large

clusters, Communications of the ACM 51 (1) (2008), 107–113; doi:10.1145/
1327452.1327492.

[5] E. Hovy, R. Navigli, S. P. Ponzetto, Collaboratively built semi-structured content and

artificial intelligence: The story so far, Artificial Intelligence 194 (2013), 2–27.

[6] P. Wang, Non-axiomatic Logic: A Model of Intelligent Reasoning, World Scientific
Publishing Co. Pte. Ltd., 2013.

[7] P. Wang, Rigid Flexibility: The Logic of Intelligence, Vol. 34 of Applied Logic Series,
Springer, Dordrecht, The Netherlands, 2006.

[8] M. A. Rodriguez, J. Geldart, An evidential path logic for multi-relational networks, in:
Proceedings of the Association for the Advancement of Artificial Intelligence Spring
Symposium: Technosocial Predictive Analytics Symposium, Vol. SS-09-09, AAAI
Press, 2009, pp. 114–119.

[9] P. Wang, Formalization of evidence: a comparative study, Journal of Artificial Gen-
eral Intelligence 1 (1) (2011) 25–53; doi:10.2478/v10229-011-0003-7.

[10] P. Wang, Analogy in a general-purpose reasoning system, Cognitive Systems Re-
search 10 (3) (2009), 286–296; doi:10.1016/j.cogsys.2008.09.003.

Distributed non-axiomatic reasoning system 105

[11] M. Michael, J. E. Moreira, D. Shiloach, R. W. Wisniewski, Scale-up x scale-out: A

case study using Nutch/Lucene, in: IEEE International Parallel and Distributed Pro-
cessing Symposium, 2007, pp. 1–8.

[12] M. A. Rodriguez, J. Shinavier, Exposing multi-relational networks to single-

relational network analysis algorithms, Journal of Informetrics 4 (1) (2010), 29–41;
doi:http://dx.doi.org/10.1016/j.joi.2009.06.004.

[13] E. Hewitt, Cassandra: The Definitive Guide, O’Reilly Media, Inc., 2010.

[14] T. Rabl, S. Gomez-Villamor, M. Sadoghi, V. Muntes-Mulero, H.-A. Jacobsen, S.
Mankovskii, Solving big data challenges for enterprise application performance

management, Proceedings of the VLDB Endowment 5 (12) (2012), 1724–1735;
doi:10.14778/2367502.2367512.

[15] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, C. Bizer, DBpedia – a large-scale, multilin-

gual knowledge base extracted from wikipedia, Semantic Web Journal.

[16] H. Paulheim, C. Bizer, Improving the quality of linked data using statistical distribu-

tions, International Journal of Semantic Web and Information Systems 10 (2) (2014),
63–86.

[17] P. N. Mendes, M. Jakob, C. Bizer, DBpedia for NLP: A multilingual cross- domain

knowledge base, in: Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC’12), 2012.

[18] P. N. Mendes, M. Jakob, A. Garcı́a-Silva, C. Bizer, Dbpedia spotlight: Shedding light

on the web of documents, in: Proceedings of the 7th International Conference on
Semantic Systems (I-Semantics), 2011.

[19] A. Schram, K. M. Anderson, MySQL to NoSQL: Data modeling challenges in sup-

porting scalability, in: Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity, SPLASH ’12, ACM, New York,
NY, USA, 2012, pp. 191–202; doi:10.1145/2384716.2384773.

[20] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, D. A. Bader, A performance eval-

uation of open source graph databases, in: Proceedings of the First Workshop on
Parallel Programming for Analytics Applications, PPAA ’14, ACM, New York, NY,
USA, 2014, pp. 11–18; doi:10.1145/2567634.2567638.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Bench-marking

cloud serving systems with YCSB, in: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, ACM, New York, NY, USA, 2010, pp. 143–154.

[22] M. Kumar, Quantum: Einstein, Bohr and the Great Debate About the Nature of Real-

ity, Icon Books Ltd., 2009.

[23] P. Wang, Theories of artificial intelligence – meta-theoretical considerations, in: P.
Wang, B. Goertzel (Eds.), Theoretical Foundations of Artificial General Intelligence,
Vol. 4 of Atlantis Thinking Machines, Atlantis Press, 2012, pp. 305–323.

106 D. Mitrović, M. Ivanović, P. Wang

[24] W. Duch, R. J. Oentaryo, M. Pasquier, Cognitive architectures: Where do we go

from here?, in: Proceedings of the 2008 Conference on Artificial General Intelli-
gence 2008: Proceedings of the First AGI Conference, IOS Press, Amsterdam, The
Netherlands, The Netherlands, 2008, pp. 122–136.

[25] B. Goertzel, R. Lian, I. Arel, H. de Garis, S. Chen, A world survey of artificial brain

projects, Part ii: Biologically inspired cognitive architectures, Neurocomputing 74
(1–3) (2010), 30–49.

[26] P. Wang, Artificial general intelligence and classical neural network, in: IEEE Inter-
national Conference on Granular Computing, 2006, pp. 130–135.

[27] K. R. Thorisson, H. P. Helgasson, Cognitive architectures and autonomy: A compar-

ative review, Journal of Artificial General Intelligence 3 (2) (2012), 1–30.

[28] C. Bădică, N. Bassiliades, S. Ilie, K. Kravari, Agent reasoning on the web using web

services, Computer Science and Information Systems 11 (2) (2014), 697–721.

[29] W. Jian, C. Baigen, L. Jiang, S. Wei, A lane-changing behavioral preferences learning

agent with its applications, Computer Science and Information Systems 12 (2) (2015),
349–374.

[30] D. Mitrović, M. Ivanović, Z. Budimac, M. Vidaković, Radigost, Interoperable web-

based multi-agent platform, Journal of Systems and Software 90 (2014), 167–178;
doi:http://dx.doi.org/10.1016/j.jss.2013.12.029.

[31] D. Mitrović, M. Ivanović, M. Vidaković, Z. Budimac, Extensible Java EE-based agent

framework in clustered environments, in: J. Mueller, M. Weyrich, A. L. C. Bazzan
(Eds.), 12th German Conference on Multiagent System Technologies, Vol. 8732 of
Lecture Notes in Computer Science, Springer International Publishing, 2014, pp. 202–
215.

[32] A. S. Rao, M. P. Georgeff, Bdi agents: From theory to practice, in: Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95), 1995, pp.
312–319.

[33] A. Newell, Unified Theories of Cognition, Harvard University Press, 1994.

[34] C. Lebiere, J. R. Anderson, A connectionist implementation of the ACT-R produc-

tion system, in: Proceedings of the 15th Annual Conference of the Cognitive Science
Society, 1993, pp. 635–640.

[35] J. R. Anderson, D. Bothell, M. D. Byrne, An integrated theory of mind, Psychological
Review 111 (4) (2004), 1036–1060.

[36] J. E. Laird, The Soar Cognitive Architecture, MIT Press, 2012.

[37] I. Nunes, C. J. de Lucena, M. Luck, BDI4JADE: a BDI layer on top of JADE, in:
Proceedings of the Workshop on Programming Multiagent Systems, 2011, pp. 88–
103.

Distributed non-axiomatic reasoning system 107

[38] M. P. Georgeff, A. L. Lansky, Reactive reasoning and planning, in: Proceedings of the
Sixth National Conference on Artificial Intelligence (AAAI-87), 1987, pp. 677–682.

[39] K. Hindriks, Programming cognitive agents in GOAL, http://mmi.tudelft.nl/trac/goal/
raw-attachment/wiki/WikiStart/Guide.pdf, retrieved on February 7, 2014 (March
2014).

[40] L. Braubach, A. Pokahr, W. Lamersdorf, Jadex active components: A unified execu-

tion infrastructure for agents and workflows, Advanced Computational Technologies
(2013), 128–149.

[41] R. H. Bordini, J. F. Hubner, M. Wooldridge, Programming Multi-Agent Systems in

AgentSpeak Using Jason, Wiley Series in Agent Technology, John Wiley & Sons Ltd,
2007.

[42] K. V. Hindriks, Programming rational agents in GOAL, in: A. El Fallah Seghrouchni,
J. Dix, M. Dastani, R. H. Bordini (Eds.), Multi-Agent Programming: Languages,
Tools and Applications, Springer US, 2009, pp. 119–157.

[43] A. Pokahr, L. Braubach, From a research to an industry-strength agent platform:

Jadex V2, In 9. Internationale Tagung Wrtschaftsinformatik, pp. 769–778, 2008.

[44] R. H. Bordini, M. Dastani, J. Dix, A. E. F. Seghrouchni, eds. Multiagent Program-

ming: Languages, Tools and Applications, Springer, 2009; doi: 10.1007/978-0-387-
89299-3.

[45] Y. Yang, T. Holvoet, Making model checking feasible for GOAL, Ann. Math. Artif.
Intell. 92 (2024), 837–853; https://doi.org/10.1007/s10472-023-09898-3.

[46] D. Mitrović, M. Ivanović, M. Vidaković, Z. Budimac, Siebog: An enterprise-scale

multiagent middleware, Inf. Technol. Control. 45 (2) (2016), 164–174.

[47] D. Mitrović, M. Ivanović, M. Vidaković, Z. Budimac, The Siebog multiagent middle-

ware, Knowl. Based Syst. 103 (2016), 56–59.

[48] D. Sredojević, M. Vidaković, M. Ivanović, ALAS: agent-oriented domain-specific lan-

guage for the development of intelligent distributed non-axiomatic reasoning agents,
Enterp. Inf. Syst. 12 (8-9) (2018), 1058–1082.

108 D. Mitrović, M. Ivanović, P. Wang

Department of Mathematics and Informatics
Faculty of Sciences
University of Novi Sad, Serbia
&
Department of Mathematics and Informatics
Faculty of Sciences
University of Novi Sad, Serbia
e-mail: mira@dmi.uns.ac.rs (Mirjana Ivanović)
&
Department of Computer and Information Sciences
Temple University, USA
e-mail: pei.wang@temple.edu (Pei Wang)

