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1. Introduction

The Lebegue spaces Lp(Rd), p ∈ [1,∞], defined by the means of integrability
conditions, are ubiquitous in mathematical analysis. However, a shortcoming of the
usual Lebesgue spaces is that they do not allow for a distinction between local and
global properties of their elements. A notable attempt to address this issue can be
traced back to Norbert Wiener, who introduced the spaces W1(Lp), Wp(L1), with
p = 2 or p = ∞, in the context of Tauberian-type theorems, [29].

These spaces are examples of “standard” or “classical” amalgams Wr(Lp
, L

q)
where local properties are defined by L

p−norm over the unit cubes, which is com-
bined or “amalgamated” with a global condition related to the L

q space. More
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precisely, if f is a measurable function on R then

f ∈ W(Lp
, L

q) ⇔ %f%W(Lp,Lq) =

!
"

n∈Z

#$ n+1

n
|f(t)|p dt

%q/p
&1/q

< ∞.

In the early 1980s Hans Feichtinger extended the concept of Wiener amalgams
to a broad range of Banach spaces of functions or distributions acting as local or
global components, and leading to the general Wiener amalgam spaces W(B,C),
[5]. Here the spaces B, which are used for local measurements, and C, which
describe the global property, satisfy certain admissibility conditions. It turns out
that the Wiener amalgam spaces are valuable in various areas of harmonic analysis
and its applications. For a recent survey of different aspects of Wiener amalgam
spaces, including relevant applications, we refer to [8].

A central role in time-frequency analysis is played by the space W(FL
1
, L

1),
also known as the Feichtinger or Segal algebra, often denoted by S0. In the Fe-
ichtinger algebra, localized pieces have absolutely convergent Fourier series expan-
sions, and the local norm is transformed into a global norm as a global L1−amalgam.
Among other features of S0, it is the minimal Banach space that is isometrically in-
variant under both translations and modulations. A recent survey [18] is devoted to
detailed properties of S0 and its applications.

In addition, one may consider W(FL
p
, L

q) and define function spaces by tak-
ing the inverse Fourier transform, [6, 7]. These spaces are called modulation spaces
and are denoted by M

p,q(Rd). In particular, W(FL
p
, L

p) = M
p,p(Rd), which are

Fourier transform invariant spaces.
Instead of being introduced as specific Wiener amalgam spaces on the Fourier

transform side, modulation spaces M
p,q
(ω)(R

d), p, q ∈ (0,∞), ω ∈ PE(Rd), are
commonly defined in terms of weighted mixed-norm conditions on the short-time
Fourier transform of their elements, see Definition 3.1. Here PE(Rd) denotes
the set of all moderate weights on Rd, allowing to work within the framework of
Gelfand-Shilov spaces of functions and their distribution spaces (see Subsection 2.2
for details). We note that the choice of the Lebesgue parameters p and q extends
the usual Banach space setting to the more challenging situation of quasi-Banach
spaces when p, q ∈ (0, 1).

In this paper, we complement investigations of the relationship between
M

p,q
(ω)(R

d) and Wiener-Lebesgue amalgam spaces Wr(ω, ℓp,q), and establish cer-
tain norm equivalences between them. The Wiener-Lebesgue amalgam spaces
Wr(ω, ℓp,q) under consideration are introduced in Subsection 3.2. More precisely,
it was proved that f ∈ M

p,q
(ω)(R

d), if and only if Vφf ∈ Wr(ω, ℓp,q), where Vφf

denotes the short-time Fourier transform, see Subsection 2.2. It was shown in [13]
for r = ∞, and p, q ∈ [1,∞], and extended in [12, 23] to p, q ∈ (0,∞]. We refer
to [25, 26] for further extensions to r ∈ (0,∞]. Our main result, Theorem 4.1 ex-
tends a general result formulated in [25, Proposition 2′] by relaxing the conditions
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on window functions. We note that here we use techniques different than the ones
from those in the aforementioned contributions.

Mixed norm spaces of Lebesgue type, used in the definitions of modulation and
Wiener amalgam spaces, can be replaced by more general function spaces. This
gives rise to a broad class of modulation and Wiener amalgam spaces, denoted by
M(ω,B) and Wr(ω,B), respectively, where B is a normal quasi-Banach func-
tion space, and ω ∈ PE(Rd). To prove that f belongs to M(ω,B), iff Vφf ∈
Wr(ω,B), and that the corresponding norms, %f%M(ω,B) and %Vφf%Wr(ω,B) are
equivalent, more advanced techniques than those presented here are required. For
further details, we refer to [28]. Additionally, the norm estimate results presented
there are used to extend certain continuity properties in pseudo-differential calculus,
see also Remark 4.1.

The paper is structured as follows. In Section 2 we set the stage by presenting
the main notions that will be used in the sequel. In Section 3 we introduce the quasi-
Banach modulation spaces and Wiener-Lebesgue amalgam spaces and outline their
main properties. The main result of the paper, Theorem 4.1, along with several
auxiliary results, is proved in Section 4.

2. Preliminaries

In this section we recall some basic facts on weight functions, the short-time
Fourier transform, Gelfand-Shilov spaces, and mixed-norm Lebesgue spaces which
will be useful in subsequent sections.

2.1. Weight functions

A weight or weight function on Rd is a positive function ω ∈ L
∞
loc(Rd) such that

1/ω ∈ L
∞
loc(Rd). If there is a weight v on Rd and a constant C ≥ 1 such that

ω(x+ y) ≤ Cω(x)v(y), x, y ∈ Rd
, (2.1)

then the weight ω is called moderate, or v-moderate. By (2.1) we have

C
−1

v(−x)−1 ≤ ω(x) ≤ Cv(x), x ∈ Rd
. (2.2)

We let PE(Rd) be the set of all moderate weights on Rd.
We say that a weight v is submultiplicative if

v(x+ y) ≤ v(x)v(y) and v(−x) = v(x), x, y ∈ Rd
. (2.3)

If v is positive and locally bounded and satisfies the inequality in (2.3), then
v(x) ≤ C0e

r0|x| for some positive constants C0 and r0, cf. [14].
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Therefore, if ω ∈ PE(Rd), then

ω(x+ y) ≲ ω(x)er0|y|, x, y ∈ Rd
,

for some r0 > 0. In particular, (2.2) shows that for any ω ∈ PE(Rd), there is a
constant r0 > 0 such that

e
−r0|x| ≲ ω(x) ≲ e

r0|x|, x ∈ Rd
.

Here g1 ≲ g2 means that g1(θ) ≤ C · g2(θ) holds uniformly for all θ in the inter-
section of the domains of g1 and g2 for some constant C > 0, and we write g1 ≍ g2

when g1 ≲ g2 ≲ g1.
We observe that given a v-moderate weight ω, one can find a continuous v-

moderate weight ω0 such that ω ≍ ω0. In addition, a moderate weight ω is also
moderated by a submultiplicative weight, cf. [21]. In the sequel, v and vj for j ≥ 0,
always stand for submultiplicative weights if nothing else is stated. We refer to
[4, 13, 14, 16, 22] for more facts about weights in time-frequency analysis.

2.2. Gelfand-Shilov spaces and the short-time Fourier transform

In what follows we let F be the Fourier transform which takes the form

(Ff)(ξ) = 'f(ξ) ≡ (2π)−
d
2

$

Rd

f(x)e−i〈x,ξ〉
dx, ξ ∈ Rd

,

when f ∈ L
1(Rd). Here 〈 · , · 〉 denotes the usual scalar product on Rd. The map

F extends uniquely to a homeomorphism on the space of tempered distributions
S ′(Rd), to a unitary operator on L

2(Rd) and restricts to a homeomorphism on
the Schwartz space of smooth rapidly decreasing functions S (Rd). We observe
that with our choice of the Fourier transform, the usual convolution identity for the
Fourier transform takes the forms

F (fg) = (2π)−
d
2 'f ∗ 'g and F (f ∗ g) = (2π)

d
2 'f · 'g,

when f, g ∈ S (Rd).
Since we are interested in general weights ω ∈ PE(Rd), instead of the frame-

work of tempered distributions S ′(Rd), which is natural when dealing with weights
of polynomial growth, we consider Gelfand-Shilov spaces Σs(Rd) and Ss(Rd) and
their dual spaces of (ultra-)distributions Σ′

s(Rd) and S ′
s(Rd), s ≥ 1.

In order to avoid technical issues related to the usual definition of the spaces of
Gelfand-Shilov type and their distribution spaces, we introduce Σs(Rd) and Ss(Rd)
in terms of decay estimates of the functions and their Fourier transforms. More
precisely, if f ∈ S ′(Rd) and s ≥ 1, then f belongs to the Gelfand-Shilov space
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Σs(Rd) of Beurling type (the Gelfand-Shilov space Ss(Rd) of Roumieu type), if and
only if

|f(x)| ≲ e
−r|x|

1
s and |Ff(ξ)| ≲ e

−r|ξ|
1
s
, x, ξ ∈ Rd

, (2.4)

for every r > 0 (for some r > 0), cf. [1, 3].
Then the Gelfand-Shilov distribution space Σ′

s(Rd) (of Beurling type) can be
introduced as the (strong) dual to Σs(Rd), and the Gelfand-Shilov distribution space
S ′
s(Rd) (of Roumieu type) is the (strong) dual to Ss(Rd), s ≥ 1.

By (2.4), when 1 ≤ s1 ≤ s2 we have (continuous and dense) embeddings

Σs1(Rd) ↩→ Ss1(Rd) ↩→ Σs2(Rd) ↩→ Ss2(Rd)

↩→ S ′
s2(R

d) ↩→ Σ′
s2(R

d) ↩→ S ′
s1(R

d) ↩→ Σ′
s1(R

d).

If A ⊆ B with continuous inclusion we write A ↩→ B. For simplicity, through-
out this subsection we consider Σs(Rd) and Σ′

s(Rd), s ≥ 1.
The reader should keep in mind that all results and comments given there hold

true when Σs(Rd) and Σ′
s(Rd) are replaced by Ss(Rd) and S ′

s(Rd) respectively.
In several situations it is convenient to use a localized version of the Fourier

transform, called the short-time Fourier transform, STFT for short. The short-time
Fourier transform of f ∈ Σ′

s(Rd) with respect to the fixed window function φ ∈
Σs(Rd) is defined by

(Vφf)(x, ξ) ≡ (2π)−
d
2 (f,φ( · − x)ei〈 · ,ξ〉)L2 , x, ξ ∈ Rd

. (2.5)

Here ( · , · )L2 denotes the unique continuous extension of the inner product on
L
2(Rd) restricted to Σs(Rd) into a continuous map from Σ′

s(Rd)× Σs(Rd) to C.
We observe that using certain properties for tensor products of distributions (2.5)

can be written as

(Vφf)(x, ξ) = F (f · φ( · − x))(ξ), x, ξ ∈ Rd (2.5)′

(cf. [17, 24]). If in addition f ∈ L
p(Rd) for some p ∈ [1,∞], then

(Vφf)(x, ξ) = (2π)−
d
2

$

Rd

f(y)φ(y − x)e−i〈y,ξ〉
dy, x, ξ ∈ Rd

. (2.5)′′

Proposition 2.1. The map

(f,φ) 0→ Vφf :Σs(Rd)× Σs(Rd) → Σs(R2d) (2.6)

is continuous, which extends uniquely to a continuous map

(f,φ) 0→ Vφf :Σ′
s(Rd)× Σ′

s(Rd) → Σ′
s(R2d), (2.7)

which in turn restricts to an isometric map

(f,φ) 0→ Vφf :L2(Rd)× L
2(Rd) → L

2(R2d). (2.8)



54 C. Pfeuffer, N. Teofanov, J. Toft

If φ ∈ Σs(Rd) and f ∈ Σ′
s(Rd), then (2.7) shows that Vφf ∈ Σ′

s(R2d). On
the other hand, it is easy to see that the right-hand side of (2.5) defines a smooth
function. Consequently beside (2.6) and (2.7), we also have the continuous map

(f,φ) 0→ Vφf : Σ′
s(Rd)× Σs(Rd) → Σ′

s(R2d) ∩ C
∞(R2d).

By a straight-forward computation it follows that

|Vφf(x, ξ)| = |Vfφ(−x,−ξ)|, (x, ξ) ∈ R2d
, f ∈ Σ′

1(Rd), φ ∈ Σ1(Rd). (2.9)

For the short-time Fourier transform, the Parseval identity is replaced by the
so-called Moyal identity, also known as the orthogonality relation given by

(Vφf, Vψg)L2(R2d) = (ψ,φ)L2(Rd)(f, g)L2(Rd), (2.10)

when f, g,φ,ψ ∈ Σs(Rd).
By Moyal’s identity (2.10) it follows that if φ ∈ Σs(Rd) \ 0, then the identity

operator on Σ′
s(Rd) is given by

Id =
(
%φ%−2

L2

)
· V ∗

φ ◦ Vφ, (2.11)

provided suitable mapping properties of the (L2-)adjoint V ∗
φ of Vφ can be estab-

lished. Obviously, V ∗
φ fullfils

(V ∗
φ F, g)L2(Rd) = (F, Vφg)L2(R2d) (2.12)

when F ∈ Σs(R2d) and g ∈ Σs(Rd).
By expressing the scalar product and the short-time Fourier transform in terms

of integrals in (2.12), it follows by straight-forward manipulations that the adjoint
in (2.12) is given by

(V ∗
φ F )(x) = (2π)−

d
2

$$

R2d

F (y, η)φ(x− y)ei〈x,η〉 dy dη,

when F ∈ Σs(R2d) and φ ∈ Σs(Rd). We may now use mapping properties like
(2.7)–(2.8) to extend the definition of V ∗

φ F when F and φ belong to various classes
of function and distribution spaces. For example, by (2.6)–(2.8), it follows that the
map

(F, g) 0→ (F, Vφg)L2(R2d)

defines a sesqui-linear form on

Σs(R2d)× Σ′
s(Rd), Σ′

s(R2d)× Σs(Rd) and on L
2(R2d)× L

2(Rd).
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This implies that if φ ∈ Σs(Rd), then the mappings

V
∗
φ : Σs(R2d) → Σs(Rd), V

∗
φ :Σ′

s(R2d) → Σ′
s(Rd)

and V
∗
φ :L2(R2d) → L

2(Rd)

are continuous.
We will often use the (pointwise) estimates

|(Vφ1 ◦ V ∗
φ2
)F (x, ξ)| ≤ (|F | ∗ |Vφ1φ2|)(x, ξ) (2.13)

and

|Vφ1f(x, ξ)| ≤ %φ2%−2
L2 (|Vφ2f | ∗ |Vφ1φ2|)(x, ξ), (x, ξ) ∈ R2d

. (2.14)

Clearly, (2.14) follows from (2.11) and (2.13). Here above F is a suitable distribu-
tion on R2d, f is a suitable distribution on Rd, and φ1,φ2 are suitable functions on
Rd. We refer to [13, Proposition 11.3.2 ] for the proofs of (2.11) and (2.13) in the
context of tempered distributions.

2.3. Mixed norm spaces of Lebesgue type

Let F be a (complex-valued) measurable function on R2d, p, q ∈ (0,∞], and let
ω be a weight on R2d. Then we set

GF,ω,p(ξ) = %F ( · , ξ)ω( · , ξ)%Lp(Rd), HF,ω,q(x) = %F (x, · )ω(x, · )%Lq(Rd),

and

%F%Lp,q
(ω)

(R2d) ≡ %GF,ω,p%Lq(Rd), %F%Lp,q
∗,(ω)

(R2d) ≡ %HF,ω,q%Lp(Rd).

Then the mixed-norm Lebesgue space L
p,q
(ω)(R

2d) (Lp,q
∗,(ω)(R

2d)) consists of all
measurable functions F such that %F%Lp,q

(ω)
< ∞ (%F%Lp,q

∗,(ω)
< ∞).

Discrete versions of mixed-norm Lebesgue spaces are given as follows. Let
Ω1,Ω2 be discrete sets, ω be a positive function on Ω1 × Ω2 and ℓ′0(Ω1 × Ω2) be
the set of all formal (complex-valued) sequences c = {c(j, ι)}j∈Ω1,ι∈Ω2 . Then the
discrete Lebesgue spaces, i.e. the Lebesgue sequence spaces

ℓp,q(ω)(Ω1 × Ω2) and ℓp,q∗,(ω)(Ω1 × Ω2)

of mixed (quasi-)norm types consist of all c ∈ ℓ′0(Ω1 × Ω2) such that

%c%ℓp,q
(ω)

(Ω1×Ω2) < ∞ respectively %c%ℓp,q∗,(ω)
(Ω1×Ω2) < ∞,
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where

%c%ℓp,q
(ω)

(Ω1×Ω2) ≡ %Gc,ω,p%ℓq(Ω2), where Gc,ω,p(ι) = %c( · , ι)ω( · , ι)%ℓp(Ω1)

and

%c%ℓp,q∗,(ω)
(Ω1×Ω2) ≡ %Hc,ω,q%ℓp(Ω1), where Hc,ω,q(j) = %c(j, · )ω(j, · )%ℓq(Ω2).

2.4. Convolutions and multiplications for discrete Lebesgue spaces

Next we discuss extended Hölder and Young inequalities for multiplications and
convolutions on discrete Lebesgue spaces. The Hölder and Young conditions on the
Lebesgue exponents are respectively given by

1

q0
≤ 1

q1
+

1

q2
, (2.15)

and

1

p0
≤ 1

p1
+

1

p2
−max

#
1,

1

p1
,
1

p2

%
. (2.16)

Notice that, when p1, p2 ∈ (0, 1), then (2.16) becomes p0 ≥ max{p1, p2},
while for p1, p2 ≥ 1 it reduces to the common Young condition

1 +
1

p0
≤ 1

p1
+

1

p2
.

By ℓ0(Ω) we denote the set if all sequences c = {c(j)}j∈Ω with finitely many
entries c(j) ∕= 0.

Proposition 2.2. Let pn, qn ∈ (0,∞], n = 0, 1, 2, be such that (2.15) and
(2.16) hold, let Λ ⊆ Rd be a lattice and let ωn be weights on Λ, n = 0, 1, 2. Then
the following is true:

(1) if ω0(j) ≤ ω1(j)ω2(j), j ∈ Λ, then the map (a1, a2) 0→ a1 · a2 from ℓ0(Λ)×
ℓ0(Λ) to ℓ0(Λ) extends uniquely to a continuous map from ℓq1(ω1)

(Λ)×ℓq2(ω2)
(Λ)

to ℓq0(ω0)
(Λ), and

%a1 · a2%ℓq0
(ω0)

≤ %a1%ℓq1
(ω1)

%a2%ℓq2
(ω2)

, an ∈ ℓqn(ωn)
(Λ), n = 1, 2;

(2) if ω0(j1 + j2) ≤ ω1(j1)ω2(j2), j1, j2 ∈ Λ, then the map (a1, a2) 0→ a1 ∗
a2 from ℓ0(Λ) × ℓ0(Λ) to ℓ0(Λ) extends uniquely to a continuous map from
ℓp1(ω1)

(Λ)× ℓp2(ω2)
(Λ) to ℓp0(ω0)

(Λ), and

%a1 ∗ a2%ℓp0
(ω0)

≤ %a1%ℓp1
(ω1)

%a2%ℓp2
(ω2)

, an ∈ ℓpn(ωn)
(Λ), n = 1, 2. (2.17)
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The assertion (1) is the Hölder inequality for discrete Lebesgue spaces, and the
assertion (2) is Young’s inequality for Lebesgue spaces on lattices when p0, p1, p2 ∈
[1,∞]. We refer to Appendix A in [27] for the proof of Proposition 2.2.

3. Modulation spaces and Wiener-Lebesgue amalgam spaces

In this section we recall definitions and basic properties of modulation spaces
and Wiener-Lebesgue amalgam spaces.

3.1. Modulation spaces

The (classical) modulation spaces, essentially introduced in [6] by Feichtinger
are given in the following. (See e. g. [7] for definition of more general modulation
spaces.)

Definition 3.1. Let p, q ∈ (0,∞], ω ∈ PE(R2d) and φ ∈ Σ1(Rd) \ 0.

1. The modulation space M
p,q
(ω)(R

d) consists of all f ∈ Σ′
1(Rd) such that

%f%Mp,q
(ω)

≡ %Vφf%Lp,q
(ω)

is finite. The topology of Mp,q
(ω)(R

d) is defined by the (quasi-)norm % · %Mp,q
(ω)

.

2. The modulation space (of Wiener amalgam type) W
p,q
(ω)(R

d) consists of all

f ∈ Σ′
1(Rd) such that

%f%W p,q
(ω)

≡ %Vφf%Lp,q
∗,(ω)

is finite. The topology of W p,q
(ω)(R

d) is defined by the (quasi-)norm % · %W p,q
(ω)

.

In the next Remark p
′ respectively q

′ are the conjugate exponents of p respec-
tively q. This means that

1

p
+

1

p′
= 1 and

1

q
+

1

q′
= 1.

Remark 3.1. Modulation spaces possess several convenient properties. In fact,
let p, q ∈ (0,∞], ω ∈ PE(R2d) and φ ∈ Σ1(Rd) \ 0. Then the following is true
(see [6, 7, 9, 10, 12, 13] and their analyses for verifications):

• the definitions of Mp,q
(ω)(R

d) and W
p,q
(ω)(R

d) are independent of the choices of

φ ∈ Σ1(Rd) \ 0, and different choices give rise to equivalent quasi-norms;
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• the spaces Mp,q
(ω)(R

d) and W
p,q
(ω)(R

d) are quasi-Banach spaces which increase
with p and q, and decrease with ω. If in addition p, q ≥ 1, then they are
Banach spaces;

• if p, q ≥ 1, then the L2(Rd) scalar product, ( · , · )L2(Rd), on Σ1(Rd)×Σ1(Rd)

is uniquely extendable to dualities between M
p,q
(ω)(R

d) and M
p′,q′

(1/ω)(R
d), and

between W
p,q
(ω)(R

d) and W
p′,q′

(1/ω)(R
d). If in addition p, q < ∞, then the dual

spaces of Mp,q
(ω)(R

d) and W
p,q
(ω)(R

d) can be identified with M
p′,q′

(1/ω)(R
d) respec-

tively W
p′,q′

(1/ω)(R
d), through the form ( · , · )L2(Rd);

• if ω0(x, ξ) = ω(−ξ, x), then F on Σ′
1(Rd) restricts to a homeomorphism

from M
p,q
(ω)(R

d) to W
q,p
(ω0)

(Rd);

• when ω ∈ PE(R2d) the following inclusions are continuous:

Σ1(Rd) ⊆ M
p,q
(ω)(R

d),W p,q
(ω)(R

d) ⊆ Σ′
1(Rd). (3.1)

If in addition p, q < ∞, then these inclusions are dense.

• Let s ≥ 1 be fixed and set

vr,t(x, ξ) =

*
+

,
e
r(|x|1/t+|ξ|1/t))

, t ∈ (0,∞),

(1 + |x|+ |ξ|)r, t = ∞,

where x, ξ ∈ Rd. Then

Σs(Rd) =
-

r>0

M
p,q
(vr,s)

(Rd) =
-

r>0

W
p,q
(vr,s)

(Rd), (3.2)

Ss(Rd) =
.

r>0

M
p,q
(vr,s)

(Rd) =
.

r>0

W
p,q
(vr,s)

(Rd),

S (Rd) =
-

r>0

M
p,q
(vr,∞)(R

d) =
-

r>0

W
p,q
(vr,∞)(R

d),

S ′(Rd) =
.

r>0

M
p,q
(1/vr,∞)(R

d) =
.

r>0

W
p,q
(1/vr,∞)(R

d),

S ′
s(Rd) =

-

r>0

M
p,q
(1/vr,s)

(Rd) =
-

r>0

W
p,q
(1/vr,s)

(Rd),

and

Σ′
s(Rd) =

.

r>0

M
p,q
(1/vr,s)

(Rd) =
.

r>0

W
p,q
(1/vr,s)

(Rd). (3.3)
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The topologies of the spaces on the left-hand sides of (3.2)–(3.3) are obtained
by replacing each intersection by projective limit with respect to r > 0 and
each union with inductive limit with respect to r > 0.

Relations (3.2)–(3.3) are essentially special cases of [22, Theorem 3.9], see
also [15, 20].

We finish this subsection with convolution and multiplication properties for
modulation spaces. Similar results hold true for modulation spaces of Wiener amal-
gam type, cf. [21].

For multiplications of elements in modulation spaces the involved Lebesgue
exponents should satisfy

1

p0
≤ 1

p1
+

1

p2
,

1

q0
≤ 1

q1
+

1

q2
−max

#
1,

1

p0
,
1

q1
,
1

q2

%
, (3.4)

and the condition on the weight functions is given by

ω0(x, ξ1 + ξ2) ≤ ω1(x, ξ1)ω2(x, ξ2), x, ξ1, ξ2 ∈ Rd
. (3.5)

Theorem 3.1. Let pn, qn ∈ (0,∞) and ωn ∈ PE(R2d), n = 0, 1, 2, be such
that (3.4) and (3.5) hold. Then (f1, f2) 0→ f1 ·f2 from Σ1(Rd)×Σ1(Rd) to Σ1(Rd)
is uniquely extendable to a continuous map from M

p1,q1
(ω1)

(Rd)×M
p2,q2
(ω2)

(Rd)

to M
p0,q0
(ω0)

(Rd), and

%f1f2%Mp0,q0
(ω0)

≲ %f1%Mp1,q1
(ω1)

%f2%Mp2,q2
(ω2)

, fn ∈ M
pn,qn
(ωn)

(Rd), n = 1, 2.

For the corresponding results for convolutions the conditions on the involved
Lebesgue exponents are given by (2.15) and (2.16), and the conditions on the weight
functions are now given by

ω0(x1 + x2, ξ) ≤ ω1(x1, ξ)ω2(x2, ξ), x1, x2, ξ ∈ Rd
. (3.6)

Theorem 3.2. Let pn, qn ∈ (0,∞) and ωn ∈ PE(R2d), n = 0, 1, 2, be such
that (2.15), (2.16) and (3.6) hold. Then (f1, f2) 0→ f1∗f2 from Σ1(Rd)×Σ1(Rd) to
Σ1(Rd) is uniquely extendable to a continuous map from M

p1,q1
(ω1)

(Rd)×M
p2,q2
(ω2)

(Rd)

to M
p0,q0
(ω0)

(Rd), and

%f1 ∗ f2%Mp0,q0
(ω0)

≲ %f1%Mp1,q1
(ω1)

%f2%Mp2,q2
(ω2)

, fn ∈ M
pn,qn
(ωn)

(Rd), n = 1, 2.

3.2. Wiener-Lebesgue amalgam spaces

The construction of Wiener-Lebesgue (or just Wiener) amalgam spaces given below
is a special case of the general definition of coorbit spaces, cf. [9, 10].
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Let ω0 ∈ PE(Rd), ω ∈ PE(R2d), p, q, r ∈ (0,∞], Qd = [0, 1]d be the unit
cube. For measurable f on Rd, set

%f%Wr(ω0,ℓp) ≡ %a0%ℓp(Zd) (3.7)

when
a0(j) ≡ %f ω0%Lr(j+Qd), j ∈ Zd

,

and for measurable F on R2d,

%F%Wr(ω,ℓp,q) ≡ %a%ℓp,q(Z2d) and %F%Wr(ω,ℓp,q∗ ) ≡ %a%ℓp,q∗ (Z2d) (3.8)

when
a(j, ι) ≡ %F ω%Lr((j,ι)+Q2d), j, ι ∈ Zd

.

The Wiener amalgam space

Wr(ω0, ℓ
p) = Wr(ω0, ℓ

p(Zd))

consists of all measurable f ∈ L
r
loc(Rd) such that %f%Wr(ω0,ℓp) is finite. The Wiener

amalgam spaces

Wr(ω, ℓp,q) = Wr(ω, ℓp,q(Z2d)) and Wr(ω, ℓp,q∗ ) = Wr(ω, ℓp,q∗ (Z2d))

consist of all measurable functions F ∈ L
r
loc(R2d) such that %F%Wr(ω,ℓp,q) respec-

tively %F%Wr(ω,ℓp,q∗ ) are finite. We observe that Wr(ω0, ℓ
p) is often denoted by

W (Lr
, L

p
(ω0)

) or W (Lr
, ℓp(ω0)

) in the literature (see e.g., [9, 11, 12, 19]).
The choice of another compact set with nonempty interior instead of the unit

cube yields the same space under an equivalent norm, see e.g., [16, Proposition
11.3.2]. For example, in the proof of Theorem 4.1 we will consider Q̃2d = [−1, 1]2d

together with Q2d.
The topologies are defined through their respectively quasi-norms in (3.7) and

(3.8).
Obviously, Wr(ω0, ℓ

p) and Wr(ω, ℓp,q) increase with p, q, decrease with r, and

W∞(ω, ℓp,q) ↩→ L
p,q
(ω)(R

2d) ∩ Σ′
1(R2d) ↩→ L

p,q
(ω)(R

2d) ↩→ Wr(ω, ℓp,q)

and

% · %Wr(ω,ℓp,q) ≤ % · %Lp,q
(ω)

≤ % · %W∞(ω,ℓp,q), r ≤ min(1, p, q).

In addition, we have the following inclusions:

L
p,q
(ω) ↩→ W1(ω, ℓp,q), p, q ≥ 1 and W1(ω, ℓp,q) ⊆ L

p,q
(ω) ∩ L

1
(ω), p, q ≤ 1.
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For convenience, if ω ≡ 1, we set

Wr(ℓp,q) = Wr(1, ℓp,q) and Wr(ℓp,q∗ ) = Wr(1, ℓp,q∗ ).

In an analogous fashion one can introduce norms of the form % · %Wr(ω,Lp,q) and
% · %Wr(ω,Lp,q

∗ ), and define the Wiener amalgam spaces

Wr(ω, Lp,q) = Wr(ω, Lp,q(R2d)) and Wr(ω, Lp,q
∗ ) = Wr(ω, Lp,q

∗ (R2d))

as spaces of all measurable F ∈ L
r
loc(R2d) such that %F%Wr(ω,Lp,q) respectively

%F%Wr(ω,Lp,q
∗ ) are finite. We omit the details.

4. Equivalence of norms in modulation and Wiener amalgam spaces

As a preparation for the proof of our main result, we shall prove some auxiliary
statements.

Lemma 4.1. Let p, q ∈ (0,∞), Q2d = [0, 1]2d be the unit cube, ω ∈ PE(R2d),
and let F ∈ W1(ω, ℓp,q). Then for every (j, ι) ∈ Z2d,

/////

$$

(j,ι)+Q2d

F (·+ (z, ζ)) dz dζ

/////
Lp,q
(ω)

≲ %F%W1(ω,ℓp,q).

PROOF. Put α(F, j, ι) ≡ %F%L1((j,ι)+Q) with Q = Q2d, Qd = [0, 1]d, Fω =
Fω and

Ω = {m ∈ Zd : 0 ≤ mn ≤ 2, n = 1, . . . , d}.

Then for ξ ∈ ν +Qd with ν ∈ Zd we obtain

$

Rd

00000

$$

(j,ι)+Q
Fω(x+ z, ξ + ζ) dz dζ

00000

p

dx

=
"

n∈Zd

$

n+Qd

00000

$$

(j,ι)+Q
Fω((x+ z, ξ + ζ)) dz dζ

00000

p

dx

≤
"

n∈Zd

$

n+Qd

000000

"

k,κ∈Ω
α(Fω, j + n+ k, ι+ ν + κ)

000000

p

dx

≤ C
max(p,1)

"

n∈Zd

"

κ∈Ω
|α(Fω, n, ι+ ν + κ)|p ,
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where the constant C > 1 depends only on the dimension. Hence by the previous
estimate,
/////

$$

(j,ι)+Q
Fω(·+ (z, ζ)) dz dζ

/////

q

Lp,q
(ω)

=
"

ν∈Zd

$

ν+Qd

!$

Rd

00000

$$

(j,ι)+Q
Fω((x+ z, ξ + ζ)) dz dζ

00000

p

dx

&q/p

dξ

≲
"

ν∈Zd

1

2
"

n∈Zd

|α(Fω, n, ν)|p
3

4
q/p

= %F%q
W1(ω,ℓp,q)

.

In what follows we will consider conditions of the form

1

p2
− 1

p1
=

1

p
and

1

q2
− 1

q1
=

1

q
, p, q, pn, qn ∈ (0,∞], n = 1, 2. (4.1)

Lemma 4.2. Let p, q, pn and qn be as in (4.1), n = 1, 2. If F ∈ W1(ω, ℓp,q)
and G ∈ W∞(ω1, ℓ

p1,q1), then FG ∈ W1(ω2, ℓ
p2,q2) where ω2/ω1 ≲ ω.

PROOF. Let Q = [0, 1]2d and αr(H, j, ι) ≡ %H%Lr((j,ι)+Q), when 0 < r ≤ ∞,
j, ι ∈ Zd, and H is a measurable function on R2d. Then

α1(F Gω2, j, ι) =

$

(j,ι)+Q
|F (X)G(X)ω2(X)| dX

≲ %F ω%L1((j,ι)+Q)%Gω1%L∞((j,ι)+Q).

Therefore,

%FG%W1(ω2,ℓp2,q2 ) = %α1(F Gω2, · )%ℓp2,q2

≲ %α1(F ω, ·)α∞(Gω1, · )%ℓp2,q2

≤ %α1(F ω, · )%ℓp,q · %α∞(Gω1, · )%ℓp1,q1

= %F%W1(ω,ℓp,q) · %G%W∞(ω1,ℓp1,q1 ).

The following result extends [25, Proposition 2′] by relaxing conditions on win-
dow functions. The arguments are different compared to [25]. For related results,
when r = ∞, see [13] when p, q ∈ [1,∞], and [12, 23] when p, q ∈ (0,∞], and for
r ∈ (0,∞], see [26].
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Theorem 4.1. Let p, q, r, r0 ∈ (0,∞] be such that r0 ≤ min(1, p, q), ω, v ∈
PE(R2d) be such that ω is v-moderate, and let φ1,φ2 ∈ M

r0
(v)(R

d) \ 0. Then

f ∈ M
p,q
(ω)(R

d) ⇔ Vφ1f ∈ L
p,q
(ω)(R

2d) ⇔ Vφ2f ∈ Wr(ω, ℓp,q),

and
%f%Mp,q

(ω)
≍ %Vφ1f%Lp,q

(ω)
≍ %Vφ2f%Wr(ω,ℓp,q).

For the proof of Theorem 4.1 we need the following special case where the
window functions φ1 and φ2 are the standard Gaussian. We omit the proof because
the result follows from (3.9) and (3.10) in [25].

Lemma 4.3. Let φ0(x) = π− d
4 e

− 1
2
|x|2 , x ∈ Rd, p, q, r ∈ (0,∞] and ω ∈

PE(R2d). Then

f ∈ M
p,q
(ω)(R

d) ⇔ Vφ0f ∈ L
p,q
(ω)(R

2d) ⇔ Vφ0f ∈ Wr(ω, ℓp,q),

and
%f%Mp,q

(ω)
≍ %Vφ0f%Lp,q

(ω)
≍ %Vφ0f%Wr(ω,ℓp,q).

PROOF OF THEOREM 4.1. Let φ0(x) = π− d
4 e

− 1
2
|x|2 , x ∈ Rd, be the standard

Gaussian, φ ∈ M
r0
(v)(R

d)\0 be arbitrary and let f ∈ Σ′
1(Rd) be fixed. We introduce

the following notation

F = |Vφf · ω|, F0 = |Vφ0f · ω|, Φ1 = |Vφ0φ · v|, Φ2 = |Vφφ0 · v|,

Q = Q2d = [0, 1]2d, Q(j, ι) = (j, ι) +Q,

Q̃ = Q̃2d = [−1, 1]2d, Q̃(j, ι) = (j, ι) + Q̃,

αn,s(j, ι) = %Φn%Ls(Q(j,ι)), βs(j, ι) = %F%Ls(Q(j,ι)), β̃s(j, ι) = %F%Ls(Q̃(j,ι)),

β0,s(j, ι) = %F0%Ls(Q(j,ι)) and β̃0,s(j, ι) = %F0%Ls(Q̃(j,ι)), j, ι ∈ Zd
, s ∈ (0,∞].

Lemma 4.3 gives

%F0%Lp,q = %f%Mp,q
(ω)

≍ %F0%Wr(ℓp,q), (4.2)

and since v is even, by using (2.9) we get

%Φn%Lr0 ≍ %φ%Mr0
(v)

≍ %Φn%Wr(ℓr0 ), n = 1, 2. (4.3)

We also have

%α1,s%ℓr = %α2,s%ℓr = %Φn%Ws(ℓr) ≍ %φ%Mr
(v)
, n = 1, 2,

%β0,s%ℓp,q = %F0%Ws(ℓp,q), (4.4)
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and

%βs%ℓp,q = %F%Ws(ℓp,q) ≍ %β̃s%ℓp,q , s ∈ (0,∞]

by Lemma 4.3, using the facts that v is an even function, and that the Gaussian φ0

is included in the short-time Fourier transforms in Φn, n = 1, 2.
Let φ ∈ M

r0
(v)(R

d) \ 0. We need to show

%Vφf%Wr(ω,ℓp,q) ≲ %f%Mp,q
(ω)

and %f%Mp,q
(ω)

≲ %Vφf%Wr(ω,ℓp,q).

We have %Vφf%Wr(ω,ℓp,q) ≍ %F%Wr(ℓp,q), and by Lemma 4.3 it follows that
%f%Mp,q

(ω)
≍ %F0%Wr(ℓp,q). Hence the result follows if we prove

a) %F%Wr(ℓp,q) ≲ %F0%Wr(ℓp,q), F0 ∈ W
r(ℓp,q),

b) %F0%Wr(ℓp,q) ≲ %F%Wr(ℓp,q), F ∈ Wr(ℓp,q).

a) Assume that F0 ∈ W∞(ℓp,q). Let us prove

F0 ∈ W∞(ℓp,q) =⇒ F ∈ W∞(ℓp,q).

This implies a) since the Wiener amalgam spaces decrease with r > 0.
By the pointwise estimate F ≲ F0 ∗ Φ2 we get

β∞(j, ι) = %F%L∞(Q(j,ι)) ≲ %F0 ∗ Φ2%L∞(Q(j,ι)) (4.5)

≲ sup
(x,ξ)∈Q(j,ι)

1

2
"

k,κ∈Zd

α2,∞(k,κ)

$$

Q(k,κ)
F0(x− y, ξ − η) dy dη

3

4

≲
"

k,κ∈Zd

α2,∞(k,κ) sup
(x,ξ)∈Q(j,ι)

!$$

Q(k,κ)
F0(x− y, ξ − η) dy dη

&

≲
"

k,κ∈Zd

α2,∞(k,κ) sup
(x,ξ)∈Q(j,ι)

!
sup

(y,η)∈Q(k,κ)
|F0(x− y, ξ − η)|

&

≲
"

k,κ∈Zd

α2,∞(k,κ) sup
(z,ζ)∈Q̃(j−k,ι−κ)

|F0(z, ζ)|

≲ (α2,∞ ∗ β̃0,∞)(j, ι).
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Thus (by using (2.17)) we get

%F%W∞(ℓp,q) = %β∞%ℓp,q ≲ %α2,∞ ∗ β̃0,∞%ℓp,q

≲ %α2,∞%ℓmin(1,p,q)%β̃0,∞%ℓp,q

= %Φ2%W∞(ℓmin(1,p,q))%F0%W∞(ℓp,q)

≲ %φ%Mr0
(v)
%F0%W∞(ℓp,q), (4.6)

where we used (4.3) in the last estimate. Consequently, F ∈ W∞(ℓp,q), which gives
F ∈ Wr(ℓp,q), r > 0, and hence a) follows.

b) Assume that F ∈ Wr(ℓp,q), r > 0. Since Wiener amalgam spaces decrease
with r > 0, without loss of generality we assume that r ≤ min(1, p, q). We have to
prove that F0 ∈ Wr(ℓp,q) for r ≤ min(1, p, q).

By (4.4), %F0%Wr(ℓp,q) = %β0,r%ℓp,q . Hence we start with estimating β0,r(j, ι).
The pointwise inequality F0 ≲ F ∗ Φ1 gives

β0,r(j, ι)
r ≲

$$

Q(j,ι)

#$$

R2d

F (x− y, ξ − η)Φ1(y, η) dy dη

%r

dx dξ

=

$$

Q(j,ι)

1

2
"

k,κ∈Zd

$$

Q(k,κ)
F (x− y, ξ − η)Φ1(y, η) dy dη

3

4
r

dx dξ

≲
$$

Q(j,ι)

1

2
"

k,κ∈Zd

α1,∞(k,κ)

$$

Q(k,κ)
F (x− y, ξ − η) dy dη

3

4
r

dxdξ

≲
"

k,κ∈Zd

α1,∞(k,κ)r
$$

Q(j,ι)

!$$

Q(k,κ)
F (x− y, ξ − η)dydη

&r

dxdξ.

By F = F
r
F

1−r we have

$$

Q(j,ι)

!$$

Q(k,κ)
F (x− y, ξ − η) dy dη

&r

dx dξ

≤ β̃∞(j − k, ι− κ)r−r2
$$

Q(j,ι)

!$$

Q(k,κ)
F (x− y, ξ − η)r dy dη

&r

dx dξ

≤ β̃∞(j − k, ι− κ)r−r2 β̃r(j − k, ι− κ)r
2
.
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We insert the previous inequality in the estimate of β0,r(j, ι)r and get

β0,r(j, ι)
r ≲

"

k,κ∈Zd

α1,∞(k,κ)r β̃r(j − k, ι− κ)r
2
β̃∞(j − k, ι− κ)r−r2

= αr
1,∞ ∗

5
β̃r2

r β̃r−r2

∞

6
(j, ι). (4.7)

Let p2 = p/r, q2 = q/r and s = 1/r. Then s
′ = 1/(1− r). Due to (4.7) we have

%F0%Wr(ℓp,q) = %β0,r%ℓp,q = %βr
0,r%

1/r
ℓp2,q2 ≲

///αr
1,∞ ∗

5
β̃r2

r β̃r−r2

∞

6///
1/r

ℓp2,q2

≲ %αr
1,∞%1/r

ℓ1

///β̃r2

r β̃r−r2

∞

///
1/r

ℓp2,q2

≲ %α1,∞%ℓr
5///β̃r2

r

///
ℓs p2,s q2

///β̃r−r2

∞

///
ℓs

′ p2,s′ q2

61/r
.

The choice of s, p2 and q2 provides by means of a straight forward calculation
///β̃r2

r

///
ℓs p2,s q2

= %β̃r%r
2

ℓp,q and
///β̃r−r2

∞

///
ℓs

′ p2,s′ q2
= %β̃∞%r−r2

ℓp,q .

Totally, this gives

%F0%Wr(ℓp,q) ≲ %α1,∞%ℓr%β̃r%rℓp,q%β̃∞%1−r
ℓp,q (4.8)

= %φ%Mr
(v)
%F%rWr(ℓp,q)%F%1−r

W∞(ℓp,q).

Now from part a), i.e. estimate (4.6) with r = r0 and Lemma 4.3, we obtain

%F%W∞(ℓp,q) ≲ %φ%Mr
(v)
%F0%W∞(ℓp,q)

≲ %φ%Mr
(v)
%F0%Wr(ℓp,q).

By combining this estimate with (4.8) we get

%F0%Wr(ℓp,q) ≲ %φ%2−r
Mr

(v)
%F%rWr(ℓp,q)%F0%1−r

Wr(ℓp,q).

Solving this inequality for %F0%Wr(ℓp,q) gives

%F0%Wr(ℓp,q) ≲ %F%Wr(ℓp,q),

which implies b).

We note that the same result as in Theorem 4.1 holds true with W
p,q
(ω), L

p,q
∗,(ω)

and Wr(ω, ℓp,q∗ ) in place of Mp,q
(ω), L

p,q
(ω) and Wr(ω, ℓp,q), respectively, at each occur-

rence.
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Remark 4.1. Theorem 4.1 can be used, for example, to extend some known
results on the continuity of short-time Fourier transform multipliers, also referred
to as Toeplitz or localization operators. For instance, it can be shown that [2, The-
orem 3] can be generalized to a wider range of Lebesgue parameters and a larger
class of symbols. In particular, the quasi-Banach case can not addressed using the
techniques from [2], as convolution is generally not well-defined in this context. In
contrast, convolution estimates can be applied within our framework since

W1(ω, ℓp,q) ⊆ L
p,q
(ω)(R

2d) ∩ L
1
(ω)(R

2d), 0 < p, q ≤ 1, ω ∈ PE(R2d).

These investigations are beyond the scope of the present paper and will be ad-
dressed elsewhere, cf. [28] and a forthcoming contribution by the authors.
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